Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of tripotassium pentairon hexaphosphate has been determined by single-crystal X-ray diffraction. The structure contains one Fe atom on a center of symmetry, one K, two Fe and two P atoms on twofold axes, and one Fe, two P and one K atom in general positions. The K3Fe5(PO4)6 structure consists of a complex three-dimensional framework of corner-sharing between iron polyhedra, and corner- and edge-sharing between PO4 tetrahedra and iron polyhedra (FeO5 and FeO6). This linkage between iron and phosphorus forms intersecting channels containing the K atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015251/br1386sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015251/br1386Isup2.hkl
Contains datablock I

Comment top

Iron phosphates generate considerable interest not only for their magnetic properties, due to the great number of possible different cation arrangements, but also for their potential practical applications, including corrosion inhibition (Meisel et al., 1983), passivation of metal surfaces (Attali et al.,1980) and heterogeneous catalysis (Moffat, 1978). These materials offer a considerable number of complex and versatile network structures due to the ability of iron to be in both the +2 and +3 oxidation states, and to adopt various coordination environments. In the monophosphates, iron(III) coordinates, in most cases, to six O atoms and rarely with five O atoms (Belkhiria et al., 1998; Pintard-Screpel et al., 1978; Andrew-Allen et al., 1988). It is four-coordinated in a few cases, such as in FePO4 (Ng & Calvo, 1975). Moreover, it can exhibit two different coordination modes in the same structure, such as in K3Fe2(PO4)3 (Pintard-Screpel et al., 1983) and Cs7Fe7(PO4)8O2 (Andrew-Allen et al., 1988), in which iron(III) adopts five- and six-coordination. The potassium iron phosphate K3Fe5(PO4)6 reported in this paper, falls into the latter category of compounds.

Fig. 1 illustrates the complete crystal structure of K3Fe5(PO4)6 projected along the [100] direction. There are four crystallographically distinct Fe atoms in this structure. Fe1 is located on a center of symmetry, Fe2 and Fe3 lie on twofold axes and Fe4 is located in a general position. The Fe atoms are both five- and six-coordinated. Atoms P1, P2 and K2 lie on twofold axes, while atoms P3, P4 and K1 are in general positions. The K3Fe5(PO4)6 structure consists of a three-dimensional complex framework constructed of iron polyhedra connected to each other by corner-linkage or by phosphate tetrahedra via corner- and edge-sharing. The structure can be easily described as the association of two building blocks. The first gathers Fe1, Fe2 and Fe3 octahedra, P1, P2 and P3 tetrahedra and K atoms. It consists of iron–phosphate layers, in the ac plane, with the interlayer space filled with K+ cations, as illustrated in the perspective view parallel to the [100] direction shown in Fig. 1. There are two iron–phosphate layers within the repeat distance b; each layer lies on a medium plane perpendicular to the b axis at y = 1/4 and y = 3/4. The layers are formed by corner-sharing FeO6 octahedra, which are further connected by phosphate tetrahedra through corner- and edge-sharing. The mode of association involved by the iron octahedra and the phosphorus tetrahedra in layers is pointed in Fig. 2. Each Fe1O6 octahedron shares a first corner with, at once, one Fe2O6 octahedron and one P1O4 tetrahedron, a second corner with, at once, one Fe3O6 octahedron and one P2O4 tetrahedron, and finally, a third corner with a P3O4 tetrahedron. The P1O4 and P2O4 tetrahedra share one edge, respectively, with Fe2O6 and Fe3O6 octahedra, and corners of the common edge with two different Fe1O6 octahedra. The remaining corners are coordinated to two Fe3O6 octahedra for P1O4, and two Fe2O6 octahedra for P2O4. P3O4 coordinates to Fe atoms (Fe1, Fe2 and Fe3) through three O atoms. The distortion observed in the Fe2O6 and Fe3O6 octahedra, and in the P1O4 and P2O4 tetrahedra is a result of the edge-sharing between these polyhedra, since the existence of the common edge induces a strong repulsion between the positive charges carried by the Fe and P atoms, and consequently atoms Fe2, Fe3, P1 and P2 are forced to shift to off-centred positions of their respective polyhedra and the lengths of the common edges are shorter than the other O···O distances in order to screen efficiently this repulsion effect. It is of interest to remark that atoms O31, O32 and O34 all bond to P and only one Fe, whereas atoms O11, O12, O21 and O22 bond to P and two Fe atoms. Thus, the Fe—O bonds are weaker when the O atom bonds to two Fe atoms, as one would expect. The sharing of edges also affects the geometry, but it may only be possible because the Fe—O bonds are already longer. Fig. 3 shows the atomic displacement ellipsoids in layers.

The structural arrangement adopted by the first building block is similar to that observed in the K3Fe3(PO4)4·H2O structure (Lii, 1995), which is made up of layers involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The layers are linked by seven- or six-oxygen coordinated K+ cations and hydrogen bonding.

The second building block formed by Fe4 and P4O4 tetrahedra is found in the interlayer space between the first building blocks, which has a result of destroying the layered arrangement. Atom Fe4 is pentacoordinated and shares its corners with one P3O4 and four different P4O4 tetrahedra. Fe4O5 polyhedra are connected to each other and to the other iron octahedra by phosphate tetrahedra via corner-sharing. The average Fe4—O distances is 1.941 Å, a value close to that observed in K3Fe2(PO4)3 for pentacoordinated iron (1.935 Å; Pintard-Screpel et al., 1983). Each P4O4 tetrahedron shares its four corners with four different Fe4O5 polyhedra.

The three-dimensional structural arrangement formed by the P, Fe and O atoms contains interstitial spaces forming intersecting channels in which the K atoms are located. K1 has an environment formed by eight O atoms, with K—O distances ranging from 2.587 (2) to 3.213 (2) Å, while K2 is six-coordinated, with K—O distances between 2.883 (2) and 3.025 (2) Å. The coordination number of each K+ cation was determined on the basis of the maximum cation–anion distance; Lmax = 3.35 Å for K—O according to Donnay & Allman (1970).

Experimental top

Crystals of K3Fe5(PO4)6 were prepared by the flux method from K2CO3, (NH4)2HPO4, MoO3 and Fe(NO3)3·9H2O. The starting materials (equimolar ratio) were placed in a platinum crucible (in air) and heated at 1073 K for 1 h. The mixture was cooled to 773 K at a rate of 10 K h-1. Finally, parallelepipedic brown crystals of K3Fe5(PO4)6 were obtained after washing with boiling water.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A projection of the structural network of K3Fe5(PO4)6 along the [100] direction.
[Figure 2] Fig. 2. The association mode of iron and phosphorus polyhedra in layers.
[Figure 3] Fig. 3. The connectivity of atoms in layers, showing 50% probability displacement ellipsolids.
(I) top
Crystal data top
K3Fe5(PO4)6F(000) = 1876
Mr = 966.37Dx = 3.006 Mg m3
Dm = 3.05 (5) Mg m3
Dm measured by pycnometry
Monoclinic, C2/cAg Kα radiation, λ = 0.56087 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 6.460 (4) Åθ = 7–12°
b = 30.997 (7) ŵ = 2.30 mm1
c = 10.665 (2) ÅT = 293 K
β = 90.22 (4)°Parallelepiped, brown
V = 2135.6 (15) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
3354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 99
Absorption correction: analytical
(Katayama, 1986)
k = 469
Tmin = 0.630, Tmax = 0.710l = 1616
7763 measured reflections2 standard reflections every 120 min
3823 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0214P)2 + 4.5065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.76 e Å3
3823 reflectionsΔρmin = 0.79 e Å3
177 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00198 (13)
Crystal data top
K3Fe5(PO4)6V = 2135.6 (15) Å3
Mr = 966.37Z = 4
Monoclinic, C2/cAg Kα radiation, λ = 0.56087 Å
a = 6.460 (4) ŵ = 2.30 mm1
b = 30.997 (7) ÅT = 293 K
c = 10.665 (2) Å0.30 × 0.20 × 0.16 mm
β = 90.22 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3354 reflections with I > 2σ(I)
Absorption correction: analytical
(Katayama, 1986)
Rint = 0.030
Tmin = 0.630, Tmax = 0.7102 standard reflections every 120 min
7763 measured reflections intensity decay: 2%
3823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019177 parameters
wR(F2) = 0.0510 restraints
S = 1.08Δρmax = 0.76 e Å3
3823 reflectionsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.25000.25000.50000.00582 (6)
Fe20.00000.189384 (10)0.25000.00677 (6)
Fe30.00000.193115 (10)0.75000.00679 (6)
Fe40.24698 (3)0.049909 (7)0.57712 (2)0.00737 (5)
P10.00000.278396 (17)0.25000.00575 (9)
O110.18853 (17)0.30583 (4)0.22474 (11)0.00946 (19)
O120.03724 (17)0.24513 (3)0.35948 (10)0.00758 (18)
P20.00000.281775 (17)0.75000.00594 (9)
O210.03802 (17)0.24838 (4)0.64090 (10)0.00749 (18)
O220.18915 (17)0.30916 (4)0.77764 (11)0.00936 (19)
P30.14632 (6)0.148952 (12)0.50261 (3)0.00607 (7)
O310.01426 (18)0.14707 (4)0.38235 (11)0.0108 (2)
O320.00308 (18)0.15329 (4)0.61488 (11)0.0116 (2)
O330.27196 (18)0.10763 (4)0.51169 (12)0.0123 (2)
O340.29346 (17)0.18761 (3)0.49822 (10)0.00887 (19)
P40.24699 (6)0.030414 (12)0.87738 (4)0.00673 (7)
O410.22854 (19)0.02291 (4)0.73522 (11)0.0145 (2)
O420.44496 (18)0.05457 (4)0.91038 (13)0.0164 (2)
O430.06373 (19)0.05619 (4)0.92864 (13)0.0161 (2)
O440.2465 (2)0.01530 (4)0.93308 (12)0.0180 (2)
K10.64766 (6)0.138114 (15)0.51135 (4)0.02211 (9)
K20.00000.93923 (3)0.75000.0477 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00612 (12)0.00613 (12)0.00521 (11)0.00042 (9)0.00027 (9)0.00017 (9)
Fe20.00683 (12)0.00698 (12)0.00649 (12)0.0000.00057 (9)0.000
Fe30.00667 (12)0.00730 (13)0.00640 (12)0.0000.00049 (9)0.000
Fe40.00765 (9)0.00694 (9)0.00752 (9)0.00004 (7)0.00081 (7)0.00029 (7)
P10.00450 (19)0.0065 (2)0.0062 (2)0.0000.00064 (15)0.000
O110.0062 (4)0.0103 (5)0.0118 (5)0.0018 (4)0.0004 (3)0.0020 (4)
O120.0081 (4)0.0083 (4)0.0063 (4)0.0002 (3)0.0018 (3)0.0008 (3)
P20.0047 (2)0.0066 (2)0.0065 (2)0.0000.00025 (16)0.000
O210.0079 (4)0.0080 (4)0.0066 (4)0.0005 (3)0.0014 (3)0.0005 (3)
O220.0066 (4)0.0108 (5)0.0107 (5)0.0020 (4)0.0002 (3)0.0017 (4)
P30.00581 (14)0.00597 (14)0.00643 (14)0.00054 (11)0.00024 (11)0.00031 (11)
O310.0124 (5)0.0117 (5)0.0083 (4)0.0026 (4)0.0032 (4)0.0021 (4)
O320.0103 (5)0.0150 (5)0.0096 (5)0.0029 (4)0.0034 (4)0.0044 (4)
O330.0077 (4)0.0069 (5)0.0223 (6)0.0009 (4)0.0013 (4)0.0033 (4)
O340.0095 (4)0.0068 (4)0.0103 (5)0.0013 (3)0.0005 (4)0.0004 (4)
P40.00469 (14)0.00813 (15)0.00736 (15)0.00038 (12)0.00054 (11)0.00131 (12)
O410.0144 (5)0.0210 (6)0.0081 (5)0.0007 (4)0.0011 (4)0.0035 (4)
O420.0067 (5)0.0192 (6)0.0233 (6)0.0026 (4)0.0015 (4)0.0058 (5)
O430.0073 (5)0.0184 (6)0.0226 (6)0.0016 (4)0.0001 (4)0.0061 (5)
O440.0285 (7)0.0120 (5)0.0137 (5)0.0005 (5)0.0002 (5)0.0050 (4)
K10.00890 (15)0.0259 (2)0.0315 (2)0.00305 (13)0.00095 (14)0.00066 (16)
K20.0578 (5)0.0224 (3)0.0628 (6)0.0000.0302 (5)0.000
Geometric parameters (Å, º) top
Fe1—O34i1.9544 (12)P3—O331.5193 (12)
Fe1—O341.9544 (12)P3—O321.5220 (13)
Fe1—O12i2.0351 (14)P3—O341.5302 (12)
Fe1—O122.0351 (14)P3—O311.5387 (13)
Fe1—O212.0376 (14)P3—K1iv3.241 (2)
Fe1—O21i2.0376 (14)P3—K13.257 (2)
Fe2—O311.9289 (12)O31—K1iv2.757 (2)
Fe2—O31ii1.9289 (12)O31—K2vi3.0257 (15)
Fe2—O22iii2.0312 (16)O32—K1iv2.5870 (19)
Fe2—O22i2.0312 (16)O33—K12.6045 (18)
Fe2—O12ii2.0987 (12)O34—K12.7579 (17)
Fe2—O122.0988 (12)P4—O421.5220 (14)
Fe2—P12.7591 (9)P4—O431.5310 (14)
Fe2—K1iv3.9400 (15)P4—O441.5366 (13)
Fe2—K1v3.9400 (15)P4—O411.5380 (13)
Fe2—K2vi3.9865 (12)P4—K2xi3.5163 (11)
Fe3—O321.8977 (12)P4—K1ix3.6070 (9)
Fe3—O32vii1.8977 (12)O41—K2xi2.9890 (16)
Fe3—O11viii2.0293 (16)O42—Fe4ix1.9992 (17)
Fe3—O11i2.0293 (17)O42—K1ix2.7867 (15)
Fe3—O21vii2.0859 (12)O43—Fe4vii2.0173 (17)
Fe3—O212.0859 (12)O43—K1ix3.2132 (16)
Fe3—P22.7482 (9)O44—Fe4xii1.8736 (13)
Fe3—K1iv3.8107 (15)O44—K2xi2.8830 (18)
Fe3—K1ix3.8107 (15)K1—O32xiii2.5870 (19)
Fe4—O44x1.8736 (13)K1—O332.6045 (18)
Fe4—O411.8867 (12)K1—O31xiii2.757 (2)
Fe4—O331.9273 (12)K1—O342.7579 (17)
Fe4—O42ix1.9992 (17)K1—O42ix2.7867 (15)
Fe4—O43vii2.0173 (17)K1—O11xiv2.8746 (13)
Fe4—K13.8316 (13)K1—O22xv2.9934 (13)
Fe4—K2vi3.8454 (13)K1—O43ix3.2132 (16)
P1—O111.5105 (13)K1—P3xiii3.241 (2)
P1—O11ii1.5105 (13)K1—P4ix3.6070 (9)
P1—O121.5756 (11)K1—P1i3.7556 (9)
P1—O12ii1.5756 (11)K2—O44xvi2.8830 (18)
P1—K1i3.7556 (9)K2—O44xvii2.8830 (18)
P1—K1iii3.7556 (9)K2—O41xvi2.9890 (16)
O11—Fe3i2.0293 (16)K2—O41xvii2.9890 (16)
O11—K1iii2.8746 (13)K2—O31vi3.0257 (15)
P2—O22vii1.5158 (13)K2—O31xviii3.0257 (15)
P2—O221.5158 (13)K2—P4xvi3.5163 (11)
P2—O211.5772 (11)K2—P4xvii3.5163 (11)
P2—O21vii1.5772 (12)K2—Fe4xviii3.8454 (13)
P2—K1viii3.8503 (9)K2—Fe4vi3.8454 (13)
P2—K1i3.8503 (9)K2—Fe2vi3.9865 (13)
O22—Fe2i2.0312 (16)K2—K1xix4.3296 (15)
O22—K1viii2.9934 (13)
O34i—Fe1—O34180.0O22vii—P2—O22111.89 (10)
O34i—Fe1—O12i90.92 (5)O22vii—P2—O21110.59 (6)
O34—Fe1—O12i89.08 (5)O22—P2—O21112.54 (7)
O34i—Fe1—O1289.08 (5)O22vii—P2—O21vii112.54 (7)
O34—Fe1—O1290.92 (5)O22—P2—O21vii110.59 (6)
O12i—Fe1—O12180.0O21—P2—O21vii97.97 (9)
O34i—Fe1—O2185.42 (5)O33—P3—O32110.52 (7)
O34—Fe1—O2194.58 (5)O33—P3—O34109.29 (7)
O12i—Fe1—O2184.99 (6)O32—P3—O34109.54 (7)
O12—Fe1—O2195.01 (6)O33—P3—O31108.39 (7)
O34i—Fe1—O21i94.58 (5)O32—P3—O31108.80 (8)
O34—Fe1—O21i85.42 (5)O34—P3—O31110.28 (7)
O12i—Fe1—O21i95.01 (6)O42—P4—O43108.11 (8)
O12—Fe1—O21i84.99 (6)O42—P4—O44111.53 (8)
O21—Fe1—O21i180.0O43—P4—O44109.92 (8)
O31—Fe2—O31ii94.31 (7)O42—P4—O41111.36 (8)
O31—Fe2—O22iii87.33 (6)O43—P4—O41111.95 (8)
O31ii—Fe2—O22iii94.41 (6)O44—P4—O41103.96 (7)
O31—Fe2—O22i94.41 (6)O32xiii—K1—O33152.98 (5)
O31ii—Fe2—O22i87.33 (6)O32xiii—K1—O31xiii55.39 (5)
O22iii—Fe2—O22i177.45 (6)O33—K1—O31xiii147.07 (5)
O31—Fe2—O12ii166.43 (5)O32xiii—K1—O34130.94 (5)
O31ii—Fe2—O12ii98.49 (5)O33—K1—O3455.18 (5)
O22iii—Fe2—O12ii87.20 (5)O31xiii—K1—O34129.25 (5)
O22i—Fe2—O12ii90.70 (5)O32xiii—K1—O42ix103.44 (4)
O31—Fe2—O1298.49 (5)O33—K1—O42ix57.40 (4)
O31ii—Fe2—O12166.43 (5)O31xiii—K1—O42ix115.39 (4)
O22iii—Fe2—O1290.70 (5)O34—K1—O42ix110.68 (5)
O22i—Fe2—O1287.20 (5)O32xiii—K1—O11xiv58.23 (4)
O12ii—Fe2—O1269.17 (6)O33—K1—O11xiv107.51 (5)
O32—Fe3—O32vii98.84 (8)O31xiii—K1—O11xiv104.93 (4)
O32—Fe3—O11viii85.58 (6)O34—K1—O11xiv77.15 (5)
O32vii—Fe3—O11viii95.63 (6)O42ix—K1—O11xiv110.10 (4)
O32—Fe3—O11i95.63 (6)O32xiii—K1—O22xv100.02 (5)
O32vii—Fe3—O11i85.58 (6)O33—K1—O22xv106.60 (5)
O11viii—Fe3—O11i178.15 (7)O31xiii—K1—O22xv56.62 (4)
O32—Fe3—O21vii163.62 (5)O34—K1—O22xv74.39 (5)
O32vii—Fe3—O21vii96.26 (5)O42ix—K1—O22xv140.97 (4)
O11viii—Fe3—O21vii86.68 (5)O11xiv—K1—O22xv108.72 (4)
O11i—Fe3—O21vii91.81 (5)O32xiii—K1—O43ix62.96 (4)
O32—Fe3—O2196.26 (5)O33—K1—O43ix104.65 (5)
O32vii—Fe3—O21163.62 (5)O31xiii—K1—O43ix71.34 (4)
O11viii—Fe3—O2191.81 (5)O34—K1—O43ix158.49 (4)
O11i—Fe3—O2186.68 (5)O42ix—K1—O43ix48.01 (4)
O21vii—Fe3—O2169.57 (6)O11xiv—K1—O43ix105.57 (4)
O44x—Fe4—O41118.61 (6)O22xv—K1—O43ix122.93 (4)
O44x—Fe4—O33103.56 (6)O44xvi—K2—O44xvii121.47 (6)
O41—Fe4—O33137.82 (6)O44xvi—K2—O41xvi48.68 (4)
O44x—Fe4—O42ix95.42 (7)O44xvii—K2—O41xvi79.15 (5)
O41—Fe4—O42ix92.22 (6)O44xvi—K2—O41xvii79.15 (5)
O33—Fe4—O42ix82.67 (5)O44xvii—K2—O41xvii48.68 (4)
O44x—Fe4—O43vii91.83 (7)O41xvi—K2—O41xvii59.59 (6)
O41—Fe4—O43vii90.22 (7)O44xvi—K2—O31vi139.81 (4)
O33—Fe4—O43vii89.08 (5)O44xvii—K2—O31vi95.77 (4)
O42ix—Fe4—O43vii170.10 (6)O41xvi—K2—O31vi139.18 (4)
O11—P1—O11ii111.48 (10)O41xvii—K2—O31vi141.04 (4)
O11—P1—O12112.32 (7)O44xvi—K2—O31xviii95.77 (4)
O11ii—P1—O12110.93 (7)O44xvii—K2—O31xviii139.81 (4)
O11—P1—O12ii110.93 (7)O41xvi—K2—O31xviii141.04 (4)
O11ii—P1—O12ii112.32 (7)O41xvii—K2—O31xviii139.18 (4)
O12—P1—O12ii98.24 (9)O31vi—K2—O31xviii55.73 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z; (v) x+1, y, z+1/2; (vi) x, y+1, z+1; (vii) x, y, z+3/2; (viii) x1/2, y+1/2, z+1/2; (ix) x+1, y, z+3/2; (x) x, y, z1/2; (xi) x, y1, z; (xii) x, y, z+1/2; (xiii) x+1, y, z; (xiv) x+1/2, y+1/2, z+1/2; (xv) x+1/2, y+1/2, z1/2; (xvi) x, y+1, z; (xvii) x, y+1, z+3/2; (xviii) x, y+1, z+1/2; (xix) x1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaK3Fe5(PO4)6
Mr966.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)6.460 (4), 30.997 (7), 10.665 (2)
β (°) 90.22 (4)
V3)2135.6 (15)
Z4
Radiation typeAg Kα, λ = 0.56087 Å
µ (mm1)2.30
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(Katayama, 1986)
Tmin, Tmax0.630, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
7763, 3823, 3354
Rint0.030
(sin θ/λ)max1)0.753
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.08
No. of reflections3823
No. of parameters177
Δρmax, Δρmin (e Å3)0.76, 0.79

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Fe1—O34i1.9544 (12)P3—O321.5220 (13)
Fe1—O12i2.0351 (14)P3—O341.5302 (12)
Fe1—O212.0376 (14)P3—O311.5387 (13)
Fe2—O311.9289 (12)P4—O421.5220 (14)
Fe2—O22ii2.0312 (16)P4—O431.5310 (14)
Fe2—O12iii2.0987 (12)P4—O441.5366 (13)
Fe3—O321.8977 (12)P4—O411.5380 (13)
Fe3—O11iv2.0293 (16)K1—O32viii2.5870 (19)
Fe3—O21v2.0859 (12)K1—O332.6045 (18)
Fe4—O44vi1.8736 (13)K1—O31viii2.757 (2)
Fe4—O411.8867 (12)K1—O342.7579 (17)
Fe4—O331.9273 (12)K1—O42vii2.7867 (15)
Fe4—O42vii1.9992 (17)K1—O11ix2.8746 (13)
Fe4—O43v2.0173 (17)K1—O22x2.9934 (13)
P1—O111.5105 (13)K1—O43vii3.2132 (16)
P1—O121.5756 (11)K2—O44xi2.8830 (18)
P2—O22v1.5158 (13)K2—O41xi2.9890 (16)
P2—O211.5772 (11)K2—O31xii3.0257 (15)
P3—O331.5193 (12)
O34i—Fe1—O12i90.92 (5)O44vi—Fe4—O42vii95.42 (7)
O34—Fe1—O12i89.08 (5)O41—Fe4—O42vii92.22 (6)
O34i—Fe1—O2185.42 (5)O33—Fe4—O42vii82.67 (5)
O34—Fe1—O2194.58 (5)O44vi—Fe4—O43v91.83 (7)
O12i—Fe1—O2184.99 (6)O41—Fe4—O43v90.22 (7)
O12—Fe1—O2195.01 (6)O33—Fe4—O43v89.08 (5)
O31—Fe2—O31iii94.31 (7)O42vii—Fe4—O43v170.10 (6)
O31—Fe2—O22ii87.33 (6)O11—P1—O11iii111.48 (10)
O31iii—Fe2—O22ii94.41 (6)O11—P1—O12112.32 (7)
O22ii—Fe2—O22i177.45 (6)O11iii—P1—O12110.93 (7)
O31—Fe2—O12iii166.43 (5)O12—P1—O12iii98.24 (9)
O31iii—Fe2—O12iii98.49 (5)O22v—P2—O22111.89 (10)
O22ii—Fe2—O12iii87.20 (5)O22v—P2—O21110.59 (6)
O22i—Fe2—O12iii90.70 (5)O22—P2—O21112.54 (7)
O12iii—Fe2—O1269.17 (6)O21—P2—O21v97.97 (9)
O32—Fe3—O32v98.84 (8)O33—P3—O32110.52 (7)
O32—Fe3—O11iv85.58 (6)O33—P3—O34109.29 (7)
O32v—Fe3—O11iv95.63 (6)O32—P3—O34109.54 (7)
O11iv—Fe3—O11i178.15 (7)O33—P3—O31108.39 (7)
O32—Fe3—O21v163.62 (5)O32—P3—O31108.80 (8)
O32v—Fe3—O21v96.26 (5)O34—P3—O31110.28 (7)
O11iv—Fe3—O21v86.68 (5)O42—P4—O43108.11 (8)
O11i—Fe3—O21v91.81 (5)O42—P4—O44111.53 (8)
O21v—Fe3—O2169.57 (6)O43—P4—O44109.92 (8)
O44vi—Fe4—O41118.61 (6)O42—P4—O41111.36 (8)
O44vi—Fe4—O33103.56 (6)O43—P4—O41111.95 (8)
O41—Fe4—O33137.82 (6)O44—P4—O41103.96 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y, z+3/2; (vi) x, y, z1/2; (vii) x+1, y, z+3/2; (viii) x+1, y, z; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z1/2; (xi) x, y+1, z; (xii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds