Download citation
Download citation
link to html
Hexamethyl­phospho­ramide (hmp), tetra­thio­tungstate, silver sulfide and europium nitrate were self-assembled to form a one-dimensional anionic [AgWS4] chain generated by the 21 symmetry operation, {[Eu(NO3)2(C6H18N3OP)4][WAgS4]}n. The central Eu in the cation is coordinated by eight O atoms from two nitrate and four hmp ligands, which gives rise to a distorted square-anti­prismatic structure like those in the isostructural Yb and Y compounds. Parts of the dimethyl­amine groups from the hmp ligands have large librations. Together with the two nitrate ligands, the cation in the title compound is monovalent, which leads to the anionic chain having a monovalent repeat unit. This contrasts with solvent-coordinated rare-earth cations, which are trivalent and induce trivalent repeat units in the anionic chains. The polymeric anionic chain in the title compound, with W—Ag—W and Ag—W—Ag angles of 162.93 (2) and 154.250 (9)°, respectively, presents a distorted linear configuration, unlike those in {(γ-MePyH)[WS4Ag]}n and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (DMF is dimethyl­formamide), showing an ideal linear chain and a nearly linear chain, with W—Ag—W and Ag—W—Ag angles of 176.4 (5) and 176.4 (3)°, respectively. This fact suggests that cations with bigger bulk lead to more distorted anionic chains. At the same time, the anionic skeleton in the title compound is the same as those in {[M(hmp)4(NO3)2][WS4Ag]}n (M = Yb, Y), implying that different rare-earth cations with the same coordination environments have the same influence on the arrangement of their anionic skeletons.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039293/br2053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039293/br2053Isup2.hkl
Contains datablock I

CCDC reference: 660142

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](g-S) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.090
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT761_ALERT_1_A CIF Contains no X-H Bonds ...................... ? PLAT762_ALERT_1_A CIF Contains no X-Y-H or H-Y-H Angles .......... ?
Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for P3 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N1 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N5
Alert level C PLAT213_ALERT_2_C Atom C18 has ADP max/min Ratio ............. 3.60 prola PLAT213_ALERT_2_C Atom C21 has ADP max/min Ratio ............. 3.30 prola PLAT213_ALERT_2_C Atom C24 has ADP max/min Ratio ............. 3.80 oblat PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.49 Ratio PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.53 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Eu1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N11 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for W1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.19
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for W1 (9) 6.69 PLAT794_ALERT_5_G Check Predicted Bond Valency for Eu1 (3) 3.43 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (1) 1.17
2 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 17 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and unique properties as functional materials, such as third-order nonlinear optical (NLO) materials (Zhang, Song et al., 2007, and references therein). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound, {[Eu(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide), with a wave-like anionic chain was prepared by following such route using EuIII–hmp complex as counterion.

The cation in the title compound, where Eu3- is coordinated by eight O atoms from two nitrate and four hmp ligands, has the same structure as those in the isostructural {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007). Parts of dimethylamine groups from hmp ligands have large librations. In possession of two nitrate ligands, the cation in the title compound is monovalent (Fig. 1), which leads to an anionic chain with a monovalent repeat unit, unlike other solvent-coordinated rare-earth cations (Niu et al., 2004), which are trivalent and induce trivalent repeat units. For example, [Nd(dmf)8]3+ induces an anionic chain with a trivalent repeat unit [W4S16Ag5]3- (Huang et al., 1996).

As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 162.93 (2) and 154.250 (9)°, respectively, unlike those in {(γ-MePyH)[WS4Ag]}n (MePyH is protonated picoline; Lang et al., 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (Huang et al., 1997), showing an ideal linear chain and a nearly linear chain with W—Ag—W and Ag—W—Ag angles of 176.4 (5) and 176.4 (3)°, respectively. This fact suggests that cations with bigger bulk lead to more distorted anionic chains.

Similar angles of 160.81 (7) and 153.41 (7)° for W—Ag—W and Ag—W—Ag, respectively, are found in another two distorted linear chains in {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007), implying that different rare earth cations with the same coordination environments will result in the same anionic structures.

Related literature top

Examples of one-dimensional [WS4Ag] anionic polymers with ideal and nearly linear configurations are {(γ-MePyH)[WS4Ag]}n (Lang et al., 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (DMF is dimethylformamide; Huang et al., 1997), respectively. Two more relevant analogs of the title compound are {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Song et al., 2007 and/or Zhang, Cao et al., 2007?) (hmp is hexamethylphosphoramide), which have similar wave-like chains. {[Nd(DMF)8][W4S16Ag5]}n (Huang et al., 1996) contains solvent-coordinated rare-earth cations leading to an anionic chain with a trivalent repeat unit. Polymeric Mo(W)/S/Ag(Cu) clusters have been reviewed by Niu et al. (2004, and references therein). The third-order nonlinear optical properties of Mo(W)/S/Ag(Cu) clusters are reviewed by Zhang, Song et al. (2007) and/or Zhang, Cao et al. (2007).

Experimental top

1 mmol A g2S was added to a solution of [NH4]2WS4 (2 mmol in 30 mL h mp) with thorough stir for 12 h. The solution underwent an additional stir for one minute after 1 mmol Eu(NO3)3.6H2O was added. After filtration the orange-red filtrate was carefully laid on the surface with 30 ml i-PrOH. Red block crystals were obtained after ten days. Yield: 1.291 g in pure form, 45.7% (based on W). Analysis calculated for C24H72AgEuN14O10P4S4W: C 20.40, H 5.14, N 13.88%; found: C 20.37, H 5.12, N 13.91%. IR: ν, cm-1, 482.7 m, 446.6 s (W-µ2-S).

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq for methyl H atoms and 0.98 Å for C—H bonds.

Structure description top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and unique properties as functional materials, such as third-order nonlinear optical (NLO) materials (Zhang, Song et al., 2007, and references therein). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound, {[Eu(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide), with a wave-like anionic chain was prepared by following such route using EuIII–hmp complex as counterion.

The cation in the title compound, where Eu3- is coordinated by eight O atoms from two nitrate and four hmp ligands, has the same structure as those in the isostructural {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007). Parts of dimethylamine groups from hmp ligands have large librations. In possession of two nitrate ligands, the cation in the title compound is monovalent (Fig. 1), which leads to an anionic chain with a monovalent repeat unit, unlike other solvent-coordinated rare-earth cations (Niu et al., 2004), which are trivalent and induce trivalent repeat units. For example, [Nd(dmf)8]3+ induces an anionic chain with a trivalent repeat unit [W4S16Ag5]3- (Huang et al., 1996).

As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 162.93 (2) and 154.250 (9)°, respectively, unlike those in {(γ-MePyH)[WS4Ag]}n (MePyH is protonated picoline; Lang et al., 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (Huang et al., 1997), showing an ideal linear chain and a nearly linear chain with W—Ag—W and Ag—W—Ag angles of 176.4 (5) and 176.4 (3)°, respectively. This fact suggests that cations with bigger bulk lead to more distorted anionic chains.

Similar angles of 160.81 (7) and 153.41 (7)° for W—Ag—W and Ag—W—Ag, respectively, are found in another two distorted linear chains in {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Cao et al., 2007), implying that different rare earth cations with the same coordination environments will result in the same anionic structures.

Examples of one-dimensional [WS4Ag] anionic polymers with ideal and nearly linear configurations are {(γ-MePyH)[WS4Ag]}n (Lang et al., 1993) and {[NH3C(CH2OH)3][WS4Ag](2DMF)}n (DMF is dimethylformamide; Huang et al., 1997), respectively. Two more relevant analogs of the title compound are {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007) and {[Y(hmp)4(NO3)2][WS4Ag]}n (Zhang, Song et al., 2007 and/or Zhang, Cao et al., 2007?) (hmp is hexamethylphosphoramide), which have similar wave-like chains. {[Nd(DMF)8][W4S16Ag5]}n (Huang et al., 1996) contains solvent-coordinated rare-earth cations leading to an anionic chain with a trivalent repeat unit. Polymeric Mo(W)/S/Ag(Cu) clusters have been reviewed by Niu et al. (2004, and references therein). The third-order nonlinear optical properties of Mo(W)/S/Ag(Cu) clusters are reviewed by Zhang, Song et al. (2007) and/or Zhang, Cao et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku Corporation, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. The molecular structure of a portion of the anionic chain in the title compound, with atom labels and 30% probability displacement ellipsoids.
catena-Poly[[tetrakis(hexamethylphosphoramide-κO)bis(nitrato-\k2O,O')europium(III)] [silver(I)-di-µ-sulfido-tungstate(VI)(Ag—W)-di-µ-sulfido]] top
Crystal data top
[Eu(NO3)2(C6H18N3OP)4][WAgS4]F(000) = 2808.0
Mr = 1412.79Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 20108 reflections
a = 15.8182 (13) Åθ = 3.0–25.4°
b = 29.778 (2) ŵ = 3.97 mm1
c = 11.4267 (9) ÅT = 153 K
β = 90.934 (2)°Block, red
V = 5381.7 (7) Å30.55 × 0.45 × 0.30 mm
Z = 4
Data collection top
Rigaku Mercury CCD (2 × 2 bin mode)
diffractometer
9849 independent reflections
Radiation source: fine-focus sealed tube9106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3135
Tmin = 0.139, Tmax = 0.304l = 1313
50038 measured reflections
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0282P)2 + 18.912P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
9849 reflectionsΔρmax = 1.02 e Å3
535 parametersΔρmin = 0.99 e Å3
0 restraints
Crystal data top
[Eu(NO3)2(C6H18N3OP)4][WAgS4]V = 5381.7 (7) Å3
Mr = 1412.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8182 (13) ŵ = 3.97 mm1
b = 29.778 (2) ÅT = 153 K
c = 11.4267 (9) Å0.55 × 0.45 × 0.30 mm
β = 90.934 (2)°
Data collection top
Rigaku Mercury CCD (2 × 2 bin mode)
diffractometer
9849 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9106 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.304Rint = 0.047
50038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0282P)2 + 18.912P]
where P = (Fo2 + 2Fc2)/3
9849 reflectionsΔρmax = 1.02 e Å3
535 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.237957 (17)0.082979 (9)0.83020 (2)0.02536 (8)
P10.19588 (11)0.03010 (6)0.69528 (15)0.0405 (4)
P20.46094 (10)0.09534 (6)0.73359 (16)0.0380 (4)
P30.29492 (13)0.14797 (6)1.10044 (16)0.0499 (5)
P40.02042 (9)0.13444 (6)0.82420 (14)0.0345 (4)
O10.3782 (2)0.08073 (14)0.7818 (4)0.0410 (10)
O40.2074 (3)0.01747 (13)0.7293 (4)0.0399 (10)
O80.1010 (2)0.10817 (14)0.8261 (4)0.0344 (9)
O110.2732 (3)0.12778 (14)0.9851 (4)0.0395 (10)
O120.2252 (5)0.1724 (2)0.5537 (5)0.095 (2)
O130.2522 (3)0.15902 (14)0.7367 (4)0.0436 (11)
O150.3007 (3)0.02648 (15)0.9710 (4)0.0444 (11)
O160.2350 (4)0.0010 (2)1.1235 (5)0.0717 (17)
O170.1680 (3)0.04047 (15)0.9930 (4)0.0410 (10)
O190.2235 (3)0.10444 (15)0.6198 (4)0.0454 (11)
N10.2603 (5)0.0660 (2)0.7601 (6)0.068 (2)
N20.2174 (4)0.0358 (2)0.5567 (5)0.0523 (15)
N30.1027 (5)0.0471 (3)0.7327 (7)0.081 (2)
N40.5348 (3)0.0699 (2)0.8040 (6)0.067 (2)
N50.4855 (4)0.1483 (2)0.7383 (7)0.071 (2)
N60.4597 (4)0.0858 (3)0.5925 (6)0.071 (2)
N70.2770 (6)0.2001 (2)1.0988 (6)0.083 (2)
N80.2390 (7)0.1250 (3)1.2012 (7)0.103 (3)
N90.3937 (6)0.1383 (3)1.1331 (9)0.115 (4)
N100.0224 (4)0.1743 (2)0.9212 (6)0.0548 (16)
N110.0042 (4)0.1578 (2)0.6986 (5)0.0588 (17)
N120.0574 (3)0.1001 (2)0.8512 (5)0.0414 (13)
N130.2340 (4)0.1463 (2)0.6344 (6)0.0509 (15)
N140.2353 (4)0.02194 (18)1.0309 (5)0.0451 (14)
C10.5132 (9)0.1681 (4)0.8488 (11)0.147 (6)
H1A0.52550.20010.83710.220*
H1B0.56440.15280.87710.220*
H1C0.46850.16490.90650.220*
C20.4540 (6)0.1805 (4)0.6513 (13)0.137 (6)
H2A0.47640.21050.66960.206*
H2B0.39210.18130.65270.206*
H2C0.47250.17150.57330.206*
C30.5320 (7)0.0960 (6)0.5201 (10)0.140 (6)
H3A0.57350.07170.52680.210*
H3B0.55790.12420.54650.210*
H3C0.51330.09900.43830.210*
C40.3065 (7)0.2278 (3)0.9985 (7)0.074 (3)
H4A0.29060.25921.01090.110*
H4B0.28020.21680.92580.110*
H4C0.36810.22550.99320.110*
C50.4336 (7)0.0961 (4)1.1182 (12)0.120 (5)
H5A0.49240.09791.14610.180*
H5B0.43230.08801.03510.180*
H5C0.40350.07321.16300.180*
C60.1481 (8)0.1232 (5)1.1876 (10)0.115 (4)
H6A0.12380.10881.25640.173*
H6B0.13320.10581.11740.173*
H6C0.12560.15371.17990.173*
C70.0897 (6)0.2079 (3)0.9205 (9)0.080 (3)
H7A0.08120.22930.98430.119*
H7B0.08840.22390.84550.119*
H7C0.14450.19310.93100.119*
C80.0453 (5)0.1845 (3)1.0028 (8)0.073 (2)
H8A0.02860.21001.05220.109*
H8B0.05560.15821.05230.109*
H8C0.09700.19200.95870.109*
C90.0484 (4)0.0666 (3)0.9441 (7)0.057 (2)
H9A0.10060.04900.94890.085*
H9B0.03760.08181.01900.085*
H9C0.00100.04660.92680.085*
C100.4501 (10)0.1727 (6)1.1869 (14)0.185 (8)
H10A0.50630.15981.20100.277*
H10B0.42650.18271.26130.277*
H10C0.45460.19851.13380.277*
C110.1443 (4)0.1096 (3)0.8152 (7)0.064 (2)
H11A0.18100.08500.83990.095*
H11B0.14760.11260.72980.095*
H11C0.16290.13770.85160.095*
C120.0357 (6)0.2023 (3)0.6820 (10)0.099 (4)
H12A0.03790.20960.59840.148*
H12B0.00240.22510.72400.148*
H12C0.09320.20160.71260.148*
C130.0173 (6)0.1324 (4)0.5934 (7)0.097 (4)
H13A0.00540.15140.52510.146*
H13B0.02070.10640.59210.146*
H13C0.07610.12210.59150.146*
C140.0347 (5)0.0153 (3)0.7535 (9)0.082 (3)
H14A0.01620.03170.77630.123*
H14B0.02290.00180.68180.123*
H14C0.05170.00530.81640.123*
C150.1975 (7)0.0008 (3)0.4747 (7)0.080 (3)
H15A0.21530.00980.39640.120*
H15B0.22730.02680.49790.120*
H15C0.13650.00470.47380.120*
C160.2237 (7)0.0813 (3)0.5035 (8)0.083 (3)
H16A0.23760.07840.42060.124*
H16B0.16950.09690.51070.124*
H16C0.26810.09840.54410.124*
C170.5220 (5)0.0281 (3)0.8643 (9)0.085 (3)
H17A0.57510.01870.90220.127*
H17B0.50350.00510.80820.127*
H17C0.47860.03210.92370.127*
C180.6243 (5)0.0806 (5)0.7837 (12)0.144 (7)
H18A0.65390.08440.85900.216*
H18B0.62810.10850.73850.216*
H18C0.65040.05600.74000.216*
C190.4087 (6)0.0490 (4)0.5441 (9)0.087 (3)
H19A0.41540.04790.45900.131*
H19B0.34910.05400.56200.131*
H19C0.42750.02050.57880.131*
C200.2500 (10)0.2257 (4)1.2042 (10)0.136 (6)
H20A0.24240.25741.18360.203*
H20B0.29340.22311.26600.203*
H20C0.19650.21351.23220.203*
C210.0789 (9)0.0953 (4)0.7149 (11)0.142 (6)
H21A0.02150.10020.74280.213*
H21B0.11850.11450.75870.213*
H21C0.08130.10260.63140.213*
C220.2524 (9)0.0824 (4)0.8744 (11)0.132 (5)
H22A0.29950.10280.89250.198*
H22B0.19880.09870.88100.198*
H22C0.25350.05730.92970.198*
C230.3489 (7)0.0687 (5)0.7285 (13)0.136 (5)
H23A0.38200.04770.77700.204*
H23B0.35470.06070.64580.204*
H23C0.36950.09930.74150.204*
C240.2820 (13)0.1085 (6)1.3115 (10)0.200 (9)
H24A0.23960.09601.36400.300*
H24B0.31110.13361.35030.300*
H24C0.32310.08521.29190.300*
W10.715479 (15)0.228140 (8)0.474607 (19)0.02705 (7)
Ag10.71643 (4)0.235706 (19)0.21504 (4)0.04964 (15)
S10.82933 (11)0.21256 (7)0.37402 (14)0.0474 (4)
S20.60182 (11)0.21406 (7)0.36870 (14)0.0475 (4)
S30.71359 (11)0.18439 (5)0.62998 (13)0.0401 (4)
S40.71643 (13)0.30024 (5)0.51802 (14)0.0461 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02305 (15)0.01944 (14)0.03358 (16)0.00003 (11)0.00043 (11)0.00040 (11)
P10.0537 (10)0.0286 (9)0.0396 (9)0.0101 (8)0.0113 (8)0.0095 (7)
P20.0238 (8)0.0393 (9)0.0510 (10)0.0004 (7)0.0053 (7)0.0072 (8)
P30.0700 (13)0.0395 (10)0.0395 (10)0.0077 (9)0.0207 (9)0.0011 (8)
P40.0258 (8)0.0404 (9)0.0371 (9)0.0061 (7)0.0010 (6)0.0072 (7)
O10.027 (2)0.040 (3)0.056 (3)0.0019 (19)0.0067 (19)0.008 (2)
O40.046 (3)0.021 (2)0.053 (3)0.0020 (19)0.003 (2)0.0099 (19)
O80.025 (2)0.037 (2)0.041 (2)0.0064 (18)0.0011 (17)0.0017 (19)
O110.042 (2)0.038 (2)0.039 (2)0.0014 (19)0.0094 (19)0.0048 (19)
O120.160 (7)0.057 (4)0.066 (4)0.029 (4)0.023 (4)0.037 (3)
O130.053 (3)0.029 (2)0.049 (3)0.007 (2)0.002 (2)0.002 (2)
O150.034 (2)0.039 (3)0.061 (3)0.001 (2)0.002 (2)0.009 (2)
O160.076 (4)0.077 (4)0.062 (4)0.004 (3)0.007 (3)0.043 (3)
O170.037 (2)0.042 (3)0.044 (3)0.001 (2)0.002 (2)0.011 (2)
O190.059 (3)0.038 (3)0.039 (3)0.004 (2)0.005 (2)0.002 (2)
N10.108 (6)0.028 (3)0.069 (5)0.014 (3)0.020 (4)0.004 (3)
N20.075 (4)0.043 (3)0.039 (3)0.013 (3)0.009 (3)0.009 (3)
N30.073 (5)0.080 (5)0.092 (6)0.041 (4)0.038 (4)0.045 (4)
N40.026 (3)0.094 (5)0.080 (5)0.006 (3)0.008 (3)0.055 (4)
N50.054 (4)0.051 (4)0.107 (6)0.011 (3)0.015 (4)0.015 (4)
N60.046 (4)0.112 (6)0.055 (4)0.014 (4)0.011 (3)0.014 (4)
N70.159 (8)0.040 (4)0.050 (4)0.009 (4)0.001 (4)0.007 (3)
N80.178 (10)0.079 (6)0.050 (5)0.040 (6)0.009 (5)0.010 (4)
N90.118 (7)0.075 (6)0.148 (9)0.004 (5)0.094 (7)0.024 (6)
N100.046 (3)0.046 (4)0.072 (4)0.006 (3)0.010 (3)0.011 (3)
N110.041 (3)0.086 (5)0.049 (4)0.003 (3)0.006 (3)0.029 (3)
N120.026 (3)0.057 (4)0.042 (3)0.001 (2)0.001 (2)0.006 (3)
N130.055 (4)0.040 (3)0.059 (4)0.005 (3)0.004 (3)0.015 (3)
N140.048 (3)0.037 (3)0.049 (4)0.006 (3)0.012 (3)0.006 (3)
C10.201 (15)0.121 (11)0.119 (11)0.100 (11)0.055 (10)0.052 (9)
C20.066 (6)0.083 (8)0.263 (17)0.007 (6)0.025 (8)0.097 (10)
C30.103 (9)0.246 (18)0.073 (7)0.061 (10)0.036 (7)0.003 (9)
C40.130 (8)0.037 (4)0.053 (5)0.013 (5)0.000 (5)0.003 (4)
C50.091 (8)0.084 (8)0.183 (13)0.008 (6)0.082 (8)0.003 (8)
C60.110 (9)0.145 (12)0.093 (8)0.038 (9)0.043 (7)0.004 (8)
C70.074 (6)0.051 (5)0.114 (8)0.009 (5)0.015 (5)0.022 (5)
C80.066 (5)0.070 (6)0.082 (6)0.020 (5)0.021 (5)0.010 (5)
C90.041 (4)0.069 (5)0.062 (5)0.001 (4)0.008 (3)0.017 (4)
C100.164 (14)0.200 (17)0.187 (16)0.088 (13)0.102 (12)0.009 (13)
C110.031 (4)0.095 (7)0.065 (5)0.007 (4)0.008 (3)0.011 (5)
C120.081 (7)0.091 (8)0.124 (9)0.018 (6)0.021 (6)0.067 (7)
C130.074 (6)0.174 (12)0.044 (5)0.018 (7)0.014 (4)0.000 (6)
C140.042 (5)0.094 (7)0.110 (8)0.008 (5)0.011 (5)0.020 (6)
C150.111 (8)0.081 (7)0.048 (5)0.006 (6)0.001 (5)0.002 (5)
C160.113 (8)0.064 (6)0.071 (6)0.020 (5)0.033 (5)0.037 (5)
C170.052 (5)0.068 (6)0.133 (9)0.006 (4)0.004 (5)0.047 (6)
C180.028 (4)0.224 (15)0.180 (12)0.010 (6)0.011 (6)0.147 (12)
C190.074 (6)0.108 (8)0.079 (7)0.007 (6)0.002 (5)0.029 (6)
C200.260 (18)0.074 (8)0.074 (8)0.013 (9)0.031 (9)0.042 (6)
C210.186 (13)0.098 (9)0.145 (11)0.102 (9)0.100 (10)0.067 (8)
C220.169 (13)0.108 (10)0.121 (10)0.066 (9)0.030 (9)0.049 (8)
C230.079 (8)0.158 (13)0.171 (14)0.041 (8)0.008 (8)0.042 (11)
C240.36 (3)0.188 (17)0.049 (7)0.002 (17)0.003 (11)0.062 (9)
W10.03451 (14)0.02849 (13)0.01806 (12)0.00325 (10)0.00220 (9)0.00184 (9)
Ag10.0782 (4)0.0500 (3)0.0207 (2)0.0004 (3)0.0006 (2)0.0025 (2)
S10.0401 (9)0.0705 (12)0.0317 (9)0.0070 (9)0.0016 (7)0.0033 (8)
S20.0410 (9)0.0703 (12)0.0309 (9)0.0158 (9)0.0070 (7)0.0041 (8)
S30.0620 (10)0.0313 (8)0.0270 (8)0.0004 (7)0.0005 (7)0.0069 (6)
S40.0782 (12)0.0280 (8)0.0321 (8)0.0066 (8)0.0006 (8)0.0034 (7)
Geometric parameters (Å, º) top
Eu1—O112.279 (4)N2—C151.434 (10)
Eu1—O82.292 (4)N2—C161.487 (9)
Eu1—O12.296 (4)N3—C141.455 (11)
Eu1—O42.313 (4)N3—C211.496 (11)
Eu1—O192.494 (4)N4—C171.439 (10)
Eu1—O132.515 (4)N4—C181.473 (10)
Eu1—O152.520 (4)N5—C11.455 (13)
Eu1—O172.521 (4)N5—C21.464 (12)
P1—O41.479 (4)N6—C31.454 (11)
P1—N31.622 (7)N6—C191.463 (11)
P1—N21.634 (6)N7—C41.492 (10)
P1—N11.645 (7)N7—C201.495 (11)
P2—O11.493 (4)N8—C61.444 (14)
P2—N41.598 (6)N8—C241.505 (14)
P2—N51.625 (7)N9—C51.418 (13)
P2—N61.637 (7)N9—C101.485 (13)
P3—O111.484 (4)N10—C71.460 (10)
P3—N71.578 (7)N10—C81.463 (9)
P3—N81.615 (9)N11—C131.439 (11)
P3—N91.626 (9)N11—C121.476 (11)
P4—O81.496 (4)N12—C111.457 (8)
P4—N111.612 (6)N12—C91.462 (9)
P4—N101.625 (6)W1—S22.1913 (16)
P4—N121.633 (5)W1—S12.2016 (17)
O12—N131.212 (7)W1—S32.2028 (15)
O13—N131.258 (7)W1—S42.2036 (16)
O15—N141.257 (7)W1—Ag1i2.9506 (6)
O16—N141.227 (7)W1—Ag12.9748 (6)
O17—N141.268 (7)Ag1—S4ii2.4929 (17)
O19—N131.267 (7)Ag1—S3ii2.5704 (17)
N1—C221.402 (13)Ag1—S12.6190 (18)
N1—C231.455 (12)Ag1—S22.6245 (18)
O11—Eu1—O892.50 (15)N13—O13—Eu195.9 (3)
O11—Eu1—O188.80 (16)N14—O15—Eu195.8 (3)
O8—Eu1—O1157.08 (15)N14—O17—Eu195.5 (3)
O11—Eu1—O4158.04 (16)N13—O19—Eu196.6 (4)
O8—Eu1—O494.37 (15)C22—N1—C23108.2 (9)
O1—Eu1—O492.88 (15)C22—N1—P1125.6 (7)
O11—Eu1—O19128.04 (15)C23—N1—P1121.0 (7)
O8—Eu1—O1979.91 (15)C15—N2—C16114.2 (7)
O1—Eu1—O1981.31 (15)C15—N2—P1120.7 (5)
O4—Eu1—O1973.78 (15)C16—N2—P1120.5 (5)
O11—Eu1—O1377.32 (15)C14—N3—C21117.4 (8)
O8—Eu1—O1377.74 (15)C14—N3—P1121.2 (6)
O1—Eu1—O1380.24 (15)C21—N3—P1119.4 (7)
O4—Eu1—O13124.54 (15)C17—N4—C18113.9 (7)
O19—Eu1—O1350.76 (15)C17—N4—P2122.9 (5)
O11—Eu1—O1578.82 (15)C18—N4—P2121.0 (5)
O8—Eu1—O15126.42 (14)C1—N5—C2114.7 (10)
O1—Eu1—O1576.26 (15)C1—N5—P2119.4 (7)
O4—Eu1—O1580.32 (15)C2—N5—P2122.4 (8)
O19—Eu1—O15144.60 (15)C3—N6—C19112.0 (8)
O13—Eu1—O15146.63 (15)C3—N6—P2121.8 (7)
O11—Eu1—O1779.94 (15)C19—N6—P2120.0 (6)
O8—Eu1—O1775.74 (14)C4—N7—C20115.7 (7)
O1—Eu1—O17126.90 (14)C4—N7—P3119.6 (6)
O4—Eu1—O1781.59 (15)C20—N7—P3123.1 (7)
O19—Eu1—O17143.68 (14)C6—N8—C24120.8 (11)
O13—Eu1—O17143.99 (15)C6—N8—P3119.7 (7)
O15—Eu1—O1750.69 (14)C24—N8—P3119.3 (10)
O11—Eu1—N13102.65 (17)C5—N9—C10113.4 (10)
O8—Eu1—N1376.40 (16)C5—N9—P3123.8 (6)
O1—Eu1—N1380.99 (16)C10—N9—P3122.7 (10)
O4—Eu1—N1399.23 (17)C7—N10—C8113.8 (7)
O19—Eu1—N1325.48 (16)C7—N10—P4120.2 (5)
O13—Eu1—N1325.34 (15)C8—N10—P4125.4 (6)
O15—Eu1—N13157.18 (16)C13—N11—C12115.6 (8)
O17—Eu1—N13152.10 (15)C13—N11—P4119.6 (7)
O11—Eu1—N1476.19 (15)C12—N11—P4124.3 (7)
O8—Eu1—N14101.16 (16)C11—N12—C9114.7 (5)
O1—Eu1—N14101.36 (16)C11—N12—P4122.4 (5)
O4—Eu1—N1482.03 (15)C9—N12—P4120.0 (4)
O19—Eu1—N14155.78 (15)O12—N13—O13122.3 (6)
O13—Eu1—N14153.41 (15)O12—N13—O19121.2 (7)
O15—Eu1—N1425.30 (14)O13—N13—O19116.5 (5)
O17—Eu1—N1425.55 (14)O16—N14—O15122.6 (6)
N13—Eu1—N14177.30 (17)O16—N14—O17120.0 (6)
O4—P1—N3109.8 (3)O15—N14—O17117.4 (5)
O4—P1—N2109.1 (3)S2—W1—S1110.00 (7)
N3—P1—N2115.3 (4)S2—W1—S3108.07 (7)
O4—P1—N1115.6 (3)S1—W1—S3108.55 (7)
N3—P1—N1103.7 (4)S2—W1—S4108.26 (7)
N2—P1—N1103.4 (3)S1—W1—S4108.68 (7)
O1—P2—N4108.3 (3)S3—W1—S4113.26 (6)
O1—P2—N5118.7 (3)Ag1i—W1—Ag1154.250 (9)
N4—P2—N5105.7 (4)S4ii—Ag1—S3ii93.23 (5)
O1—P2—N6108.4 (3)S4ii—Ag1—S1120.22 (6)
N4—P2—N6114.2 (4)S3ii—Ag1—S1120.89 (6)
N5—P2—N6101.5 (4)S4ii—Ag1—S2120.59 (6)
O11—P3—N7110.4 (3)S3ii—Ag1—S2118.18 (6)
O11—P3—N8109.9 (4)S1—Ag1—S286.67 (5)
N7—P3—N8108.9 (5)S4ii—Ag1—W1ii46.83 (4)
O11—P3—N9109.9 (4)S3ii—Ag1—W1ii46.40 (3)
N7—P3—N9110.4 (5)S1—Ag1—W1ii137.30 (4)
N8—P3—N9107.3 (6)S2—Ag1—W1ii136.01 (4)
O8—P4—N11111.2 (3)S4ii—Ag1—W1150.22 (4)
O8—P4—N10111.4 (3)S3ii—Ag1—W1116.54 (4)
N11—P4—N10107.0 (4)S1—Ag1—W145.81 (4)
O8—P4—N12108.3 (3)S2—Ag1—W145.55 (4)
N11—P4—N12109.2 (3)W1ii—Ag1—W1162.93 (2)
N10—P4—N12109.6 (3)W1—S1—Ag175.66 (5)
P2—O1—Eu1159.5 (3)W1—S2—Ag175.70 (5)
P1—O4—Eu1164.2 (3)W1—S3—Ag1i75.93 (5)
P4—O8—Eu1167.6 (3)W1—S4—Ag1i77.57 (5)
P3—O11—Eu1167.8 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Eu(NO3)2(C6H18N3OP)4][WAgS4]
Mr1412.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)15.8182 (13), 29.778 (2), 11.4267 (9)
β (°) 90.934 (2)
V3)5381.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.97
Crystal size (mm)0.55 × 0.45 × 0.30
Data collection
DiffractometerRigaku Mercury CCD (2 × 2 bin mode)
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.139, 0.304
No. of measured, independent and
observed [I > 2σ(I)] reflections
50038, 9849, 9106
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.15
No. of reflections9849
No. of parameters535
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0282P)2 + 18.912P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.02, 0.99

Computer programs: CrystalClear (Rigaku Corporation, 2000), CrystalClear, SHELXTL (Sheldrick, 2000), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds