Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The new oxy­chloride InTeO3Cl was synthesized from a mixture of In2O3, InCl3 and TeO2. Its structure has been determined from single-crystal X-ray diffraction data. The structure is composed of layers separated by a van der Waals gap. The layers consist of edge-sharing chains of [InO4Cl2] octahedra linked through [TeO3] trigonal pyramids. No free Cl atoms are located between the layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009325/br1338sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009325/br1338Isup2.hkl
Contains datablock I

Comment top

One of the most common oxychlorides is FeOCl. This layered compound possesses various interesting chemical properties (Rouxel et al., 1987). Indeed, it is possible to intercalate alkali metals or molecules between the layers. It is also possible to substitute the chlorine layers by nucleophilic alkali metal salts, these grafting or pillaring reactions leading to new layered compounds. Some authors have developed the family of oxyhalide compounds with the synthesis of metal-tellurium oxyhalides (see, for instance, Jerez et al., 1987; Alonso, 1998; Nikiforov et al., 1999). All these compounds, as with FeOCl, exhibit lamellar organization. The structural differences observed depend on the nature of the metal and the oxidation state of the Te. The title compound is the first to be synthesized with a group 13 metal. The charge balance proposed for this compound is In3+Te4+O32-Cl-.

The structure is composed of puckered layers separated by a van der Waals gap, as shown in Fig. 1. The layers consist of edge-sharing chains of [InO4Cl2] octahedra running along the a direction and linked through [TeO3] trigonal pyramids (Fig. 2). Such threefold coordination is usual for Te with a +4 oxidation state. The Te4+ lone electron pair points toward the van der Waals gap.

The In—O and In—Cl distances are comparable with the average distances encountered in InOCl (2.15 and 2.53 Å, respectively; Forsberg, 1956) and with the values reported by Shannon (1976) of 2.27 and 2.73 Å, respectively. The Te—O distances in the [TeO3] trigonal pyramid [1.897 (5)–1.907 (4) Å] are close to the value of 1.87 Å expected from the Shannon table, and to the average distance found in SbTeO3Cl (1.92 Å; Alonso, 1998). Concerning the two long Te—O distances of 2.586 Å between Te and O2 and O3, their bond valence contributions are equal to 0.19 (the values for the bond valence calculation are taken from Brown & Altermatt, 1985). Thus they can be considered as weak or secondary bonds. When these bonds are included in the bond valence sums, the sum around Te is 4.05 and that around O2 and O3 is 1.98, and these are in good agreement with the charge balance proposed.

Among the family of metal tellurium oxyhalides, InTeO3Cl is a particular case because of the lack of free Cl atoms between the layers. Indeed, the Cl atoms belong to the In coordination polyhedra, while in SbTeO3Cl and NdTe2O5Cl, for example, Sb and Nd are surrounded only by O atoms (Alonso, 1998; Nikiforov et al., 1999). Moreover, an orthorhombic symmetry is generally observed for this kind of compound, and the lowest symmetry observed for InTeO3Cl (monoclinic) is certainly due to the asymmetry of the In environment, with four O and two Cl atoms. The InTeO3Cl structure is closest to the layered structural type of FeOCl. Indeed, the iron(III) is also in octahedral coordination with four O and two Cl atoms, and the outer part of the slabs is built up with chlorine layers which belong to the metal coordination sphere. Thus, as in the case of FeOCl, some chemical reactions can be expected with InTeO3Cl. If no intercalation chemistry seems to be possible, as the +2 oxidation state for the In is not stable, some grafting or pillaring reactions can be imagined.

Experimental top

The title compound was obtained during the synthesis of In2Si2O7 single crystals by chemical vapour transport (CVT) using TeCl4 as the transport agent. In addition to the silicate crystals, which are interesting for their scintillation properties (Garcia et al., 1995), very thin platelets were recovered in the cooler zone. Chemical analysis by electron probe microanalysis (EPMA) revealed a new compound containing In, Te, Cl and O in the ratio 1/1/1/3. Direct synthesis of InTeO3Cl from a stoichiometric mixture of In2O3, InCl3 and TeO2 heated at 723 K in an evacuated silica tube for 15 h was successful. The experimental density of 5.34 kg m-3 was measured by the hydrostatic pressure method (Rabardel et al., 1971). Because of the lamellar shape of the InTeO3Cl crystals, it was very difficult to find a real single-crystal. Eventually, a well shaped crystal was cleaved, yielding a good single-crystal.

Refinement top

The In and Te positions were located from Patterson maps, and the O and Cl positions were determined afterwards from difference Fourier maps.

Computing details top

Data collection: KappaCCD Software (Nonius, 1999); cell refinement: HKL DENZO (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: please provide details; program(s) used to refine structure: JANA2000 (Petricek & Dusek, 2000); software used to prepare material for publication: JANA2000.

Figures top
[Figure 1] Fig. 1. A representation of the InTeO3Cl structure along the c axis showing its layered nature. The [InO4Cl2] octahedra are outlined. Grey, white and black circles represent Te, O and Cl, respectively.
[Figure 2] Fig. 2. A view of the [InO4Cl2] octahedra linked through [TeO3] trigonal pyramids. Displacement ellipsoids are shown at the 90% probability level.
(I) top
Crystal data top
InTeO3ClF(000) = 568
Mr = 325.87Dx = 5.48 Mg m3
Dm = 5.34 Mg m3
Dm measured by hydrostatic
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2596 (4) ÅCell parameters from 12538 reflections
b = 6.8752 (3) Åθ = 2.5–35.0°
c = 7.1394 (3) ŵ = 13.74 mm1
β = 103.121 (2)°T = 293 K
V = 394.84 (3) Å3Plate, pale yellow
Z = 40.40 × 0.16 × 0.04 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
944 reflections with I > 2σ(I)
CCD scansRint = 0.100
Absorption correction: gaussian
(Templeton & Templeton, 1978)
θmax = 29.8°, θmin = 3.9°
Tmin = 0.064, Tmax = 0.610h = 1111
6506 measured reflectionsk = 99
1128 independent reflectionsl = 99
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.093Δρmax = 2.18 e Å3
S = 1.30Δρmin = 2.38 e Å3
1128 reflectionsExtinction correction: Becker & Coppens (1974), type II
56 parametersExtinction coefficient: 0.07 (2)
Crystal data top
InTeO3ClV = 394.84 (3) Å3
Mr = 325.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2596 (4) ŵ = 13.74 mm1
b = 6.8752 (3) ÅT = 293 K
c = 7.1394 (3) Å0.40 × 0.16 × 0.04 mm
β = 103.121 (2)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
1128 independent reflections
Absorption correction: gaussian
(Templeton & Templeton, 1978)
944 reflections with I > 2σ(I)
Tmin = 0.064, Tmax = 0.610Rint = 0.100
6506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03756 parameters
wR(F2) = 0.093Δρmax = 2.18 e Å3
S = 1.30Δρmin = 2.38 e Å3
1128 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In0.32477 (7)0.24979 (5)0.20399 (6)0.0071 (2)
Te0.29289 (6)0.72638 (6)0.94533 (6)0.00698 (15)
Cl0.0950 (2)0.2093 (2)0.8921 (2)0.0156 (5)
O10.5235 (6)0.7838 (5)0.0060 (6)0.0099 (14)
O20.3158 (7)0.5536 (5)0.7441 (6)0.0113 (15)
O30.3128 (7)0.5533 (5)0.1578 (6)0.013 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In0.0110 (3)0.0041 (2)0.0070 (2)0.0002 (2)0.0035 (2)0.00025 (15)
Te0.0071 (2)0.0079 (2)0.0066 (2)0.0010 (2)0.0028 (2)0.00084 (15)
Cl0.0121 (9)0.0246 (9)0.0110 (7)0.0029 (7)0.0044 (6)0.0006 (6)
O10.013 (2)0.015 (2)0.002 (2)0.003 (2)0.002 (2)0.001 (2)
O20.018 (3)0.004 (2)0.013 (2)0.001 (2)0.005 (2)0.002 (2)
O30.019 (3)0.004 (2)0.017 (2)0.002 (2)0.008 (2)0.002 (2)
Geometric parameters (Å, º) top
In—Cli2.592 (2)Te—O1v1.897 (5)
In—Clii2.577 (2)Te—O21.907 (4)
In—O1iii2.174 (5)Te—O2vi2.586 (4)
In—O1iv2.176 (4)Te—O3v1.905 (4)
In—O2ii2.109 (4)Te—O3vi2.586 (4)
In—O32.111 (4)
Cli—In—Clii88.69 (7)O1iv—In—O392.23 (16)
Cli—In—O1iii79.65 (14)O2ii—In—O3175.4 (2)
Cli—In—O1iv168.59 (17)O1v—Te—O292.0 (2)
Cli—In—O2ii88.23 (13)O1v—Te—O2vi78.9 (2)
Cli—In—O388.44 (13)O1v—Te—O3v92.7 (2)
Clii—In—Cli88.69 (7)O1v—Te—O3vi79.50 (18)
Clii—In—O1iii168.27 (13)O2—Te—O2vi169.9 (2)
Clii—In—O1iv79.96 (16)O2—Te—O3v101.9 (2)
Clii—In—O2ii89.13 (17)O2—Te—O3vi74.43 (17)
Clii—In—O387.69 (17)O2vi—Te—O2169.9 (2)
O1iii—In—O1iv111.7 (2)O2vi—Te—O3v74.45 (16)
O1iii—In—O2ii91.82 (19)O2vi—Te—O3vi107.82 (14)
O1iii—In—O390.6 (2)O3v—Te—O3vi171.1 (2)
O1iv—In—O1iii111.7 (2)O3vi—Te—O3v171.1 (2)
O1iv—In—O2ii90.42 (16)
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y, z+1; (vi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaInTeO3Cl
Mr325.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2596 (4), 6.8752 (3), 7.1394 (3)
β (°) 103.121 (2)
V3)394.84 (3)
Z4
Radiation typeMo Kα
µ (mm1)13.74
Crystal size (mm)0.40 × 0.16 × 0.04
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Templeton & Templeton, 1978)
Tmin, Tmax0.064, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
6506, 1128, 944
Rint0.100
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.30
No. of reflections1128
No. of parameters56
No. of restraints?
Δρmax, Δρmin (e Å3)2.18, 2.38

Computer programs: KappaCCD Software (Nonius, 1999), HKL DENZO (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), please provide details, JANA2000 (Petricek & Dusek, 2000), JANA2000.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds