Download citation
Download citation
link to html
The title salt of a one-dimensional anionic W/S/Ag polymer, {[Y(NO3)2(C6H18N3OP)4][WAgS4]}n was produced by the reaction of ammonium tetra­thio­tungstate(VI), silver(I) sulfide and yttrium(III) nitrate in hexa­methyl­phospho­ramide. The cation has the same structure as that in the isostructural Yb compound [Cao et al. (2007). Acta Cryst. E63, m2076–m2077]. Together with the two nitrate ligands, the cation is monovalent, which leads to the anionic chain having a monovalent repeat unit. This contrasts with solvent-coordinated rare-earth cations, which are trivalent and induce trivalent repeat units in the anionic chains. The polymeric {[WS4Ag]n}n anion, with W—Ag—W and Ag—W—Ag angles of 162.684 (19) and 153.833 (10)°, respectively, presents a distorted linear configuration the same as that of the anionic chain in the isostructural Yb compound, suggesting that different rare-earth cations with the same coordination environments have the same influence on the arrangement of their anionic chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036306/br2050sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036306/br2050Isup2.hkl
Contains datablock I

CCDC reference: 657648

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](g-S) = 0.002 Å
  • R factor = 0.044
  • wR factor = 0.085
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT761_ALERT_1_A CIF Contains no X-H Bonds ...................... ? PLAT762_ALERT_1_A CIF Contains no X-Y-H or H-Y-H Angles .......... ?
Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N11
Alert level C PLAT213_ALERT_2_C Atom C5 has ADP max/min Ratio ............. 3.20 prola PLAT213_ALERT_2_C Atom C6 has ADP max/min Ratio ............. 3.90 oblat PLAT213_ALERT_2_C Atom C8 has ADP max/min Ratio ............. 3.70 prola PLAT213_ALERT_2_C Atom C20 has ADP max/min Ratio ............. 3.20 prola PLAT213_ALERT_2_C Atom C23 has ADP max/min Ratio ............. 3.10 prola PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.13 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.57 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.11 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N12 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for W1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.01
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for W1 (9) 6.66 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (1) 1.16 PLAT794_ALERT_5_G Check Predicted Bond Valency for Y1 (3) 3.69
2 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 17 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 16 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL022_ALERT_1_A There is a mismatched ~ on line 135 the isostructural Yb compound~, suggesting that differernt rare-earth cations If you require a ~ then it should be escaped with a \, i.e. \~ Otherwise there must be a matching closing ~, e.g. C~2~H~4~
1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and potential applications, especially in third-order nonlinear optical (NLO) materials. (Zhang et al., 2007, and references therein). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound {[Y(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide) with a wave-like anionic chain was prepared by following such route using Y(III)-hmp complex as counterion.

In possession of two nitrate ligands, the cation in the title compound is univalent (Fig. 1), which leads to an anionic chain with a univalent repeat unit, unlike other solvent-coordinated rare-earth cations, in literature (Niu et al., 2004), which are trivalent and induce trivalent repeat units. For example, [Nd(dmf)8]3+ induces an anionic chain with a trivalent repeat unit [W4S16Ag5]3- (Huang et al., 1997).

As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 162.684 (19) and 153.833 (10) °, deviating significantly from the ideal 180 °, which is observed in the reported compound {(γ-MePyH)[MoS4Ag]}n (179.3 (2)–180.0 (1) °)(Lang et al., 1993). Similar angles of 160.81 (7) and 153.41 (7) ° for W—Ag—W and Ag—W—Ag are found in another distorted linear chain in {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007), which suggests that differernt rare earth cations with the same coordination environments will result in the same anionic structures.

Related literature top

One example of a one-dimensional Mo/S/Ag anionic polymer with an almost ideal linear configuration is {(γ-MePyH)[MoS4Ag]}n (Lang et al., 1993). A more relevant analog of the title compound is {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007), which has similar wave-like chains. For related literature, see: Huang et al. (1996); Niu et al. (2004); Zhang et al. (2007).

Experimental top

1 mmol A g2S was added to a solution of [NH4]2WS4 (2 mmol in 30 mL h mp) with thorough stir for 12 h. The solution underwent an additional stir for one minute after 1 mmol Y(NO3)36H2O was added. After filtration the orange-red filtrate was carefully laid on the surface with 30 ml i-PrOH. Red block crystals were obtained after ten days. Yield: 1.138 g in pure form, 42.2% (based on W). Analysis calculated for C24H72AgN14O10P4S4WY: C 21.36, H 5.38, N 14.53%; found: C 21.39, H 5.40, N 14.49%. IR: ν, cm-1, 478.9 m, 447.4 s (W-µ2-S).

Refinement top

Some N and P atoms have low Ueq as compared to neighbors and a few C atoms have large ADP max/min ratio. Splitting these atoms to resolve disorder will cause the refinement unstable or ADP non positive definite, so no further treatments were applied to these atoms. H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq for methyl H atoms and 0.97 Å for C—H bonds.

Structure description top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and potential applications, especially in third-order nonlinear optical (NLO) materials. (Zhang et al., 2007, and references therein). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound {[Y(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide) with a wave-like anionic chain was prepared by following such route using Y(III)-hmp complex as counterion.

In possession of two nitrate ligands, the cation in the title compound is univalent (Fig. 1), which leads to an anionic chain with a univalent repeat unit, unlike other solvent-coordinated rare-earth cations, in literature (Niu et al., 2004), which are trivalent and induce trivalent repeat units. For example, [Nd(dmf)8]3+ induces an anionic chain with a trivalent repeat unit [W4S16Ag5]3- (Huang et al., 1997).

As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 162.684 (19) and 153.833 (10) °, deviating significantly from the ideal 180 °, which is observed in the reported compound {(γ-MePyH)[MoS4Ag]}n (179.3 (2)–180.0 (1) °)(Lang et al., 1993). Similar angles of 160.81 (7) and 153.41 (7) ° for W—Ag—W and Ag—W—Ag are found in another distorted linear chain in {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007), which suggests that differernt rare earth cations with the same coordination environments will result in the same anionic structures.

One example of a one-dimensional Mo/S/Ag anionic polymer with an almost ideal linear configuration is {(γ-MePyH)[MoS4Ag]}n (Lang et al., 1993). A more relevant analog of the title compound is {[Yb(hmp)4(NO3)2][WS4Ag]}n (Cao et al., 2007), which has similar wave-like chains. For related literature, see: Huang et al. (1996); Niu et al. (2004); Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. The molecular structure of a portion of the anionic chain in the title compound, with atom labels and 30% probability displacement ellipsoids.
catena-Poly[[tetrakis(hexamethylphosphoramide-κO)bis(nitrato- κ2O,O')yttrium(III)] [silver(I)-di-µ-sulfido-tungstate(VI)(Ag—W)-di-µ-sulfido]] top
Crystal data top
[Y(NO3)2(C6H18N3OP)4][WAgS4]F(000) = 2712.0
Mr = 1349.74Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18559 reflections
a = 15.789 (3) Åθ = 3.0–25.4°
b = 29.661 (6) ŵ = 3.91 mm1
c = 11.430 (2) ÅT = 223 K
β = 90.83 (3)°Block, red
V = 5352.3 (18) Å30.50 × 0.45 × 0.32 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
9804 independent reflections
Radiation source: fine-focus sealed tube9045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3534
Tmin = 0.173, Tmax = 0.286l = 1313
49397 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0187P)2 + 15.0729P]
where P = (Fo2 + 2Fc2)/3
9783 reflections(Δ/σ)max = 0.001
532 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Y(NO3)2(C6H18N3OP)4][WAgS4]V = 5352.3 (18) Å3
Mr = 1349.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.789 (3) ŵ = 3.91 mm1
b = 29.661 (6) ÅT = 223 K
c = 11.430 (2) Å0.50 × 0.45 × 0.32 mm
β = 90.83 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
9804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9045 reflections with I > 2σ(I)
Tmin = 0.173, Tmax = 0.286Rint = 0.049
49397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0187P)2 + 15.0729P]
where P = (Fo2 + 2Fc2)/3
9783 reflectionsΔρmax = 0.64 e Å3
532 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.76115 (3)0.082921 (16)0.17150 (4)0.02278 (12)
P10.70695 (12)0.14734 (5)0.09585 (14)0.0438 (4)
P20.54106 (9)0.09577 (5)0.26801 (14)0.0342 (3)
P30.97701 (9)0.13288 (5)0.17952 (13)0.0338 (3)
P40.80120 (10)0.02977 (5)0.30019 (13)0.0353 (4)
O10.7919 (2)0.01860 (11)0.2690 (3)0.0339 (9)
O20.8953 (2)0.10728 (12)0.1756 (3)0.0322 (9)
O30.7269 (2)0.12720 (13)0.0200 (3)0.0371 (9)
O40.7473 (2)0.15830 (12)0.2613 (4)0.0377 (9)
O50.7751 (2)0.10306 (12)0.3780 (3)0.0369 (9)
O60.6976 (2)0.02732 (13)0.0357 (4)0.0381 (9)
O70.8304 (2)0.04127 (13)0.0125 (3)0.0372 (9)
O80.7633 (3)0.00110 (17)0.1173 (4)0.0650 (14)
O90.7713 (4)0.17139 (17)0.4459 (4)0.0830 (19)
O100.6240 (2)0.08090 (12)0.2196 (3)0.0338 (9)
N10.9766 (3)0.17387 (18)0.0847 (5)0.0561 (15)
N21.0543 (3)0.09826 (18)0.1512 (4)0.0399 (12)
N30.9927 (3)0.1554 (2)0.3074 (5)0.0628 (18)
N40.7792 (3)0.03569 (17)0.4397 (4)0.0460 (13)
N50.7355 (4)0.06513 (17)0.2348 (5)0.0560 (15)
N60.8944 (4)0.0475 (2)0.2622 (5)0.0624 (17)
N70.6078 (5)0.1388 (2)0.1297 (7)0.091 (3)
N80.7640 (5)0.1249 (2)0.1959 (5)0.081 (2)
N90.7263 (5)0.20028 (18)0.0935 (5)0.0643 (18)
N100.4665 (3)0.0697 (2)0.1992 (5)0.0626 (18)
N110.5156 (4)0.14856 (19)0.2598 (6)0.0631 (17)
N120.5426 (4)0.0871 (2)0.4099 (5)0.0603 (16)
N130.7646 (3)0.14517 (17)0.3638 (5)0.0454 (13)
N140.7637 (3)0.02239 (16)0.0259 (4)0.0376 (12)
C10.9801 (5)0.1285 (4)0.4099 (7)0.101 (4)
H1A0.95270.10040.38800.151*
H1B0.94460.14490.46400.151*
H1C1.03440.12220.44700.151*
C21.0456 (4)0.0655 (2)0.0564 (6)0.0548 (18)
H2A0.98610.06140.03700.082*
H2B1.06980.03690.08100.082*
H2C1.07520.07650.01180.082*
C31.0453 (5)0.1839 (3)0.0046 (7)0.072 (2)
H3A1.08690.15980.00820.107*
H3B1.07190.21210.02700.107*
H3C1.02270.18630.07450.107*
C41.1419 (4)0.1073 (3)0.1885 (7)0.065 (2)
H4A1.14220.12940.25120.098*
H4B1.17340.11900.12290.098*
H4C1.16800.07960.21610.098*
C51.0340 (6)0.1992 (4)0.3275 (10)0.122 (4)
H5A1.04000.21480.25350.183*
H5B1.08950.19450.36290.183*
H5C0.99970.21730.37950.183*
C60.7278 (10)0.1079 (5)0.3074 (8)0.170 (7)
H6A0.66670.11120.30690.255*
H6B0.74220.07630.31630.255*
H6C0.75070.12490.37200.255*
C70.9100 (5)0.2080 (3)0.0883 (9)0.082 (3)
H7A0.86700.19880.14320.123*
H7B0.88460.21140.01110.123*
H7C0.93420.23660.11320.123*
C80.3773 (5)0.0796 (4)0.2200 (10)0.144 (6)
H8A0.37280.10800.26180.216*
H8B0.35290.05570.26640.216*
H8C0.34710.08180.14570.216*
C90.6478 (6)0.0669 (4)0.2665 (10)0.104 (3)
H9A0.64140.05520.34520.155*
H9B0.62820.09790.26360.155*
H9C0.61450.04880.21220.155*
C100.7551 (8)0.2262 (3)0.1959 (8)0.112 (4)
H10A0.77410.20550.25580.168*
H10B0.80150.24580.17250.168*
H10C0.70860.24420.22650.168*
C110.4713 (6)0.0980 (5)0.4814 (8)0.131 (5)
H11A0.43990.12270.44600.196*
H11B0.49120.10680.55870.196*
H11C0.43480.07190.48760.196*
C120.5528 (8)0.1728 (4)0.1864 (12)0.160 (6)
H12A0.58380.20090.19400.239*
H12B0.50320.17780.13910.239*
H12C0.53540.16220.26340.239*
C130.4851 (8)0.1680 (4)0.1525 (10)0.140 (5)
H13A0.46530.14430.10050.210*
H13B0.53050.18450.11560.210*
H13C0.43870.18850.16880.210*
C140.8032 (5)0.0008 (3)0.5217 (6)0.068 (2)
H14A0.80550.02790.48140.102*
H14B0.85840.00770.55540.102*
H14C0.76170.00080.58330.102*
C150.7738 (5)0.0808 (2)0.4921 (6)0.066 (2)
H15A0.75770.10250.43220.099*
H15B0.73170.08070.55300.099*
H15C0.82840.08910.52550.099*
C160.6951 (6)0.2277 (2)0.0057 (6)0.069 (2)
H16A0.67760.20790.06840.103*
H16B0.64720.24580.02040.103*
H16C0.74000.24740.03390.103*
C170.8541 (7)0.1225 (3)0.1835 (8)0.100 (3)
H17A0.87120.13460.10790.151*
H17B0.88020.14000.24500.151*
H17C0.87200.09130.18910.151*
C180.5672 (6)0.0961 (3)0.1161 (10)0.107 (4)
H18A0.60650.07510.07960.160*
H18B0.54970.08470.19220.160*
H18C0.51790.09960.06720.160*
C190.5932 (5)0.0498 (3)0.4575 (7)0.074 (2)
H19A0.64070.04400.40670.111*
H19B0.55830.02290.46230.111*
H19C0.61410.05770.53500.111*
C200.5465 (6)0.1826 (3)0.3437 (12)0.140 (6)
H20A0.56700.16780.41420.210*
H20B0.50070.20290.36310.210*
H20C0.59230.19960.30910.210*
C210.4794 (5)0.0279 (3)0.1376 (8)0.079 (3)
H21A0.53960.02310.12660.118*
H21B0.45090.02920.06190.118*
H21C0.45640.00320.18270.118*
C220.7468 (7)0.0825 (3)0.1202 (8)0.105 (4)
H22A0.80640.08120.10070.158*
H22B0.71430.06460.06450.158*
H22C0.72750.11350.11710.158*
C230.9172 (7)0.0953 (3)0.2798 (9)0.113 (4)
H23A0.86610.11300.28900.169*
H23B0.95260.09820.34950.169*
H23C0.94800.10610.21250.169*
C240.9634 (5)0.0158 (3)0.2480 (8)0.076 (2)
H24A0.94070.01430.23730.114*
H24B0.99600.02410.18000.114*
H24C0.99980.01640.31710.114*
W10.283016 (14)0.227680 (7)0.528018 (18)0.02567 (7)
Ag10.28194 (4)0.264566 (17)0.28785 (4)0.04883 (14)
S10.28226 (11)0.30025 (5)0.48562 (13)0.0427 (4)
S20.28502 (11)0.18418 (5)0.37165 (12)0.0391 (4)
S30.16900 (10)0.21196 (6)0.62861 (13)0.0434 (4)
S40.39682 (10)0.21320 (6)0.63391 (13)0.0458 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0208 (3)0.0182 (2)0.0293 (3)0.0000 (2)0.0008 (2)0.0008 (2)
P10.0625 (11)0.0335 (8)0.0348 (9)0.0083 (8)0.0171 (8)0.0021 (7)
P20.0214 (7)0.0355 (8)0.0458 (9)0.0016 (6)0.0059 (6)0.0069 (7)
P30.0229 (7)0.0428 (9)0.0358 (8)0.0074 (6)0.0004 (6)0.0078 (7)
P40.0449 (9)0.0235 (7)0.0378 (8)0.0080 (7)0.0110 (7)0.0088 (6)
O10.040 (2)0.0202 (18)0.042 (2)0.0036 (17)0.0010 (17)0.0057 (17)
O20.0229 (19)0.035 (2)0.039 (2)0.0053 (16)0.0012 (16)0.0013 (17)
O30.040 (2)0.034 (2)0.036 (2)0.0008 (18)0.0110 (18)0.0082 (18)
O40.045 (2)0.026 (2)0.042 (2)0.0064 (18)0.0023 (19)0.0024 (18)
O50.048 (2)0.028 (2)0.035 (2)0.0040 (18)0.0047 (18)0.0005 (17)
O60.031 (2)0.033 (2)0.050 (3)0.0012 (17)0.0020 (19)0.0081 (19)
O70.030 (2)0.037 (2)0.044 (2)0.0006 (18)0.0008 (18)0.0082 (19)
O80.067 (3)0.071 (3)0.056 (3)0.005 (3)0.004 (2)0.041 (3)
O90.149 (6)0.050 (3)0.049 (3)0.020 (3)0.019 (3)0.028 (3)
O100.0194 (19)0.033 (2)0.049 (2)0.0011 (16)0.0035 (16)0.0067 (18)
N10.045 (3)0.044 (3)0.080 (4)0.012 (3)0.013 (3)0.011 (3)
N20.025 (3)0.058 (3)0.037 (3)0.001 (2)0.001 (2)0.011 (2)
N30.041 (3)0.097 (5)0.050 (4)0.002 (3)0.010 (3)0.034 (3)
N40.062 (4)0.038 (3)0.039 (3)0.007 (3)0.009 (3)0.012 (2)
N50.082 (4)0.030 (3)0.057 (4)0.011 (3)0.018 (3)0.005 (3)
N60.058 (4)0.055 (4)0.075 (4)0.026 (3)0.025 (3)0.029 (3)
N70.094 (6)0.061 (4)0.115 (6)0.010 (4)0.068 (5)0.018 (4)
N80.127 (7)0.068 (4)0.048 (4)0.033 (4)0.000 (4)0.007 (3)
N90.119 (6)0.037 (3)0.038 (3)0.006 (3)0.002 (3)0.012 (3)
N100.027 (3)0.081 (4)0.080 (4)0.004 (3)0.006 (3)0.045 (4)
N110.048 (4)0.041 (3)0.100 (5)0.012 (3)0.013 (3)0.003 (3)
N120.046 (3)0.087 (5)0.048 (3)0.014 (3)0.011 (3)0.010 (3)
N130.055 (3)0.038 (3)0.043 (3)0.006 (3)0.001 (3)0.009 (3)
N140.040 (3)0.031 (3)0.042 (3)0.006 (2)0.002 (2)0.006 (2)
C10.066 (6)0.195 (12)0.040 (5)0.022 (6)0.013 (4)0.003 (6)
C20.038 (4)0.071 (5)0.056 (4)0.000 (3)0.012 (3)0.019 (4)
C30.070 (5)0.066 (5)0.080 (6)0.022 (4)0.020 (4)0.006 (4)
C40.024 (3)0.104 (6)0.067 (5)0.006 (4)0.007 (3)0.016 (4)
C50.091 (7)0.118 (9)0.157 (11)0.026 (6)0.025 (7)0.093 (8)
C60.31 (2)0.169 (13)0.037 (5)0.011 (13)0.000 (8)0.049 (7)
C70.073 (6)0.051 (5)0.124 (8)0.008 (4)0.019 (5)0.024 (5)
C80.028 (4)0.221 (13)0.183 (11)0.013 (6)0.015 (5)0.156 (11)
C90.069 (6)0.115 (8)0.127 (9)0.025 (6)0.005 (6)0.027 (7)
C100.213 (13)0.063 (6)0.060 (6)0.018 (7)0.027 (7)0.033 (5)
C110.095 (8)0.240 (15)0.059 (6)0.075 (9)0.027 (5)0.009 (7)
C120.164 (12)0.129 (10)0.182 (13)0.066 (9)0.107 (10)0.007 (9)
C130.195 (13)0.109 (9)0.119 (9)0.094 (9)0.057 (9)0.044 (7)
C140.096 (6)0.068 (5)0.041 (4)0.006 (5)0.005 (4)0.002 (4)
C150.094 (6)0.051 (4)0.054 (4)0.013 (4)0.027 (4)0.029 (4)
C160.121 (7)0.033 (4)0.053 (5)0.010 (4)0.003 (4)0.001 (3)
C170.112 (8)0.107 (8)0.085 (7)0.043 (7)0.043 (6)0.011 (6)
C180.082 (7)0.081 (7)0.155 (10)0.008 (5)0.074 (7)0.001 (7)
C190.061 (5)0.097 (7)0.063 (5)0.002 (5)0.000 (4)0.017 (5)
C200.069 (6)0.070 (6)0.281 (17)0.003 (5)0.012 (8)0.098 (9)
C210.041 (4)0.069 (5)0.127 (8)0.010 (4)0.016 (4)0.053 (5)
C220.135 (9)0.086 (7)0.095 (7)0.047 (6)0.032 (6)0.040 (6)
C230.143 (9)0.083 (7)0.115 (8)0.081 (7)0.070 (7)0.049 (6)
C240.039 (4)0.079 (6)0.110 (7)0.004 (4)0.006 (4)0.014 (5)
W10.03217 (13)0.02568 (12)0.01909 (11)0.00287 (9)0.00250 (8)0.00114 (9)
Ag10.0780 (4)0.0470 (3)0.0214 (2)0.0006 (3)0.0012 (2)0.0028 (2)
S10.0713 (11)0.0254 (7)0.0312 (8)0.0047 (7)0.0005 (7)0.0022 (6)
S20.0597 (10)0.0293 (7)0.0283 (7)0.0007 (7)0.0002 (7)0.0057 (6)
S30.0385 (9)0.0605 (10)0.0314 (8)0.0081 (8)0.0016 (6)0.0014 (7)
S40.0395 (9)0.0649 (11)0.0328 (8)0.0174 (8)0.0084 (7)0.0053 (8)
Geometric parameters (Å, º) top
Y1—O32.233 (4)N2—C21.460 (8)
Y1—O22.238 (3)N2—C41.466 (7)
Y1—O102.243 (3)N3—C11.432 (11)
Y1—O12.259 (3)N3—C51.472 (10)
Y1—O52.441 (4)N4—C141.443 (9)
Y1—O72.466 (4)N4—C151.470 (8)
Y1—O62.468 (4)N5—C221.421 (10)
Y1—O42.471 (4)N5—C91.438 (10)
P1—O31.483 (4)N6—C241.449 (9)
P1—N91.600 (6)N6—C231.477 (9)
P1—N81.610 (7)N7—C181.428 (11)
P1—N71.627 (7)N7—C121.476 (10)
P2—O101.495 (4)N8—C171.429 (11)
P2—N101.605 (5)N8—C61.479 (11)
P2—N111.619 (6)N9—C101.477 (9)
P2—N121.642 (6)N9—C161.486 (9)
P3—O21.497 (4)N10—C211.442 (8)
P3—N31.622 (5)N10—C81.462 (9)
P3—N11.628 (6)N11—C131.432 (12)
P3—N21.631 (5)N11—C201.472 (11)
P4—O11.485 (4)N12—C111.436 (9)
P4—N61.628 (6)N12—C191.466 (9)
P4—N41.646 (5)W1—S42.1943 (16)
P4—N51.647 (6)W1—S32.2000 (16)
O4—N131.260 (6)W1—S22.2050 (14)
O5—N131.270 (6)W1—S12.2063 (15)
O6—N141.275 (6)W1—Ag12.9549 (7)
O7—N141.266 (6)W1—Ag1i2.9791 (7)
O8—N141.221 (6)Ag1—S12.4960 (16)
O9—N131.222 (6)Ag1—S22.5698 (16)
N1—C31.460 (8)Ag1—S3ii2.6236 (17)
N1—C71.462 (9)Ag1—S4ii2.6293 (18)
O3—Y1—O292.57 (14)N13—O5—Y196.2 (3)
O3—Y1—O1088.97 (14)N14—O6—Y195.5 (3)
O2—Y1—O10157.01 (13)N14—O7—Y195.8 (3)
O3—Y1—O1157.99 (14)P2—O10—Y1159.5 (2)
O2—Y1—O193.76 (14)C3—N1—C7114.7 (6)
O10—Y1—O193.32 (14)C3—N1—P3125.0 (5)
O3—Y1—O5128.53 (13)C7—N1—P3119.7 (5)
O2—Y1—O580.13 (14)C2—N2—C4114.6 (5)
O10—Y1—O581.00 (14)C2—N2—P3120.2 (4)
O1—Y1—O573.37 (13)C4—N2—P3122.1 (5)
O3—Y1—O780.11 (14)C1—N3—C5115.4 (7)
O2—Y1—O775.36 (13)C1—N3—P3119.2 (6)
O10—Y1—O7127.40 (13)C5—N3—P3124.5 (7)
O1—Y1—O781.14 (13)C14—N4—C15113.9 (6)
O5—Y1—O7143.13 (13)C14—N4—P4119.7 (5)
O3—Y1—O679.26 (14)C15—N4—P4120.4 (4)
O2—Y1—O6127.21 (13)C22—N5—C9110.7 (7)
O10—Y1—O675.60 (13)C22—N5—P4124.2 (5)
O1—Y1—O680.13 (13)C9—N5—P4120.8 (5)
O5—Y1—O6143.31 (13)C24—N6—C23117.1 (7)
O7—Y1—O651.85 (13)C24—N6—P4120.3 (5)
O3—Y1—O476.59 (14)C23—N6—P4119.5 (5)
O2—Y1—O477.82 (13)C18—N7—C12113.1 (8)
O10—Y1—O480.25 (13)C18—N7—P1123.0 (5)
O1—Y1—O4125.37 (13)C12—N7—P1123.7 (7)
O5—Y1—O452.00 (12)C17—N8—C6116.1 (9)
O7—Y1—O4143.34 (13)C17—N8—P1121.1 (6)
O6—Y1—O4145.91 (13)C6—N8—P1122.7 (8)
O3—Y1—N13102.53 (15)C10—N9—C16115.4 (6)
O2—Y1—N1376.64 (15)C10—N9—P1123.9 (5)
O10—Y1—N1380.63 (15)C16—N9—P1119.0 (5)
O1—Y1—N1399.44 (15)C21—N10—C8113.3 (6)
O5—Y1—N1326.10 (13)C21—N10—P2123.1 (5)
O7—Y1—N13151.97 (14)C8—N10—P2121.6 (5)
O6—Y1—N13156.14 (14)C13—N11—C20112.7 (8)
O4—Y1—N1325.94 (13)C13—N11—P2121.3 (6)
O3—Y1—N1476.44 (14)C20—N11—P2123.1 (7)
O2—Y1—N14101.15 (14)C11—N12—C19112.7 (7)
O10—Y1—N14101.51 (14)C11—N12—P2121.7 (6)
O1—Y1—N1481.66 (14)C19—N12—P2119.0 (5)
O5—Y1—N14155.02 (13)O9—N13—O4122.1 (5)
O7—Y1—N1425.90 (12)O9—N13—O5121.2 (5)
O6—Y1—N1426.11 (13)O4—N13—O5116.7 (5)
O4—Y1—N14152.93 (13)O8—N14—O7121.3 (5)
N13—Y1—N14177.56 (15)O8—N14—O6122.5 (5)
O3—P1—N9110.0 (3)O7—N14—O6116.2 (4)
O3—P1—N8110.8 (3)S4—W1—S3109.87 (6)
N9—P1—N8108.0 (4)S4—W1—S2108.14 (6)
O3—P1—N7109.9 (3)S3—W1—S2108.73 (6)
N9—P1—N7109.9 (4)S4—W1—S1108.29 (7)
N8—P1—N7108.3 (4)S3—W1—S1108.65 (7)
O10—P2—N10108.4 (2)S2—W1—S1113.14 (6)
O10—P2—N11118.8 (3)Ag1—W1—Ag1i153.833 (10)
N10—P2—N11105.0 (3)S1—Ag1—S293.22 (5)
O10—P2—N12108.6 (3)S1—Ag1—S3ii120.54 (6)
N10—P2—N12114.1 (3)S2—Ag1—S3ii120.92 (6)
N11—P2—N12102.1 (3)S1—Ag1—S4ii120.49 (6)
O2—P3—N3110.9 (3)S2—Ag1—S4ii118.21 (6)
O2—P3—N1111.3 (3)S3ii—Ag1—S4ii86.43 (5)
N3—P3—N1107.0 (3)S1—Ag1—W146.82 (4)
O2—P3—N2108.7 (2)S2—Ag1—W146.40 (3)
N3—P3—N2109.4 (3)S3ii—Ag1—W1137.51 (4)
N1—P3—N2109.5 (3)S4ii—Ag1—W1136.04 (4)
O1—P4—N6109.5 (3)S1—Ag1—W1ii150.48 (4)
O1—P4—N4108.3 (2)S2—Ag1—W1ii116.29 (4)
N6—P4—N4115.4 (3)S3ii—Ag1—W1ii45.70 (4)
O1—P4—N5116.6 (3)S4ii—Ag1—W1ii45.54 (4)
N6—P4—N5103.8 (3)W1—Ag1—W1ii162.684 (19)
N4—P4—N5103.4 (3)W1—S1—Ag177.59 (5)
P4—O1—Y1162.6 (2)W1—S2—Ag176.04 (5)
P3—O2—Y1168.3 (2)W1—S3—Ag1i75.71 (5)
P1—O3—Y1167.3 (3)W1—S4—Ag1i75.68 (5)
N13—O4—Y195.0 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Y(NO3)2(C6H18N3OP)4][WAgS4]
Mr1349.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)15.789 (3), 29.661 (6), 11.430 (2)
β (°) 90.83 (3)
V3)5352.3 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.91
Crystal size (mm)0.50 × 0.45 × 0.32
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.173, 0.286
No. of measured, independent and
observed [I > 2σ(I)] reflections
49397, 9804, 9045
Rint0.049
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.085, 1.21
No. of reflections9783
No. of parameters532
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0187P)2 + 15.0729P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.64, 0.77

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXTL (Sheldrick, 2000), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds