Download citation
Download citation
link to html
The crystal structures of two new diphosphates, sodium silver tricobalt bis(diphosphate), (Na1.42Ag0.58)Co3(P2O7)2, and sodium silver copper(II) diphosphate, (Na1.12Ag0.88)CuP2O7, provide examples of the effect of mixing Na and Ag in the same site of known host phosphate compounds. The small differences in ionic radii of the two monocations do not lead to significant differences in the structural details. In the latter compound, the Cu atom lies on an inversion center.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008922/br1368sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008922/br1368Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008922/br1368IIsup3.hkl
Contains datablock II

Comment top

Our recent studies of transition metal phosphate complexes of the formula AIIBIIP2O7 (Amroussi et al., 1997), AI2BIIP2O7 (Dridi et al., 2001; Bennazha, Zahouily et al., 2001; Dridi et al., 2000; Bennazha et al., 1999; Erragh et al., 1998a,b) and AI2BII3(P2O7)2 (Bennazha, Erragh et al., 2001) have established the identities of a number of new compounds of these three types.

We have now synthesized several new complexes in which Ag has partially replaced Na in a sodium compound of known structure. The solid-state form (Ag0.58Na1.42)Co3(P2O7)2, (I), may be compared with the parent compound Ag2Co3(P2O7)2 (Bennazha, Erragh et al., 2001), and the structure of (Na1.12Ag0.88)CuP2O7, (II), may be compared with that of Na2CuP2O7 (Erragh et al., 1995; Etheredge & Hwu, 1995). \sch

The effective ionic radii for six-coordinate Ag and Na (1.15 and 1.02 Å, respectively; Shannon, 1976) are similar, so it is not unexpected to find them sharing a site in a solid matrix. There are precedents for this shared occupancy in an oxide environment. There are several examples of minor quantities of Ag in a site predominately occupied by Na, such as Ag4.6Al12Na7.4O48Si12 and Ag3.6Al12Na7.4O48Si12 (Kim & Self, 1987, 1985), both of which show six-coordinate Na/Ag sites with average Na/Ag—O distances of 2.606 Å. NaAgMoO4 (Na 0.94/Ag 0.06) contains six-coordinate metal sites with average (Na/Ag)—O distances of 2.490 and 2.621 Å (Rulmont et al., 1988).

There are other examples in which Na and Ag share a site more equally. Ag0.40Na1.60Te5O14 (Loeksmanto et al., 1980), with Na/Ag 0.60/0.40 in a single site, has eight O atoms about that site at an average distance of 2.568 Å. Ag0.4Na2.3Ca4.3RuO8, with Na/Ag 0.5904/0.4906 (Mueller-Buschbaum & Frenzen, 1996), also has an eight-coordinate mixed metal site, with an average M—O distance of 2.462 Å. Ag9Na(P8O24)(NO3)2(H2O)4, with Na and Ag sharing a position in a ratio of 0.50/0.50 of six-coordination, has an average M—O distance of 2.500 Å (Averbuch-Pouchot & Durif, 1992). Thus, the literature does not present a totally consistent record of increased amounts of Ag leading to increased average bond lengths.

In the first title structure, (Ag0.58Na1.42)Co3(P2O7)2, (I), Na and Ag share two sites, with occupancies for Na/Ag of 0.66/0.34 and 0.77/0.23, and with average distances to the eight surrounding O atoms of 2.630 (3) and 2.632 (3) Å. In the parent structure, Ag2Co3(P2O7)2, Ag—O distances of up to 3.089 (13) Å were considered significant, leading to two eight-coordinate sites of average Ag—O distance 2.685 (5) Å, a slightly greater value, consistent with total occupancy of both sites by the larger Ag atom.

The structure of (I) is isostructural with the structures of Ag2Co3(P2O7)2 (the parent structure) and Ag2Mn3(P2O7)2, previously reported by Bennazha, Erragh et al. (2001). In (I), as in these structures, layers of P2O7 groups are separated by layers of metal atoms (Fig. 1). Two of the Co atoms (Co1 and Co3) display distorted octahedral geometry, with average Co—O distances of 2.123 (3) and 2.098 (3) Å, respectively. Atom Co2, with an average M—O distance of 2.055 (3) Å, is pseudo-square-pyramidal. The Co—O averages for atoms Co1, Co2 and Co3 in the parent structure are 2.138 (4), 2.070 (4) and 2.111 (4) Å, respectively. Edge-sharing Co1 and Co2 polyhedra form chains, from which project edge-sharing Co3 octahedra (Fig. 2). The Co—Co distances along these polymeric linkages are 3.113, 3.238 and 3.331 Å, respectively. The P2O7 groups in (I) display different conformations, one being eclipsed and the other staggered, with average O—P—P—O torsion angles of 9.9 and 57.5°, compared with angles of 10.0 and 57.1° in Ag2Co3(P2O7)2.

Comparison of these and other details shows that the introduction of Na into the Ag site has caused little observable change in the solid-state structure, except for decreases in the density: 4.009 Mg m-3 in (I) and 4.649 Mg m-3 in the parent structure, and cell volume 513.5 (2) Å3 in (I) and 528.9 (6) Å3 in the parent.

Na1.12Ag0.88CuP2O7, (II), is unlike (I), primarily due to the square-planar geometry seen for the CuII, which changes the packing parameters (Fig. 3). Of the form AI2BIIP2O7 with A = Na/Ag, (II) appears isostructural with Na2CuP2O7 (Erragh et al., 1995; Etheredge & Hwu, 1995) and with Na2PdP2O7 (Laligant, 1992). In these related structures, the B atom displays square-planar geometry. The P2O7 groups share pairs of pseudo-eclipsed O atoms (mean O—P—P—O torsion angle 12.2°, compared with 14.03° in the parent structure) with each of two adjacent Cu atoms, linking them in a pleated sheet which extends in the z direction. The Ag/Na sites are located between these sheets.

In (II), with Na/Ag occupancy 0.56 (5)/0.43 (5), the six-coordinate metal site has an average AI—O distance of 2.417 (7) Å. In the parent structure, the Na—O distances average 2.423 Å. The Cu—O distances average 1.931 (7) Å in (II) and 1.936 Å in the parent structure.

Thus for (II), observable changes in the structural details related to the substitution of Ag for Na in the Na2CuP2O7 parent structure are limited to differences in cell volume [624.48 (16) Å3 in (II) versus 612.8 Å3 in the parent structure] and density [3.811 Mg m-3 in (II) versus 3.07 Mg m-3 in the parent structure].

In conclusion, for (II) as for (I), mixing Na and Ag in the same site results only in changes in mass and density consistent with changes in the atomic masses of the two elements, and not in significant structural changes.

Experimental top

(Ag0.58Na1.42)Co3(P2O7)2, (I), was prepared from a mixture of AgNO3, Na2CO3, Co(NO3)2·6H2O and (NH4)2HPO4 in the ratio 1:0.5:3:4, in the expectation of preparing AgNaCo2P2O7. The reactants were heated with intermittent grinding to 773 K to allow degassing to occur. A quantity of (NH4)2HPO4 equal to 10% of the mass was added as a flux. The mixture was then heated to 1223 K, where fusion occurred, and then cooled at the rate of 6 K h-1 to ambient temperature. Violet crystals of (I) were isolated. For the preparation of Na1.12Ag0.88CuP2O7, (II), AgNO3, Na2CO3, CuO and (NH4)2HPO4 were mixed in the stoichiometry 1:0.5:1:2. These materials were ground together and heated successively to 1173 K with intermittent grinding. After 1 h at 1173 K, the molten mass was cooled at 5 K h-1 to ambient temperature. Dark-blue crystals of (II) with rounded faces were observed to form. Please clarify the colours for each, as (I) is given below as dark blue, and (II) as violet.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. A projection view of (I) down the a axis. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. View of the oxygen-bridged cobalt polymer of (I). Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. A projection view of (II) down the c axis. Displacement ellipsoids are shown at the 50% probability level.
(I) Sodium silver tricobalt diphosphate top
Crystal data top
Ag0.58Co3Na1.42O14P4Z = 2
Mr = 619.88F(000) = 592
Triclinic, P1Dx = 4.009 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.296 (2) ÅCell parameters from 21 reflections
b = 6.359 (1) Åθ = 5.8–10.1°
c = 16.238 (4) ŵ = 6.64 mm1
α = 80.93 (1)°T = 293 K
β = 81.80 (3)°Chunk, dark blue
γ = 72.92 (2)°0.1 × 0.1 × 0.1 mm
V = 513.5 (2) Å3
Data collection top
Syntex P4 four-circle
diffractometer
2534 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 2.6°
θ/2θ scansh = 17
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
k = 88
Tmin = 0.467, Tmax = 0.515l = 2222
3887 measured reflections3 standard reflections every 97 reflections
2995 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0663P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.06 e Å3
2995 reflectionsΔρmin = 0.07 e Å3
213 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0048 (11)
Crystal data top
Ag0.58Co3Na1.42O14P4γ = 72.92 (2)°
Mr = 619.88V = 513.5 (2) Å3
Triclinic, P1Z = 2
a = 5.296 (2) ÅMo Kα radiation
b = 6.359 (1) ŵ = 6.64 mm1
c = 16.238 (4) ÅT = 293 K
α = 80.93 (1)°0.1 × 0.1 × 0.1 mm
β = 81.80 (3)°
Data collection top
Syntex P4 four-circle
diffractometer
2534 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
Rint = 0.021
Tmin = 0.467, Tmax = 0.5153 standard reflections every 97 reflections
3887 measured reflections intensity decay: 0.0%
2995 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040213 parameters
wR(F2) = 0.1072 restraints
S = 1.05Δρmax = 0.06 e Å3
2995 reflectionsΔρmin = 0.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. Correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co11.23425 (11)0.96160 (8)0.34055 (3)0.00901 (14)
Co20.80340 (12)0.71808 (9)0.41125 (4)0.01018 (14)
Co30.96264 (12)0.36526 (9)0.19545 (3)0.00979 (14)
Na10.09797 (17)0.25188 (14)0.97986 (5)0.0217 (3)0.659 (3)
Ag10.09797 (17)0.25188 (14)0.97986 (5)0.0217 (3)0.341 (3)
Na20.3906 (2)0.72922 (16)0.13722 (6)0.0197 (3)0.765 (3)
Ag20.3906 (2)0.72922 (16)0.13722 (6)0.0197 (3)0.235 (3)
P10.8110 (2)0.09808 (16)0.21710 (6)0.00766 (19)
O110.9431 (6)0.3030 (5)0.17431 (18)0.0129 (6)
O120.6445 (6)0.1368 (5)0.29903 (18)0.0102 (5)
O131.0115 (6)0.0257 (5)0.22299 (19)0.0108 (5)
O140.5943 (6)0.0482 (5)0.1573 (2)0.0150 (6)
P20.5659 (2)0.25057 (17)0.08228 (6)0.0097 (2)
O210.7277 (6)0.3973 (5)0.09851 (19)0.0139 (6)
O220.2705 (6)0.3568 (5)0.0910 (2)0.0153 (6)
O230.6746 (8)0.1474 (6)0.0030 (2)0.0216 (7)
P30.7048 (2)0.21744 (16)0.45848 (6)0.00687 (19)
O310.8802 (6)0.0146 (4)0.41945 (18)0.0092 (5)
O320.5896 (6)0.1575 (5)0.54735 (17)0.0099 (5)
O330.8365 (6)0.3989 (5)0.4503 (2)0.0134 (6)
O340.4405 (6)0.2999 (5)0.41178 (18)0.0132 (6)
P40.3575 (2)0.42729 (16)0.32343 (6)0.00725 (19)
O410.1744 (6)0.6529 (5)0.34236 (19)0.0101 (5)
O420.2019 (6)0.2891 (4)0.29514 (18)0.0103 (5)
O430.5949 (7)0.4470 (5)0.2654 (2)0.0161 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0097 (3)0.0065 (2)0.0105 (3)0.00272 (19)0.0005 (2)0.00060 (18)
Co20.0103 (3)0.0064 (2)0.0132 (3)0.00295 (19)0.0018 (2)0.00095 (18)
Co30.0109 (3)0.0082 (2)0.0106 (3)0.0033 (2)0.0015 (2)0.00055 (18)
Na10.0231 (5)0.0296 (5)0.0156 (4)0.0115 (3)0.0004 (3)0.0062 (3)
Ag10.0231 (5)0.0296 (5)0.0156 (4)0.0115 (3)0.0004 (3)0.0062 (3)
Na20.0161 (5)0.0215 (5)0.0209 (5)0.0039 (4)0.0012 (4)0.0046 (3)
Ag20.0161 (5)0.0215 (5)0.0209 (5)0.0039 (4)0.0012 (4)0.0046 (3)
P10.0088 (4)0.0068 (4)0.0078 (4)0.0032 (3)0.0006 (3)0.0017 (3)
O110.0178 (15)0.0103 (12)0.0102 (13)0.0041 (11)0.0027 (11)0.0037 (10)
O120.0084 (13)0.0135 (13)0.0080 (12)0.0036 (11)0.0026 (10)0.0013 (10)
O130.0106 (14)0.0085 (12)0.0141 (13)0.0042 (10)0.0012 (11)0.0008 (10)
O140.0130 (15)0.0162 (14)0.0160 (14)0.0070 (12)0.0043 (12)0.0059 (11)
P20.0097 (5)0.0099 (4)0.0091 (4)0.0023 (4)0.0007 (4)0.0010 (3)
O210.0152 (15)0.0133 (13)0.0146 (14)0.0065 (12)0.0038 (12)0.0015 (11)
O220.0107 (14)0.0166 (14)0.0172 (15)0.0020 (12)0.0016 (12)0.0009 (11)
O230.030 (2)0.0205 (16)0.0161 (15)0.0106 (15)0.0030 (14)0.0068 (12)
P30.0074 (4)0.0057 (4)0.0070 (4)0.0016 (3)0.0006 (3)0.0008 (3)
O310.0084 (13)0.0065 (12)0.0123 (13)0.0011 (10)0.0001 (10)0.0027 (10)
O320.0111 (14)0.0117 (12)0.0060 (12)0.0040 (11)0.0012 (10)0.0009 (10)
O330.0143 (14)0.0082 (12)0.0182 (14)0.0059 (11)0.0023 (12)0.0008 (11)
O340.0110 (14)0.0148 (13)0.0115 (13)0.0017 (11)0.0034 (11)0.0033 (11)
P40.0078 (4)0.0058 (4)0.0078 (4)0.0017 (3)0.0001 (3)0.0011 (3)
O410.0099 (13)0.0066 (12)0.0145 (13)0.0025 (10)0.0016 (11)0.0027 (10)
O420.0138 (14)0.0080 (12)0.0119 (13)0.0069 (11)0.0022 (11)0.0014 (10)
O430.0149 (15)0.0175 (14)0.0163 (14)0.0077 (12)0.0078 (12)0.0056 (11)
Geometric parameters (Å, º) top
Co1—O42i2.062 (3)Na2—O23x2.329 (4)
Co1—O41ii2.073 (3)Na2—O11xi2.421 (3)
Co1—O31iii2.086 (3)Na2—O212.433 (3)
Co1—O32iv2.096 (3)Na2—O14iii2.642 (3)
Co1—O12i2.117 (3)Na2—O432.655 (4)
Co1—O13iii2.306 (3)Na2—O13xi2.708 (3)
Co2—O331.992 (3)Na2—O222.856 (3)
Co2—O32v2.052 (3)Na2—O11iii3.013 (4)
Co2—O31iii2.070 (3)P1—O111.510 (3)
Co2—O41ii2.079 (3)P1—O121.516 (3)
Co2—O12iii2.081 (3)P1—O131.517 (3)
Co3—O11iii2.057 (3)P1—O141.591 (3)
Co3—O132.081 (3)O14—P21.614 (3)
Co3—O432.077 (3)P2—O231.500 (3)
Co3—O212.092 (3)P2—O221.506 (3)
Co3—O42ii2.107 (3)P2—O211.512 (3)
Co3—O22ii2.174 (3)P3—O331.495 (3)
Na1—O23vi2.483 (4)P3—O311.521 (3)
Na1—O11vii2.506 (3)P3—O321.521 (3)
Na1—O23vii2.460 (4)P3—O341.599 (3)
Na1—O22viii2.397 (3)O34—P41.585 (3)
Na1—O21vi2.614 (3)P4—O431.484 (3)
Na1—O21v2.725 (3)P4—O411.527 (3)
Na1—O22ix2.866 (3)P4—O421.524 (3)
Na1—O23viii2.994 (3)
O42i—Co1—O41ii155.16 (12)O23viii—Na1—O11vii107.9 (11)
O42i—Co1—O31iii97.19 (11)O23viii—Na1—O23vi150.3 (11)
O41ii—Co1—O31iii82.56 (11)O23viii—Na1—O23vii66.3 (11)
O42i—Co1—O32iv116.49 (12)O23viii—Na1—O22viii54.8 (11)
O41ii—Co1—O32iv88.25 (11)O23viii—Na1—O22ix132.3 (11)
O31iii—Co1—O32iv83.91 (12)O23viii—Na1—O21vi121.4 (11)
O42i—Co1—O12i92.35 (12)O23viii—Na1—O21v72.6 (11)
O41ii—Co1—O12i95.61 (11)O23x—Na2—O11xi93.58 (12)
O31iii—Co1—O12i160.93 (12)O23x—Na2—O2190.85 (12)
O32iv—Co1—O12i77.05 (12)O11xi—Na2—O21116.52 (11)
O42i—Co1—O13iii75.22 (11)O23x—Na2—O14iii94.99 (11)
O41ii—Co1—O13iii79.95 (11)O11xi—Na2—O14iii129.73 (10)
O31iii—Co1—O13iii91.93 (12)O21—Na2—O14iii112.77 (11)
O32iv—Co1—O13iii167.92 (11)O23x—Na2—O43155.88 (11)
O12i—Co1—O13iii106.51 (11)O11xi—Na2—O4395.42 (11)
O33—Co2—O32v98.00 (12)O21—Na2—O4365.12 (10)
O33—Co2—O31iii151.69 (13)O14iii—Na2—O4396.34 (10)
O32v—Co2—O31iii91.45 (11)O23x—Na2—O13xi104.47 (11)
O33—Co2—O41ii93.48 (12)O11xi—Na2—O13xi57.62 (10)
O32v—Co2—O41ii165.02 (11)O21—Na2—O13xi163.61 (10)
O31iii—Co2—O41ii82.81 (11)O14iii—Na2—O13xi72.28 (10)
O33—Co2—O12iii120.02 (13)O43—Na2—O13xi99.25 (10)
O32v—Co2—O12iii78.82 (11)O23x—Na2—O2279.92 (11)
O31iii—Co2—O12iii87.94 (12)O11xi—Na2—O2262.20 (9)
O41ii—Co2—O12iii87.13 (12)O21—Na2—O2256.49 (10)
O11iii—Co3—O13174.79 (13)O14iii—Na2—O22167.65 (10)
O11iii—Co3—O4388.47 (12)O43—Na2—O2284.60 (10)
O13—Co3—O4393.67 (12)O13xi—Na2—O22119.80 (10)
O11iii—Co3—O2191.71 (12)O23x—Na2—O11iii112.45 (12)
O13—Co3—O2193.28 (12)O11xi—Na2—O11iii153.97 (13)
O43—Co3—O2182.35 (13)O21—Na2—O11iii65.27 (9)
O11iii—Co3—O42ii95.68 (12)O14iii—Na2—O11iii50.83 (9)
O13—Co3—O42ii79.33 (11)O43—Na2—O11iii60.79 (9)
O43—Co3—O42ii98.00 (13)O13xi—Na2—O11iii112.62 (9)
O21—Co3—O42ii172.60 (11)O22—Na2—O11iii120.70 (9)
O11iii—Co3—O22ii81.05 (12)O11—P1—O12114.78 (17)
O13—Co3—O22ii98.17 (12)O11—P1—O13110.30 (18)
O43—Co3—O22ii160.78 (13)O12—P1—O13113.94 (17)
O21—Co3—O22ii81.90 (13)O11—P1—O14104.36 (18)
O42ii—Co3—O22ii99.04 (12)O12—P1—O14102.70 (17)
O23vi—Na1—O11vii87.89 (11)O13—P1—O14109.96 (17)
O23vi—Na1—O23vii86.97 (13)P1—O14—P2138.5 (2)
O11vii—Na1—O23vii98.65 (11)O23—P2—O22115.2 (2)
O23vi—Na1—O22viii121.48 (12)O23—P2—O21111.1 (2)
O11vii—Na1—O22viii146.52 (11)O22—P2—O21113.94 (19)
O23vii—Na1—O22viii98.62 (12)O23—P2—O14106.21 (19)
O23vi—Na1—O21vi58.27 (10)O22—P2—O14101.34 (18)
O11vii—Na1—O21vi127.30 (11)O21—P2—O14107.97 (17)
O23vii—Na1—O21vi116.44 (11)O33—P3—O31112.66 (17)
O22viii—Na1—O21vi67.69 (11)O33—P3—O32113.75 (17)
O23vi—Na1—O21v137.10 (11)O31—P3—O32112.14 (16)
O11vii—Na1—O21v69.25 (10)O33—P3—O34110.46 (18)
O23vii—Na1—O21v130.79 (12)O31—P3—O34106.59 (17)
O22viii—Na1—O21v77.75 (10)O32—P3—O34100.30 (17)
O21vi—Na1—O21v107.41 (8)P4—O34—P3136.8 (2)
O23vi—Na1—O22ix77.31 (11)O43—P4—O41112.21 (18)
O11vii—Na1—O22ix61.18 (9)O43—P4—O42113.96 (18)
O23vii—Na1—O22ix154.43 (11)O41—P4—O42110.60 (17)
O22viii—Na1—O22ix106.76 (9)O43—P4—O34110.84 (19)
O21vi—Na1—O22ix71.95 (10)O41—P4—O34104.98 (17)
O21v—Na1—O22ix59.96 (10)O42—P4—O34103.52 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z+1; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x+1, y+1, z; (xi) x1, y+1, z.
(II) Sodium silver copper(II) diphosphate top
Crystal data top
Ag0.88CuNa1.12O7P2F(000) = 675
Mr = 358.12Dx = 3.811 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17 reflections
a = 15.088 (2) Åθ = 4.4–9.4°
b = 5.641 (1) ŵ = 6.75 mm1
c = 8.171 (1) ÅT = 293 K
β = 116.11 (1)°Chunk, violet
V = 624.48 (16) Å30.1 × 0.1 × 0.1 mm
Z = 4
Data collection top
Syntex P4 four-circle
diffractometer
755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 30.0°, θmin = 3.0°
θ/2θ scansh = 121
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
k = 71
Tmin = 0.449, Tmax = 0.509l = 1110
1171 measured reflections3 standard reflections every 97 reflections
892 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.049Secondary atom site location: difference Fourier map
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.007
892 reflectionsΔρmax = 0.07 e Å3
59 parametersΔρmin = 0.01 e Å3
Crystal data top
Ag0.88CuNa1.12O7P2V = 624.48 (16) Å3
Mr = 358.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.088 (2) ŵ = 6.75 mm1
b = 5.641 (1) ÅT = 293 K
c = 8.171 (1) Å0.1 × 0.1 × 0.1 mm
β = 116.11 (1)°
Data collection top
Syntex P4 four-circle
diffractometer
755 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
Rint = 0.042
Tmin = 0.449, Tmax = 0.5093 standard reflections every 97 reflections
1171 measured reflections intensity decay: 0.0%
892 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04959 parameters
wR(F2) = 0.1611 restraint
S = 1.20Δρmax = 0.07 e Å3
892 reflectionsΔρmin = 0.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles: correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.0303 (3)
Ag10.76835 (7)0.14209 (15)0.70370 (11)0.0396 (4)0.438 (3)
Na10.76835 (7)0.14209 (15)0.70370 (11)0.0396 (4)0.562 (3)
P10.89677 (11)0.3398 (2)0.15609 (16)0.0268 (4)
O110.8986 (4)0.2075 (8)0.0035 (5)0.0393 (11)
O120.8145 (4)0.5159 (7)0.0995 (5)0.0343 (10)
O130.8952 (4)0.1683 (7)0.2993 (5)0.0344 (10)
O141.00000.4827 (9)0.25000.0318 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0349 (6)0.0289 (5)0.0130 (4)0.0027 (4)0.0025 (4)0.0076 (3)
Ag10.0449 (6)0.0363 (5)0.0192 (4)0.0047 (3)0.0028 (4)0.0021 (3)
Na10.0449 (6)0.0363 (5)0.0192 (4)0.0047 (3)0.0028 (4)0.0021 (3)
P10.0330 (7)0.0206 (6)0.0102 (6)0.0018 (4)0.0056 (5)0.0006 (4)
O110.041 (2)0.040 (2)0.0168 (16)0.0048 (18)0.0062 (16)0.0137 (16)
O120.035 (2)0.0271 (18)0.0223 (18)0.0064 (15)0.0041 (16)0.0010 (13)
O130.036 (2)0.032 (2)0.0201 (17)0.0008 (15)0.0008 (16)0.0144 (14)
O140.039 (3)0.025 (2)0.0093 (18)0.0000.0095 (19)0.000
Geometric parameters (Å, º) top
Cu1—O11i1.916 (5)Ag1—O13viii2.453 (5)
Cu1—O11ii1.916 (5)Ag1—O12ix2.591 (5)
Cu1—O13iii1.951 (4)P1—O121.494 (4)
Cu1—O13iv1.951 (4)P1—O111.513 (4)
Ag1—O12v2.336 (4)P1—O131.527 (4)
Ag1—O12vi2.341 (4)P1—O141.616 (3)
Ag1—O11vii2.363 (4)O14—P1x1.616 (3)
O11i—Cu1—O11ii180.0O12v—Ag1—O12ix144.41 (16)
O11i—Cu1—O13iii86.48 (18)O12vi—Ag1—O12ix111.93 (16)
O11ii—Cu1—O13iii93.52 (18)O11vii—Ag1—O12ix80.69 (16)
O11i—Cu1—O13iv93.52 (18)O13viii—Ag1—O12ix94.50 (15)
O11ii—Cu1—O13iv86.48 (18)O12—P1—O11112.8 (2)
O13iii—Cu1—O13iv180.0O12—P1—O13111.6 (3)
O12v—Ag1—O12vi88.36 (14)O11—P1—O13111.1 (3)
O12v—Ag1—O11vii89.54 (16)O12—P1—O14108.1 (2)
O12vi—Ag1—O11vii159.70 (18)O11—P1—O14106.1 (2)
O12v—Ag1—O13viii112.94 (18)O13—P1—O14106.8 (2)
O12vi—Ag1—O13viii95.64 (14)P1—O14—P1x120.1 (3)
O11vii—Ag1—O13viii66.72 (14)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y, z1/2; (iv) x+1, y, z+1/2; (v) x, y+1, z+1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x, y, z+1; (viii) x, y, z+1/2; (ix) x+3/2, y+1/2, z+1; (x) x+2, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaAg0.58Co3Na1.42O14P4Ag0.88CuNa1.12O7P2
Mr619.88358.12
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)293293
a, b, c (Å)5.296 (2), 6.359 (1), 16.238 (4)15.088 (2), 5.641 (1), 8.171 (1)
α, β, γ (°)80.93 (1), 81.80 (3), 72.92 (2)90, 116.11 (1), 90
V3)513.5 (2)624.48 (16)
Z24
Radiation typeMo KαMo Kα
µ (mm1)6.646.75
Crystal size (mm)0.1 × 0.1 × 0.10.1 × 0.1 × 0.1
Data collection
DiffractometerSyntex P4 four-circle
diffractometer
Syntex P4 four-circle
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1991)
ψ scan
(XEMP; Siemens, 1991)
Tmin, Tmax0.467, 0.5150.449, 0.509
No. of measured, independent and
observed [I > 2σ(I)] reflections
3887, 2995, 2534 1171, 892, 755
Rint0.0210.042
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05 0.049, 0.161, 1.20
No. of reflections2995892
No. of parameters21359
No. of restraints21
Δρmax, Δρmin (e Å3)0.06, 0.070.07, 0.01

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) for (I) top
Co1—O42i2.062 (3)Na1—O23vi2.483 (4)
Co1—O41ii2.073 (3)Na1—O11vii2.506 (3)
Co1—O31iii2.086 (3)Na1—O23vii2.460 (4)
Co1—O32iv2.096 (3)Na1—O22viii2.397 (3)
Co1—O12i2.117 (3)Na1—O21vi2.614 (3)
Co1—O13iii2.306 (3)Na1—O21v2.725 (3)
Co2—O331.992 (3)Na1—O22ix2.866 (3)
Co2—O32v2.052 (3)Na1—O23viii2.994 (3)
Co2—O31iii2.070 (3)Na2—O23x2.329 (4)
Co2—O41ii2.079 (3)Na2—O11xi2.421 (3)
Co2—O12iii2.081 (3)Na2—O212.433 (3)
Co3—O11iii2.057 (3)Na2—O14iii2.642 (3)
Co3—O132.081 (3)Na2—O432.655 (4)
Co3—O432.077 (3)Na2—O13xi2.708 (3)
Co3—O212.092 (3)Na2—O222.856 (3)
Co3—O42ii2.107 (3)Na2—O11iii3.013 (4)
Co3—O22ii2.174 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z+1; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x+1, y+1, z; (xi) x1, y+1, z.
Selected bond lengths (Å) for (II) top
Cu1—O11i1.916 (5)Ag1—O12vii2.591 (5)
Cu1—O13ii1.951 (4)P1—O121.494 (4)
Ag1—O12iii2.336 (4)P1—O111.513 (4)
Ag1—O12iv2.341 (4)P1—O131.527 (4)
Ag1—O11v2.363 (4)P1—O141.616 (3)
Ag1—O13vi2.453 (5)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1/2; (iii) x, y+1, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x, y, z+1/2; (vii) x+3/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds