Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Transparent yellow plates of rubidium manganese hexa­thio­diphosphate, Rb2MnP2S6, were synthesized in molten RbBr. The compound is isotypic to other compounds of the type A2MP2Q6 (A = K, Rb, Cs; M = Mn, Fe; Q = S, Se). Its structure can be viewed as columns of face-sharing S6 polyhedra parallel to the a axis, interconnected by Rb+. The S6 polyhedra are centered alternately by Mn (in octahedral coordination) and P2 units (in trigonal antiprisms). The Mn atom and P2S6 group lie on centers of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018017/br1335sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018017/br1335Isup2.hkl
Contains datablock I

Comment top

There are seven known compounds of the type A2MP2Q6 (A = K, Rb, Cs; M = Mn, Fe; and Q = S, Se), including K2FeP2S6 (Carrillo-Cabrera, et al., 1992, 1994); K2MnP2S6 (Menzel et al., 1994);

K2MnP2Se6, Rb2MnP2Se6, Cs2MnP2Se6, K2FeP2Se6, and Cs2FeP2Se6 (McCarthy & Kanatzidis, 1995). The title compound is typical of this class of compounds. The first two compounds listed above were synthesized from the elements, while the final five were synthesized in polychalcophosphate flux. We were able to prepare rubidium manganese hexathiodiphosphate using molten rubidium bromide as a flux-growth solvent, similar to the synthesis of KNb2PS10 (Do & Yun, 1996), which was performed in an eutectic mixture of LiCl and KCl. As in the other members of this class, the structure is related to that of CdCl2 (Brec, 1986, and references therein; see Fig. 1).

Experimental top

Rb2S6 powder was prepared by reaction of stoichiometric amounts of rubidium metal (Strem, 99.9+%) and sulfur powder (Aldrich, 99.99%) in liquid ammonia (Fehér, 1975). Crystals of Rb2MnP2S6 were synthesized from a mixture of 0.1107 g (0.3044 mmol) of Rb2S6 powder, 0.0265 g (0.3046 mmol) of MnS powder (Strem, 99.9%), and 0.3127 g (1.4209 mmol) of P4S3 powder (Fluka, 98%), with 0.0503 g (0.3042 mmol) of RbBr (GFS, 99.9%) acting as a halide flux-growth solvent. The powders were ground together in an agate mortar inside a nitrogen-filled glove box, and were then loaded into fused-quartz tubing. The reaction tube was subsequently sealed under vacuum. After heating at 973 K for five days, the reaction vessel was allowed to cool to room temperature over seven days. Transparent yellow plate crystals of Rb2MnP2S6 were present throughout the reaction product, which also included MnS crystals, unreacted P4S3 powder, and RbBr.

Computing details top

Data collection: CrystalClear (Rigaku Corporation, 1999); cell refinement: CrystalClear (Rigaku Corporation, 1999); data reduction: CrystalClear (Rigaku Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: Molecular Structure Corporation, 1997-1999).

Figures top
[Figure 1] Fig. 1. The layered structure of Rb2MnP2S6, projected onto the plane of parallel [MnP2S6]- chains, separated by a layer of Rb+ cations (large black circles). The large light gray circles represent sulfur atoms, medium gray circles represent phosphorus, and small black circles represent manganese.
rubidium manganese hexathiodiphosphate top
Crystal data top
MnP2Rb2S6F(000) = 450
Mr = 480.18Dx = 2.809 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1570 (12) ÅCell parameters from 6144 reflections
b = 12.308 (3) Åθ = 1.7–26.1°
c = 7.5610 (15) ŵ = 11.00 mm1
β = 97.74 (3)°T = 293 K
V = 567.8 (2) Å3Plate, yellow
Z = 20.15 × 0.05 × 0.05 mm
Data collection top
Rigaku APC8
diffractometer
1110 independent reflections
Radiation source: fine-focus sealed tube1034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 0 pixels mm-1θmax = 26.1°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
REQABA Empirical Absorption Correction using REQABA (Jacobson, 1999)
k = 1514
Tmin = 0.258, Tmax = 0.577l = 99
5210 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.055Secondary atom site location: difference Fourier map
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0001P)2 + 12.3434P]
where P = (Fo2 + 2Fc2)/3
S = 1.32(Δ/σ)max < 0.001
1110 reflectionsΔρmax = 1.06 e Å3
52 parametersΔρmin = 0.73 e Å3
Crystal data top
MnP2Rb2S6V = 567.8 (2) Å3
Mr = 480.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1570 (12) ŵ = 11.00 mm1
b = 12.308 (3) ÅT = 293 K
c = 7.5610 (15) Å0.15 × 0.05 × 0.05 mm
β = 97.74 (3)°
Data collection top
Rigaku APC8
diffractometer
1110 independent reflections
Absorption correction: multi-scan
REQABA Empirical Absorption Correction using REQABA (Jacobson, 1999)
1034 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.577Rint = 0.055
5210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0001P)2 + 12.3434P]
where P = (Fo2 + 2Fc2)/3
S = 1.32Δρmax = 1.06 e Å3
1110 reflectionsΔρmin = 0.73 e Å3
52 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.22904 (19)0.17337 (9)0.02473 (16)0.0383 (4)
Mn10.00000.00000.50000.0233 (5)
P10.4702 (4)0.04003 (19)0.6252 (3)0.0166 (5)
S10.2286 (4)0.0774 (2)0.2535 (3)0.0251 (6)
S20.3017 (4)0.0697 (2)0.7518 (3)0.0235 (5)
S30.2731 (4)0.1673 (2)0.5466 (4)0.0263 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0377 (6)0.0316 (6)0.0425 (7)0.0101 (5)0.0056 (5)0.0046 (5)
Mn10.0109 (9)0.0270 (11)0.0320 (12)0.0009 (8)0.0030 (8)0.0000 (9)
P10.0119 (10)0.0161 (11)0.0220 (12)0.0011 (8)0.0032 (9)0.0010 (9)
S10.0159 (11)0.0325 (13)0.0262 (13)0.0047 (10)0.0003 (9)0.0068 (10)
S20.0166 (11)0.0275 (13)0.0273 (13)0.0005 (9)0.0061 (9)0.0093 (10)
S30.0194 (11)0.0159 (11)0.0445 (16)0.0038 (9)0.0071 (11)0.0005 (10)
Geometric parameters (Å, º) top
Rb1—S2i3.393 (3)Mn1—P12.964 (2)
Rb1—S3ii3.446 (3)Mn1—P1vii2.964 (2)
Rb1—S1iii3.488 (3)P1—S1i2.008 (3)
Rb1—S1iv3.489 (3)P1—S22.021 (3)
Rb1—S13.538 (3)P1—S32.022 (3)
Rb1—S3v3.663 (3)P1—P1i2.208 (5)
Rb1—S2v3.695 (3)P1—Rb1viii3.903 (3)
Rb1—S2iv3.782 (3)P1—Rb1ix3.986 (3)
Rb1—S3vi3.866 (3)P1—Rb1i4.002 (3)
Rb1—P1v3.903 (3)S1—P1i2.008 (3)
Rb1—S33.919 (3)S1—Rb1iii3.488 (3)
Rb1—P1ii3.986 (3)S1—Rb1x3.489 (3)
Mn1—S22.619 (3)S2—Rb1i3.393 (3)
Mn1—S2vii2.619 (3)S2—Rb1viii3.695 (3)
Mn1—S3vii2.652 (3)S2—Rb1x3.782 (3)
Mn1—S32.652 (3)S3—Rb1ix3.446 (3)
Mn1—S1vii2.659 (3)S3—Rb1viii3.663 (3)
Mn1—S12.659 (3)S3—Rb1xi3.866 (3)
S2i—Rb1—S3ii146.56 (8)S3—Mn1—S189.15 (8)
S2i—Rb1—S1iii137.51 (7)S1vii—Mn1—S1180.00 (7)
S3ii—Rb1—S1iii67.94 (7)S2—Mn1—P141.88 (7)
S2i—Rb1—S1iv95.04 (7)S2vii—Mn1—P1138.12 (7)
S3ii—Rb1—S1iv59.03 (6)S3vii—Mn1—P1138.26 (7)
S1iii—Rb1—S1iv126.14 (7)S3—Mn1—P141.74 (7)
S2i—Rb1—S159.02 (6)S1vii—Mn1—P1107.65 (7)
S3ii—Rb1—S1114.75 (7)S1—Mn1—P172.35 (7)
S1iii—Rb1—S186.88 (7)S2—Mn1—P1vii138.12 (7)
S1iv—Rb1—S1122.48 (4)S2vii—Mn1—P1vii41.88 (7)
S2i—Rb1—S3v108.21 (7)S3vii—Mn1—P1vii41.74 (7)
S3ii—Rb1—S3v103.17 (7)S3—Mn1—P1vii138.26 (7)
S1iii—Rb1—S3v63.83 (6)S1vii—Mn1—P1vii72.35 (7)
S1iv—Rb1—S3v118.79 (7)S1—Mn1—P1vii107.65 (7)
S1—Rb1—S3v118.02 (6)P1—Mn1—P1vii180.0
S2i—Rb1—S2v79.31 (7)S1i—P1—S2115.95 (15)
S3ii—Rb1—S2v130.39 (7)S1i—P1—S3115.97 (16)
S1iii—Rb1—S2v62.47 (6)S2—P1—S3109.32 (14)
S1iv—Rb1—S2v166.73 (7)S1i—P1—P1i104.14 (16)
S1—Rb1—S2v64.84 (6)S2—P1—P1i105.25 (17)
S3v—Rb1—S2v53.25 (6)S3—P1—P1i104.85 (18)
S2i—Rb1—S2iv124.45 (7)S1i—P1—Mn1170.44 (13)
S3ii—Rb1—S2iv64.55 (6)S2—P1—Mn159.90 (9)
S1iii—Rb1—S2iv88.49 (6)S3—P1—Mn160.85 (9)
S1iv—Rb1—S2iv61.67 (6)P1i—P1—Mn185.41 (12)
S1—Rb1—S2iv175.16 (6)S1i—P1—Rb1viii88.52 (11)
S3v—Rb1—S2iv58.40 (6)S2—P1—Rb1viii68.96 (10)
S2v—Rb1—S2iv111.66 (4)S3—P1—Rb1viii68.02 (10)
S2i—Rb1—S3vi59.65 (6)P1i—P1—Rb1viii167.32 (15)
S3ii—Rb1—S3vi114.59 (7)Mn1—P1—Rb1viii81.95 (6)
S1iii—Rb1—S3vi145.35 (7)S1i—P1—Rb1ix61.07 (10)
S1iv—Rb1—S3vi61.66 (6)S2—P1—Rb1ix157.75 (12)
S1—Rb1—S3vi118.64 (6)S3—P1—Rb1ix59.85 (9)
S3v—Rb1—S3vi82.73 (7)P1i—P1—Rb1ix96.60 (13)
S2v—Rb1—S3vi105.37 (6)Mn1—P1—Rb1ix119.00 (7)
S2iv—Rb1—S3vi65.04 (6)Rb1viii—P1—Rb1ix88.79 (5)
S2i—Rb1—P1v80.80 (6)S1i—P1—Rb1i62.06 (10)
S3ii—Rb1—P1v132.34 (7)S2—P1—Rb1i57.95 (9)
S1iii—Rb1—P1v75.61 (6)S3—P1—Rb1i155.38 (13)
S1iv—Rb1—P1v136.90 (7)P1i—P1—Rb1i99.13 (13)
S1—Rb1—P1v92.12 (6)Mn1—P1—Rb1i116.56 (7)
S3v—Rb1—P1v30.79 (5)Rb1viii—P1—Rb1i87.38 (6)
S2v—Rb1—P1v30.69 (5)Rb1ix—P1—Rb1i123.07 (6)
S2iv—Rb1—P1v85.39 (6)P1i—S1—Mn198.10 (12)
S3vi—Rb1—P1v80.12 (6)P1i—S1—Rb1iii167.00 (13)
S2i—Rb1—S363.43 (6)Mn1—S1—Rb1iii94.77 (7)
S3ii—Rb1—S384.78 (7)P1i—S1—Rb1x88.68 (11)
S1iii—Rb1—S3122.79 (7)Mn1—S1—Rb1x89.44 (8)
S1iv—Rb1—S362.75 (6)Rb1iii—S1—Rb1x89.66 (6)
S1—Rb1—S359.72 (6)P1i—S1—Rb187.84 (11)
S3v—Rb1—S3171.55 (8)Mn1—S1—Rb193.76 (8)
S2v—Rb1—S3123.34 (6)Rb1iii—S1—Rb193.12 (7)
S2iv—Rb1—S3124.33 (6)Rb1x—S1—Rb1175.57 (8)
S3vi—Rb1—S391.41 (7)P1—S2—Mn178.22 (10)
P1v—Rb1—S3142.13 (6)P1—S2—Rb1i91.74 (10)
S2i—Rb1—P1ii124.99 (6)Mn1—S2—Rb1i163.36 (10)
S3ii—Rb1—P1ii30.48 (5)P1—S2—Rb1viii80.34 (11)
S1iii—Rb1—P1ii95.94 (6)Mn1—S2—Rb1viii90.77 (7)
S1iv—Rb1—P1ii30.25 (5)Rb1i—S2—Rb1viii100.69 (7)
S1—Rb1—P1ii130.71 (7)P1—S2—Rb1x106.70 (11)
S3v—Rb1—P1ii106.90 (6)Mn1—S2—Rb1x83.92 (7)
S2v—Rb1—P1ii154.75 (6)Rb1i—S2—Rb1x86.37 (6)
S2iv—Rb1—P1ii51.22 (5)Rb1viii—S2—Rb1x170.01 (7)
S3vi—Rb1—P1ii84.80 (6)P1—S3—Mn177.41 (10)
P1v—Rb1—P1ii136.32 (6)P1—S3—Rb1ix89.67 (10)
S3—Rb1—P1ii78.48 (6)Mn1—S3—Rb1ix160.30 (10)
S2—Mn1—S2vii180.0P1—S3—Rb1viii81.19 (11)
S2—Mn1—S3vii102.54 (8)Mn1—S3—Rb1viii90.97 (8)
S2vii—Mn1—S3vii77.46 (8)Rb1ix—S3—Rb1viii101.82 (8)
S2—Mn1—S377.46 (8)P1—S3—Rb1xi152.64 (12)
S2vii—Mn1—S3102.54 (8)Mn1—S3—Rb1xi81.83 (6)
S3vii—Mn1—S3180.00 (10)Rb1ix—S3—Rb1xi114.59 (7)
S2—Mn1—S1vii89.90 (8)Rb1viii—S3—Rb1xi81.54 (6)
S2vii—Mn1—S1vii90.10 (8)P1—S3—Rb1105.55 (12)
S3vii—Mn1—S1vii89.15 (8)Mn1—S3—Rb185.67 (7)
S3—Mn1—S1vii90.85 (8)Rb1ix—S3—Rb183.53 (7)
S2—Mn1—S190.10 (8)Rb1viii—S3—Rb1171.55 (8)
S2vii—Mn1—S189.90 (8)Rb1xi—S3—Rb190.30 (6)
S3vii—Mn1—S190.85 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z1; (vi) x+1/2, y+1/2, z1/2; (vii) x, y, z+1; (viii) x, y, z+1; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaMnP2Rb2S6
Mr480.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.1570 (12), 12.308 (3), 7.5610 (15)
β (°) 97.74 (3)
V3)567.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)11.00
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerRigaku APC8
diffractometer
Absorption correctionMulti-scan
REQABA Empirical Absorption Correction using REQABA (Jacobson, 1999)
Tmin, Tmax0.258, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
5210, 1110, 1034
Rint0.055
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.137, 1.32
No. of reflections1110
No. of parameters52
w = 1/[σ2(Fo2) + (0.0001P)2 + 12.3434P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.06, 0.73

Computer programs: CrystalClear (Rigaku Corporation, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Molecular Structure Corporation, 1997-1999).

Selected geometric parameters (Å, º) top
Mn1—S22.619 (3)P1—S1i2.008 (3)
Mn1—S32.652 (3)P1—S22.021 (3)
Mn1—S12.659 (3)P1—S32.022 (3)
Mn1—P12.964 (2)P1—P1i2.208 (5)
S2—Mn1—S3ii102.54 (8)S1i—P1—S2115.95 (15)
S2—Mn1—S377.46 (8)S1i—P1—S3115.97 (16)
S2—Mn1—S1ii89.90 (8)S2—P1—S3109.32 (14)
S3—Mn1—S1ii90.85 (8)S1i—P1—P1i104.14 (16)
S2—Mn1—S190.10 (8)S2—P1—P1i105.25 (17)
S3—Mn1—S189.15 (8)S3—P1—P1i104.85 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds