Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of two new diphosphates, sodium hexamanganese bis­(diphosphate) triphosphate, NaMn6(P2O7)2(P3O10), and potassium hexacadmium bis­(diphosphate) triphosphate, KCd6(P2O7)2(P3O10), confirm the rigidity of the M6(P2O7)2(P3O10) matrix (M is Mn or Cd) and the relatively fixed dimensions of the tunnels extending in the a direction of the unit cell. The compounds are isomorphous; the P2O74- anion and the alkali metal cations lie on mirror planes. Bond-valence analysis of the bonding details of the atoms found within the tunnels permits a prediction of the conductivity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102006753/br1364sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102006753/br1364Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102006753/br1364IIsup3.hkl
Contains datablock II

Comment top

Extending our studies of transition metal phosphate complexes (Bennazha et al., 1999; Erragh et al., 1998a,b; Eddahby et al., 1997; Amroussi et al., 1997) of the formula ABP2O7 into stoichiometries of greater complexity, we have recently reported the single-crystal X-ray structures of two compounds of stoichiometry AIBII6(P2O7)2(P3O10), with A = K and B = Mn, and A = Ag and B = Mn (Bennazha et al., 2001), a family of compounds previously observed only with A = NH4+ [(NH4)Cd6(P2O7)2(P3O10); Ivanov et al., 1978]. We have now identified two further members of the family, NaMn6(P2O7)2(P3O10), (I), and KCd6(P2O7)2(P3O10), (II). \sch

These two complexes contain a mixture of the phosphate moieties P2O7 and P3O10, which is highly unusual (Durif, 1995). There are only two other examples of triphosphate, P3O10-5, and diphosphate, P2O7-4, existing in the same unit cell, namely Na7Y2(P2O7)2(P3O10) (Hamady & Jouini, 1996) and Ca3(NH4)4H3(P2O7)2(P3O10) (Actina et al., 1989).

Structures (I) and (II) are isostructural with those of the previously reported AIBII6(P2O7)2(P3O10) compounds, with A = K and B = Mn, and A = Ag and B = Mn (Bennazha et al., 2001), and with (NH4)Cd6(P2O7)2(P3O10) (Ivanov et al., 1978). Members of this family crystallize with layers of P2O7-4 groups alternating with P3O10-5 layers along the b axis (Fig. 1). The A atoms (K, Na or Ag) are found in between P3O10 groups, and the Mn or Cd atoms are seen within and at the edges of the P2O7 layers. The A atom is located on a mirror plane and displays tenfold coordination geometry. It is seen to occupy a tunnel extending parallel to the shortest cell dimension.

Knowledge of these two additional structures provides the opportunity to make several comparisons. Firstly, one can examine the structures of the AIMnII6(P2O7)2(P3O10) series, with A = K, Ag or Na, to ascertain the influence of a difference in the size of A upon the structure as a whole. In this series, the ionic radii decrease in the following order: K 1.59, Ag 1.28 and Na 1.24 Å (Shannon, 1976). The cell volumes show an irregular decrease in the order 925.1 (9), 928 (2) and 891.1 (3) Å3. Within the series, the calculated densities, 3.481, 3.716 and 3.553 Mg m-3, and the average A—O distances for the ten-coordinate A atom, 3.027 (3), 2.997 (9) and 2.955 (6) Å, differ only marginally. Thus, one asks how the other atoms accommodate the change in the radius of the A atom. Potentially, changes might be observed in the conformation of the phosphate groups or in the Mn bonding.

The P2O7 groups show no change in conformation: the O—P···P—O torsion angles are, respectively, 60.0, 59.5 and 60.0°. The P—O—P angles are 150.3 (2), 151.4 (6) and 153.1 (3)°, respectively. Similarly, the P3O10 groups are identical within experimental error: the P—P—P angles are 93.7 (2), 93.2 (7) and 93.8 (3)°, and the O—P—P—O torsion angles have averages of 3.26, 4.36 and 3.3°, respectively. The details of the Mn bonding are similar; the pseudo-octahedral Mn has average Mn—O distances of 2.22 (3), 2.22 (8) and 2.195 (4) Å in the three structures, respectively.

While previous work has led us to the idea that differences in the ratios of the ionic radii of the A and B atoms lead to very clear differences in structure in AIBIIP2O7-type diphosphate structures (Elmarzouki, 2002), this appears not to be the case in AIBII6(P2O7)2(P3O10) structures. One concludes that the Mn6(P2O7)2(P3O10) matrix is rigid and provides a rigid host matrix into which has been inserted the K, Ag or Na cation. The Mn6(P2O7)2(P3O10) matrix is analogous to the zeolite-type matrices, which are rigid and resist conformational changes due to the presence of guest atoms or molecules in their cavities. Indeed, a projection view of NaMn6(P2O7)2(P3O10) down the shortest axis (a) clearly shows that the A atoms lie in the tunnel (Fig. 1).

Bond-valence analysis (Brown, 1981) is usually applied to verify the identity of an atom in a structure, the charge resident on an atom or the quality of a structure determination. However, in our hands, it has proved a useful means of identifying potential atomic movement or conductivity. Cations which are well fixed in their sites will display bond-valence totals approximately equal to their oxidation states. Atoms which are potentially mobile will have lesser totals, indicating their lesser degree of interaction with their neighbours and thus their mobility. The totals for the ten-coordinate A atoms, K, Ag and Na, are 1.015, 0.670 and 0.699, respectively. These large deviations from 1.0 may be interpreted in two ways. One suspects that the Ag and Na structures will show significant conductivity in the a direction as the A atoms move in that direction along the tunnels. Secondly, the Mn6(P2O7)2(P3O10) matrix has not collapsed or adapted itself in any significant way to permit higher degrees of interaction with the A atom. This attests to the rigidity of this structure, in which the A atom is a guest.

The preparation of KCd6(P2O7)2(P3O10) provides the opportunity to make the comparison between KMn6 and KCd6, to see what difference the change in the identity of B makes in the rigidity of the structure formed by B6(P2O7)2(P3O10). The ionic radius of Cd is slightly larger than that of Mn (Mn 0.67 Å and Cd 0.95 Å). Details of the B6(P2O7)2(P3O10) framework of the two structures, with A = K and B = Mn or Cd, are nearly identical within experimental error: the avearge B—O distances for the two structures are 2.22 (3) and 2.283 (4) Å, respectively. In the P2O7 groups, the O—P—P—O torsion angles average 60.0 and 59.2°, respectively, with P—O—P angles of 150.3 (2) and 154.1 (6)°, respectively. The P3O10 groups display O—P—P—O torsion angles of 3.26 and 4.5°, respectively, with P—P—P angles of 93.7 (2) and 92.6 (2)°, respectively. Furthermore, the average K—O bond distances for ten-coordinate K are 3.027 (3) and 3.061 (5) Å, with bond-valence totals of 1.015 and 1.177, respectively. Thus the substitution of Cd for Mn in the B6(P2O7)2(P3O10) framework has made little difference in the structural details of the framework and in the environment experienced by the guest K ion.

Experimental top

The starting materials Na2CO3 [for (I)] or KNO3 [for (II)], MnCO3 (or CdCO3) and (NH4)2HPO4 were mixed in a stoichiometry expected to lead to the preparation of A2B3(P2O7)2, with A = Na and B = Mn for (I), and A = K and B = Cd for (II), according to the following reactions: Na2CO3 + 3MnCO3 + 4(NH4)2HPO4 Na2Mn3(P2O7)2 + 4CO2 + 8NH3 + 6H2O and 2KNO3 + 3 CdCO3 + 4(NH4)2HPO4 K2Cd3(P2O7)2 + 2NO2 + 3CO2 + 8NH3 + 6H2O. The starting mixture was heated slowly to 873 K to eliminate NH3, CO2 [or NO2 in (II)] and H2O, followed by heating to 1223 K [for (I)] or 1023 K [for (II)] and slow cooling (6 K h-1) to 673 K, whereupon the furnace was allowed to cool to ambient temperature without control. Colourless solids were produced, which were found to be crystalline (I) and (II).

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Please provide missing details.

Figures top
[Figure 1] Fig. 1. A projection view of NaMn6(P2O7)2(P3O10) down the a axis. Displacement ellipsoids are shown at the 50% probability level. The KCd6(P2O7)2(P3O10) compound is isostructural. Please check added text.
(I) Sodium hexamanganese bis(diphosphate) triphosphate top
Crystal data top
Mn6NaO24P7F(000) = 916
Mr = 953.42Dx = 3.553 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 27 reflections
a = 5.345 (1) Åθ = 7.5–10.2°
b = 26.620 (4) ŵ = 4.91 mm1
c = 6.559 (1) ÅT = 293 K
β = 107.28 (1)°Chunk, colourless
V = 891.1 (3) Å30.1 × 0.1 × 0.1 mm
Z = 2
Data collection top
Syntex P4 four-circle
diffractometer
1822 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
θ/2θ scansh = 17
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
k = 137
Tmin = 0.582, Tmax = 0.612l = 99
3530 measured reflections3 standard reflections every 97 reflections
2645 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0065P)2]
where P = (Fo2 + 2Fc)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.08 e Å3
2645 reflectionsΔρmin = 0.10 e Å3
179 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (3)
Crystal data top
Mn6NaO24P7V = 891.1 (3) Å3
Mr = 953.42Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.345 (1) ŵ = 4.91 mm1
b = 26.620 (4) ÅT = 293 K
c = 6.559 (1) Å0.1 × 0.1 × 0.1 mm
β = 107.28 (1)°
Data collection top
Syntex P4 four-circle
diffractometer
1822 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
Rint = 0.051
Tmin = 0.582, Tmax = 0.6123 standard reflections every 97 reflections
3530 measured reflections intensity decay: none
2645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050179 parameters
wR(F2) = 0.0880 restraints
S = 1.03Δρmax = 0.08 e Å3
2645 reflectionsΔρmin = 0.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. Correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.20992 (17)0.40187 (3)0.08608 (12)0.00971 (18)
Mn30.18455 (17)0.45574 (3)0.31467 (12)0.01020 (18)
Na10.2440 (9)0.25000.4154 (6)0.0386 (11)
Mn20.12293 (16)0.31663 (3)0.27988 (12)0.00919 (18)
P10.5428 (4)0.25000.0895 (3)0.0075 (4)
O110.8256 (10)0.25000.2121 (8)0.0103 (11)
O130.3548 (10)0.25000.2206 (8)0.0108 (11)
O140.4968 (7)0.29644 (14)0.0641 (5)0.0107 (7)
P20.2492 (3)0.33186 (5)0.19269 (19)0.0074 (3)
O210.0646 (7)0.33425 (14)0.0545 (5)0.0121 (8)
O220.3882 (7)0.38029 (13)0.2080 (5)0.0112 (8)
O230.1241 (7)0.30570 (13)0.3996 (5)0.0123 (8)
P30.6841 (3)0.60991 (5)0.3844 (2)0.0080 (3)
O310.8570 (7)0.59547 (14)0.6035 (5)0.0087 (7)
O320.8450 (7)0.62221 (14)0.2346 (5)0.0104 (8)
O330.4896 (8)0.65004 (16)0.3883 (6)0.0207 (10)
O340.5394 (8)0.55848 (15)0.2919 (6)0.0220 (10)
P40.2898 (3)0.52468 (5)0.2045 (2)0.0072 (3)
O410.1278 (7)0.54792 (14)0.0028 (5)0.0098 (7)
O420.4115 (7)0.47443 (14)0.1743 (6)0.0117 (8)
O430.1410 (8)0.52105 (14)0.3676 (5)0.0124 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0092 (4)0.0107 (4)0.0089 (3)0.0006 (3)0.0021 (3)0.0005 (3)
Mn30.0089 (4)0.0133 (4)0.0077 (3)0.0021 (3)0.0016 (3)0.0003 (3)
Na10.026 (2)0.054 (3)0.027 (2)0.0000.0044 (18)0.000
Mn20.0095 (4)0.0092 (4)0.0090 (3)0.0005 (3)0.0030 (3)0.0006 (3)
P10.0071 (9)0.0086 (9)0.0058 (8)0.0000.0006 (7)0.000
O110.006 (3)0.007 (2)0.016 (2)0.0000.001 (2)0.000
O130.009 (3)0.011 (3)0.014 (2)0.0000.005 (2)0.000
O140.0079 (18)0.0090 (17)0.0147 (16)0.0038 (15)0.0029 (15)0.0053 (14)
P20.0074 (6)0.0078 (6)0.0070 (6)0.0001 (5)0.0024 (5)0.0004 (4)
O210.0119 (19)0.015 (2)0.0099 (16)0.0043 (16)0.0041 (15)0.0003 (14)
O220.0102 (19)0.0094 (18)0.0144 (17)0.0012 (16)0.0044 (16)0.0007 (14)
O230.017 (2)0.0105 (19)0.0101 (15)0.0028 (16)0.0048 (16)0.0016 (14)
P30.0057 (6)0.0109 (6)0.0064 (6)0.0002 (5)0.0005 (5)0.0014 (5)
O310.0108 (19)0.0104 (17)0.0047 (15)0.0022 (15)0.0022 (15)0.0001 (13)
O320.0117 (19)0.0133 (18)0.0069 (15)0.0029 (16)0.0036 (15)0.0008 (14)
O330.023 (2)0.023 (2)0.0177 (19)0.014 (2)0.0084 (19)0.0082 (17)
O340.018 (2)0.020 (2)0.023 (2)0.0129 (19)0.0021 (19)0.0029 (17)
P40.0062 (6)0.0081 (6)0.0067 (6)0.0008 (5)0.0007 (5)0.0001 (5)
O410.0101 (18)0.0113 (18)0.0092 (16)0.0011 (16)0.0047 (15)0.0015 (14)
O420.0090 (19)0.0111 (18)0.0147 (17)0.0005 (15)0.0032 (15)0.0033 (14)
O430.015 (2)0.0125 (19)0.0091 (16)0.0024 (16)0.0023 (16)0.0003 (14)
Geometric parameters (Å, º) top
Na1—O232.441 (5)Mn3—O43x2.119 (4)
Na1—O23i2.441 (5)Mn3—O42xi2.139 (4)
Na1—O33ii3.111 (5)Mn3—O31ii2.157 (4)
Na1—O33iii3.111 (5)Mn3—O41viii2.158 (3)
Na1—O14iv3.264 (5)Mn3—O222.293 (4)
Na1—O14v3.264 (5)Mn3—O432.411 (4)
Na1—O213.322 (5)P1—O111.487 (5)
Na1—O21i3.322 (5)P1—O131.504 (5)
Na1—O13vi2.694 (6)P1—O141.567 (4)
Na1—O11vi2.579 (6)P1—O14i1.567 (4)
Mn1—O32vii2.134 (3)O14—P21.640 (4)
Mn1—O22iv2.136 (4)P2—O231.495 (4)
Mn1—O31ii2.171 (3)P2—O221.506 (4)
Mn1—O41viii2.181 (4)P2—O211.527 (4)
Mn1—O422.204 (4)P3—O331.496 (4)
Mn1—O212.293 (4)P3—O311.509 (3)
Mn2—O33viii2.075 (4)P3—O321.521 (4)
Mn2—O23ix2.120 (3)P3—O341.600 (4)
Mn2—O32vii2.164 (4)O34—P41.570 (4)
Mn2—O212.173 (3)P4—O411.511 (4)
Mn2—O132.263 (3)P4—O431.513 (4)
Mn2—O11iv2.334 (4)P4—O421.526 (4)
O23—Na1—O23i74.8 (2)O41viii—Mn1—O2189.92 (14)
O23—Na1—O33ii76.2 (2)O42—Mn1—O21164.12 (14)
O23—Na1—O33iii143.2 (2)O33viii—Mn2—O23ix89.68 (15)
O23—Na1—O14iv104.2 (2)O33viii—Mn2—O32vii105.37 (16)
O23—Na1—O14v134.9 (2)O23ix—Mn2—O32vii92.23 (14)
O23—Na1—O2148.4 (2)O33viii—Mn2—O2195.24 (15)
O23—Na1—O21i99.0 (2)O23ix—Mn2—O21170.98 (15)
O23—Na1—O13vi117.2 (2)O32vii—Mn2—O2179.19 (13)
O23—Na1—O11vi72.5 (2)O33viii—Mn2—O1383.36 (17)
O23i—Na1—O33ii143.2 (2)O23ix—Mn2—O13102.85 (16)
O23i—Na1—O33iii76.2 (2)O32vii—Mn2—O13162.72 (16)
O23i—Na1—O14iv134.9 (2)O21—Mn2—O1385.26 (15)
O23i—Na1—O14v104.2 (2)O33viii—Mn2—O11iv155.56 (16)
O23i—Na1—O2199.0 (2)O23ix—Mn2—O11iv83.45 (16)
O23i—Na1—O21i48.4 (2)O32vii—Mn2—O11iv98.33 (14)
O23i—Na1—O13vi117.2 (2)O21—Mn2—O11iv94.96 (16)
O23i—Na1—O11vi72.5 (2)O13—Mn2—O11iv75.42 (15)
O33ii—Na1—O33iii117.6 (2)O43x—Mn3—O42xi99.06 (15)
O33ii—Na1—O14iv74.3 (2)O43x—Mn3—O31ii95.48 (14)
O33ii—Na1—O14v112.2 (2)O42xi—Mn3—O31ii153.49 (14)
O33ii—Na1—O2177.7 (2)O43x—Mn3—O41viii160.10 (15)
O33ii—Na1—O21i160.4 (2)O42xi—Mn3—O41viii90.61 (14)
O33ii—Na1—O13vi59.1 (2)O31ii—Mn3—O41viii82.83 (13)
O33ii—Na1—O11vi77.6 (2)O43x—Mn3—O22117.32 (14)
O33iii—Na1—O14iv112.2 (2)O42xi—Mn3—O2275.24 (13)
O33iii—Na1—O14v74.3 (2)O31ii—Mn3—O2278.41 (14)
O33iii—Na1—O21160.4 (2)O41viii—Mn3—O2281.89 (13)
O33iii—Na1—O21i77.7 (2)O43x—Mn3—O4377.55 (15)
O33iii—Na1—O13vi59.1 (2)O42xi—Mn3—O43119.17 (13)
O33iii—Na1—O11vi77.6 (2)O31ii—Mn3—O4385.53 (13)
O14iv—Na1—O14v44.5 (2)O41viii—Mn3—O4382.55 (13)
O14iv—Na1—O2157.8 (2)O22—Mn3—O43158.86 (13)
O14iv—Na1—O21i88.7 (2)O11—P1—O13115.8 (3)
O14iv—Na1—O13vi103.4 (2)O11—P1—O14106.7 (2)
O14iv—Na1—O11vi151.6 (2)O13—P1—O14111.31 (19)
O14v—Na1—O2188.7 (2)O11—P1—O14i106.7 (2)
O14v—Na1—O21i57.8 (2)O13—P1—O14i111.31 (19)
O14v—Na1—O13vi103.4 (2)O14—P1—O14i104.2 (3)
O14v—Na1—O11vi151.6 (2)P1—O14—P2137.1 (3)
O21—Na1—O21i84.9 (2)O23—P2—O22115.8 (2)
O21—Na1—O13vi136.7 (2)O23—P2—O21111.4 (2)
O21—Na1—O11vi119.6 (2)O22—P2—O21115.0 (2)
O21i—Na1—O13vi136.7 (2)O23—P2—O14105.9 (2)
O21i—Na1—O11vi119.6 (2)O22—P2—O14100.8 (2)
O13vi—Na1—O11vi57.4 (2)O21—P2—O14106.48 (19)
O32vii—Mn1—O22iv96.72 (14)O33—P3—O31113.4 (2)
O32vii—Mn1—O31ii157.17 (15)O33—P3—O32112.7 (2)
O22iv—Mn1—O31ii94.87 (14)O31—P3—O32111.5 (2)
O32vii—Mn1—O41viii94.35 (14)O33—P3—O34110.9 (2)
O22iv—Mn1—O41viii157.51 (14)O31—P3—O34103.5 (2)
O31ii—Mn1—O41viii81.97 (13)O32—P3—O34104.0 (2)
O32vii—Mn1—O42115.81 (14)P4—O34—P3153.0 (3)
O22iv—Mn1—O4277.21 (14)O41—P4—O43112.4 (2)
O31ii—Mn1—O4285.93 (14)O41—P4—O42113.2 (2)
O41viii—Mn1—O4280.35 (14)O43—P4—O42111.7 (2)
O32vii—Mn1—O2177.18 (13)O41—P4—O34106.9 (2)
O22iv—Mn1—O21111.60 (14)O43—P4—O34110.3 (2)
O31ii—Mn1—O2180.27 (13)O42—P4—O34101.6 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y, z; (v) x+1, y+1/2, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x, y+1, z; (ix) x, y, z1; (x) x, y+1, z+1; (xi) x1, y, z.
(II) Potassium hexacadmium bis(diphosphate) triphosphate top
Crystal data top
Cd6KO24P7F(000) = 1208
Mr = 1314.29Dx = 4.542 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 19 reflections
a = 5.479 (1) Åθ = 4.3–11.4°
b = 27.112 (6) ŵ = 7.45 mm1
c = 6.769 (1) ÅT = 293 K
β = 107.11 (2)°Chunk, colourless
V = 961.0 (3) Å30.1 × 0.1 × 0.1 mm
Z = 2
Data collection top
Syntex P4 four-circle
diffractometer
2575 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 30.0°, θmin = 3.0°
θ/2θ scansh = 71
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
k = 138
Tmin = 0.422, Tmax = 0.475l = 99
3802 measured reflections3 standard reflections every 97 reflections
2866 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.03 e Å3
2866 reflectionsΔρmin = 0.02 e Å3
179 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0312 (14)
Crystal data top
Cd6KO24P7V = 961.0 (3) Å3
Mr = 1314.29Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.479 (1) ŵ = 7.45 mm1
b = 27.112 (6) ÅT = 293 K
c = 6.769 (1) Å0.1 × 0.1 × 0.1 mm
β = 107.11 (2)°
Data collection top
Syntex P4 four-circle
diffractometer
2575 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
Rint = 0.061
Tmin = 0.422, Tmax = 0.4753 standard reflections every 97 reflections
3802 measured reflections intensity decay: none
2866 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040179 parameters
wR(F2) = 0.1240 restraints
S = 1.01Δρmax = 0.03 e Å3
2866 reflectionsΔρmin = 0.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles: correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.21476 (7)0.401065 (14)0.07936 (5)0.01012 (15)
Cd20.10831 (7)0.316993 (14)0.29375 (6)0.01007 (15)
Cd30.18227 (7)0.456654 (15)0.31341 (5)0.01075 (15)
K10.2879 (4)0.25000.3631 (3)0.0266 (4)
P10.5288 (3)0.25000.1049 (3)0.0079 (3)
O110.8080 (10)0.25000.2252 (8)0.0098 (10)
O130.3447 (10)0.25000.2337 (8)0.0109 (10)
O140.4861 (7)0.29599 (15)0.0434 (6)0.0126 (7)
P20.2451 (2)0.33017 (5)0.17738 (19)0.0079 (3)
O210.0561 (7)0.33212 (16)0.0509 (6)0.0117 (7)
O220.3768 (8)0.37833 (15)0.1914 (6)0.0122 (7)
O230.1360 (9)0.30321 (16)0.3791 (6)0.0162 (8)
P30.6729 (2)0.60837 (5)0.39189 (19)0.0083 (3)
O310.8494 (7)0.59582 (16)0.6056 (6)0.0121 (8)
O320.8272 (8)0.62120 (16)0.2444 (6)0.0136 (8)
O330.4811 (9)0.64668 (19)0.3980 (7)0.0241 (10)
O340.5386 (9)0.55736 (18)0.3061 (7)0.0213 (9)
P40.2908 (2)0.52490 (5)0.20808 (19)0.0080 (3)
O410.1374 (7)0.54910 (15)0.0079 (6)0.0105 (7)
O420.4073 (7)0.47592 (15)0.1744 (6)0.0120 (7)
O430.1384 (8)0.52033 (17)0.3621 (6)0.0138 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0104 (2)0.0082 (2)0.0111 (2)0.00023 (13)0.00208 (14)0.00173 (12)
Cd20.0113 (2)0.0075 (2)0.0108 (2)0.00068 (13)0.00228 (14)0.00017 (12)
Cd30.0105 (2)0.0103 (2)0.0105 (2)0.00100 (13)0.00159 (15)0.00161 (13)
K10.0191 (9)0.0385 (13)0.0216 (9)0.0000.0051 (7)0.000
P10.0083 (7)0.0047 (8)0.0097 (7)0.0000.0014 (6)0.000
O110.006 (2)0.008 (2)0.012 (2)0.0000.0036 (18)0.000
O130.016 (2)0.005 (2)0.015 (2)0.0000.010 (2)0.000
O140.0119 (16)0.0060 (17)0.0192 (17)0.0026 (14)0.0035 (14)0.0054 (14)
P20.0100 (5)0.0038 (6)0.0092 (5)0.0000 (4)0.0018 (4)0.0004 (4)
O210.0129 (17)0.0133 (19)0.0101 (15)0.0027 (15)0.0052 (13)0.0016 (14)
O220.0131 (17)0.0036 (17)0.0196 (17)0.0016 (14)0.0041 (14)0.0027 (13)
O230.026 (2)0.0100 (19)0.0130 (16)0.0062 (17)0.0063 (15)0.0019 (15)
P30.0084 (5)0.0067 (6)0.0088 (5)0.0002 (4)0.0007 (4)0.0009 (4)
O310.0121 (17)0.016 (2)0.0067 (14)0.0021 (14)0.0000 (13)0.0004 (13)
O320.0181 (18)0.0091 (19)0.0137 (16)0.0063 (15)0.0048 (15)0.0028 (14)
O330.023 (2)0.026 (3)0.022 (2)0.018 (2)0.0061 (17)0.0075 (19)
O340.019 (2)0.014 (2)0.026 (2)0.0095 (17)0.0012 (17)0.0010 (17)
P40.0090 (5)0.0057 (6)0.0081 (5)0.0004 (5)0.0007 (4)0.0002 (4)
O410.0110 (16)0.0098 (18)0.0097 (15)0.0031 (14)0.0013 (13)0.0017 (13)
O420.0105 (16)0.0044 (17)0.0194 (17)0.0025 (14)0.0019 (14)0.0005 (14)
O430.0143 (17)0.016 (2)0.0124 (16)0.0025 (15)0.0061 (14)0.0032 (15)
Geometric parameters (Å, º) top
Cd1—O32i2.219 (4)K1—O14x3.058 (4)
Cd1—O22ii2.228 (4)K1—O14ii3.058 (4)
Cd1—O31iii2.263 (4)K1—O21viii3.261 (4)
Cd1—O41iv2.286 (4)K1—O213.261 (4)
Cd1—O422.291 (4)K1—O33iii3.296 (6)
Cd1—O212.359 (4)K1—O33xi3.296 (6)
Cd2—O33iv2.189 (5)P1—O111.507 (5)
Cd2—O23v2.207 (4)P1—O131.515 (5)
Cd2—O32i2.234 (4)P1—O141.575 (4)
Cd2—O212.302 (4)P1—O14viii1.575 (4)
Cd2—O132.335 (3)P2—O231.508 (4)
Cd2—O11ii2.403 (3)P2—O221.508 (4)
Cd3—O43vi2.228 (4)P2—O211.526 (4)
Cd3—O42vii2.229 (4)P3—O331.487 (5)
Cd3—O31iii2.250 (4)P3—O311.523 (4)
Cd3—O41iv2.265 (4)P3—O321.526 (4)
Cd3—O222.410 (4)P3—O341.594 (5)
Cd3—O432.416 (4)O34—P41.590 (4)
K1—O23viii2.763 (5)P4—O411.517 (4)
K1—O232.763 (5)P4—O421.519 (4)
K1—O13ix2.875 (6)P4—O431.520 (4)
K1—O11ix2.983 (6)
O32i—Cd1—O22ii93.59 (15)O11ix—K1—O14ii151.68 (10)
O32i—Cd1—O31iii160.28 (15)O14x—K1—O14ii48.13 (15)
O22ii—Cd1—O31iii96.23 (14)O23viii—K1—O21viii48.44 (11)
O32i—Cd1—O41iv94.09 (15)O23—K1—O21viii92.85 (13)
O22ii—Cd1—O41iv159.76 (15)O13ix—K1—O21viii136.47 (8)
O31iii—Cd1—O41iv82.43 (14)O11ix—K1—O21viii112.23 (10)
O32i—Cd1—O42115.07 (15)O14x—K1—O21viii62.61 (10)
O22ii—Cd1—O4279.40 (14)O14ii—K1—O21viii95.56 (11)
O31iii—Cd1—O4283.61 (15)O23viii—K1—O2192.85 (13)
O41iv—Cd1—O4280.38 (14)O23—K1—O2148.44 (11)
O32i—Cd1—O2179.86 (14)O13ix—K1—O21136.47 (8)
O22ii—Cd1—O21110.69 (15)O11ix—K1—O21112.23 (10)
O31iii—Cd1—O2180.68 (14)O14x—K1—O2195.56 (11)
O41iv—Cd1—O2189.10 (15)O14ii—K1—O2162.61 (10)
O42—Cd1—O21162.12 (14)O21viii—K1—O2186.13 (15)
O33iv—Cd2—O23v88.32 (17)O23viii—K1—O33iii129.10 (14)
O33iv—Cd2—O32i104.34 (18)O23—K1—O33iii75.11 (13)
O23v—Cd2—O32i96.77 (16)O13ix—K1—O33iii58.24 (8)
O33iv—Cd2—O2194.15 (16)O11ix—K1—O33iii71.91 (10)
O23v—Cd2—O21176.90 (15)O14x—K1—O33iii121.12 (13)
O32i—Cd2—O2180.80 (14)O14ii—K1—O33iii79.84 (12)
O33iv—Cd2—O1383.88 (18)O21viii—K1—O33iii164.54 (12)
O23v—Cd2—O1399.51 (17)O21—K1—O33iii78.64 (11)
O32i—Cd2—O13161.98 (17)O23viii—K1—O33xi75.11 (13)
O21—Cd2—O1382.65 (16)O23—K1—O33xi129.10 (14)
O33iv—Cd2—O11ii157.44 (17)O13ix—K1—O33xi58.24 (8)
O23v—Cd2—O11ii84.64 (17)O11ix—K1—O33xi71.91 (10)
O32i—Cd2—O11ii97.77 (15)O14x—K1—O33xi79.84 (12)
O21—Cd2—O11ii93.74 (16)O14ii—K1—O33xi121.12 (13)
O13—Cd2—O11ii76.22 (15)O21viii—K1—O33xi78.64 (11)
O43vi—Cd3—O42vii98.81 (15)O21—K1—O33xi164.54 (12)
O43vi—Cd3—O31iii95.30 (15)O33iii—K1—O33xi116.43 (17)
O42vii—Cd3—O31iii153.59 (15)O11—P1—O13115.5 (3)
O43vi—Cd3—O41iv162.87 (16)O11—P1—O14106.3 (2)
O42vii—Cd3—O41iv89.53 (14)O13—P1—O14111.57 (19)
O31iii—Cd3—O41iv83.18 (14)O11—P1—O14viii106.3 (2)
O43vi—Cd3—O22119.55 (15)O13—P1—O14viii111.57 (19)
O42vii—Cd3—O2276.84 (14)O14—P1—O14viii104.7 (3)
O31iii—Cd3—O2276.79 (14)P1—O14—P2137.8 (3)
O41iv—Cd3—O2276.84 (14)O23—P2—O22115.6 (2)
O43vi—Cd3—O4378.60 (15)O23—P2—O21111.8 (2)
O42vii—Cd3—O43119.53 (15)O22—P2—O21114.9 (2)
O31iii—Cd3—O4385.05 (16)O23—P2—O14105.4 (2)
O41iv—Cd3—O4384.26 (14)O22—P2—O14101.6 (2)
O22—Cd3—O43155.08 (14)O21—P2—O14106.0 (2)
O23viii—K1—O2363.0 (2)O33—P3—O31112.7 (3)
O23viii—K1—O13ix108.95 (14)O33—P3—O32113.0 (3)
O23—K1—O13ix108.95 (14)O31—P3—O32110.7 (2)
O23viii—K1—O11ix65.33 (12)O33—P3—O34111.2 (3)
O23—K1—O11ix65.33 (12)O31—P3—O34104.4 (2)
O13ix—K1—O11ix51.69 (15)O32—P3—O34104.1 (2)
O23viii—K1—O14x109.57 (13)P4—O34—P3151.4 (4)
O23—K1—O14x139.53 (13)O41—P4—O42113.0 (2)
O13ix—K1—O14x110.82 (13)O41—P4—O43112.1 (2)
O11ix—K1—O14x151.68 (10)O42—P4—O43111.8 (2)
O23viii—K1—O14ii139.53 (13)O41—P4—O34108.3 (2)
O23—K1—O14ii109.57 (12)O42—P4—O34101.6 (3)
O13ix—K1—O14ii110.82 (13)O43—P4—O34109.5 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x1, y, z; (viii) x, y+1/2, z; (ix) x+1, y, z+1; (x) x+1, y+1/2, z; (xi) x+1, y1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaMn6NaO24P7Cd6KO24P7
Mr953.421314.29
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/m
Temperature (K)293293
a, b, c (Å)5.345 (1), 26.620 (4), 6.559 (1)5.479 (1), 27.112 (6), 6.769 (1)
β (°) 107.28 (1) 107.11 (2)
V3)891.1 (3)961.0 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)4.917.45
Crystal size (mm)0.1 × 0.1 × 0.10.1 × 0.1 × 0.1
Data collection
DiffractometerSyntex P4 four-circle
diffractometer
Syntex P4 four-circle
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1991)
ψ scan
(XEMP; Siemens, 1991)
Tmin, Tmax0.582, 0.6120.422, 0.475
No. of measured, independent and
observed [I > 2σ(I)] reflections
3530, 2645, 1822 3802, 2866, 2575
Rint0.0510.061
(sin θ/λ)max1)0.7030.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.088, 1.03 0.040, 0.124, 1.01
No. of reflections26452866
No. of parameters179179
Δρmax, Δρmin (e Å3)0.08, 0.100.03, 0.02

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Please provide missing details.

Selected bond lengths (Å) for (I) top
Na1—O232.441 (5)Mn2—O33v2.075 (4)
Na1—O33i3.111 (5)Mn2—O23vi2.120 (3)
Na1—O14ii3.264 (5)Mn2—O32iv2.164 (4)
Na1—O213.322 (5)Mn2—O212.173 (3)
Na1—O13iii2.694 (6)Mn2—O132.263 (3)
Na1—O11iii2.579 (6)Mn2—O11ii2.334 (4)
Mn1—O32iv2.134 (3)Mn3—O43vii2.119 (4)
Mn1—O22ii2.136 (4)Mn3—O42viii2.139 (4)
Mn1—O31i2.171 (3)Mn3—O31i2.157 (4)
Mn1—O41v2.181 (4)Mn3—O41v2.158 (3)
Mn1—O422.204 (4)Mn3—O222.293 (4)
Mn1—O212.293 (4)Mn3—O432.411 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y+1, z+1; (viii) x1, y, z.
Selected bond lengths (Å) for (II) top
Cd1—O32i2.219 (4)Cd3—O43vi2.228 (4)
Cd1—O22ii2.228 (4)Cd3—O42vii2.229 (4)
Cd1—O31iii2.263 (4)Cd3—O31iii2.250 (4)
Cd1—O41iv2.286 (4)Cd3—O41iv2.265 (4)
Cd1—O422.291 (4)Cd3—O222.410 (4)
Cd1—O212.359 (4)Cd3—O432.416 (4)
Cd2—O33iv2.189 (5)K1—O232.763 (5)
Cd2—O23v2.207 (4)K1—O13viii2.875 (6)
Cd2—O32i2.234 (4)K1—O11viii2.983 (6)
Cd2—O212.302 (4)K1—O14ix3.058 (4)
Cd2—O132.335 (3)K1—O213.261 (4)
Cd2—O11ii2.403 (3)K1—O33iii3.296 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x1, y, z; (viii) x+1, y, z+1; (ix) x+1, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds