Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the low-temperature region, where the dodecanuclear mixed-valence manganese carboxyl­ate hexa­deca­acetatotetra­aqua­dodeca­oxo­dodeca­manganese bis­(acetic acid) tetra­hydrate, [Mn12O12(C2D3O2)16(H2O)4]·2C2HD3O2·4H2O, displays unusual magnetic properties, its structure is similar to that previously determined at room temperature [Lis (1980). Acta Cryst. B36, 2042-2046], differing only by a small change in the configuration of one of the coordinated acetate groups, related to the formation of additional hydrogen bonds, and by the orientation of the methyl groups. Since most of the magnetization density of this system resides on the Mn atoms, the consequences of these rearrangements for the magnetic properties of the compound are small.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101008599/br1327sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101008599/br1327Isup2.hkl
Contains datablock I

CCDC reference: 170173

Comment top

The title dodecanuclear mixed-valence manganese carboxylate complex, commonly known as Mn12, Mn12—Ac or Mn12-acetate, was first prepared and its crystal structure characterized at room temperature (RT) using X-ray diffraction by Lis (1980). This molecule has subsequently attracted substantial attention from both the physics and chemistry communities, because of its unusual low-temperature (LT) magnetic properties (Chudnovsky & Tejada, 1998; Chudnovsky, 1996; Schwarzschild, 1997). It exhibits anomalous hysteresis loops with steps at certain critical fields at integer multiples of 0.46 T. These field steps provide clear evidence of a quantum process, and Mn12 is a model system for the study of tunnelling of the magnetization (from up to down and vice versa). This is of interest for two reasons: firstly, because this is a direct manifestation of quantum physics in a macroscopic observable, just as in the Josephson effect or the quantum Hall effect, and secondly, because of technological interest in possible quantum demagnetization of magnetic memories. At a minimum, high-spin magnetic molecules like Mn12 are ideal magnetic nanoparticles, in which a direct connection can be made between microscopic intramolecular magnetic interactions and the mesoscopic physics. Some headway has been made towards understanding the magnetic energy-level scheme and intramolecular interactions, both by means of inelastic neutron scattering (Hennion et al., 1997; Zhong et al., 1999; Mirebeau et al., 1999) and electron paramagnetic resonance (Barra et al., 1997; Hill et al., 1998).

Recently, we have determined the internal magnetic structure of this molecule at LT using polarized-neutron diffraction techniques (Robinson et al., 2000). In these studies, it became clear that the structure reported by Lis (1980) was not in agreement with the neutron nuclear scattering factors. The present study was undertaken in order to provide a crystal structure for Mn12 at LT, to explain how this structure differs from that found at RT, to assess the consequences of these rearrangements on its magnetic properties and for the correct interpretation of the polarized-neutron diffraction experiments. Our results are in agreement with the qualitative conclusions of Mirebeau et al. (1999) and indicate that the differences are small, related to changes in hydrogen bonding, and are unlikely to influence significantly the magnetization density.

In the LT structure of Mn12, a water molecule coordinates directly with atom Mn3 through its O12 atom, and donates hydrogen bonds to the O6 group of the C4 carboxylate ligand (H3) and to the O13 atom of the second water molecule (H1). At RT, there are no further hydrogen-bonding interactions. At LT, there is a more extensive hydrogen-bonding network which slightly displaces Mn3 and its ligands. The orientation of the solvent acetic acid molecule at LT permits the O17 acid atom to form a second hydrogen bond to the O6 atom, via atom H4, in one of its two symmetry-related half-occupied positions. Despite the fact that this hydrogen position has at most half occupancy, the geometry of this bond is good. The second water molecule donates H2 to the O5 group of the C2 carboxylate ligand and H4 to three possible acceptors: atoms O7, O9 and O11 of carboxylate ligands C4, C6 and C8. The four-centred hydrogen-bond arrangement has two major components between O13 and O7, and O13 and O11, and a minor component between O13 and O9.

Although nominally deuterated, our crystal has undergone back substitution of H for D, presumably due to exposure to atmosphere during crystal mounting and handling, resulting in the water and acetic acid atoms H1—H5 being H rather than D. Our measured mosaic value of 0.4° FWHM is consistent with, if slightly smaller than, the value recently quoted by Bellessa et al. (1999), and the fact that it is much greater than 0.01° gives support to the analysis in their article.

Related literature top

For related literature, see: Barra et al. (1997); Bellessa et al. (1999); Chudnovsky (1996); Chudnovsky & Tejada (1998); Hennion et al. (1997); Hill et al. (1998); Lis (1980); Mirebeau et al. (1999); Robinson et al. (2000); Schwarzschild (1997); Sessoli et al. (1993); Zhong et al. (1999).

Experimental top

Nominally fully deuterated crystals of Mn12 were prepared from their perdeuterated components as previously described by Sessoli et al. (1993). A needle-shaped crystal (50 mg in mass) was mounted on the D9 four-circle diffractometer at the Institut Laue Langevin and the temperature lowered to 20 K at a rate of 2 K min-1 using a Displex cooling device.

Refinement top

Integrated intensities were extracted from the data recorded by the D9 position-sensitive detector, using custom-designed software, and these were corrected for absorption and Lorentz effects. It was found that all labile D atom positions were occupied by H. All atoms of the central Mn12O12 core of the molecule, the 16 carboxylate ligands, an additional solvent acetic acid molecule, an acid H atom and two water molecules were refined. The parameters of each atom were restrained so that they approximated to isotropic behaviour, although the corresponding Uiso were free to vary. Atoms closer than 1.7 Å were restrained to have the same anisotropic dispacement parameters. H and non-H atoms were restrained in the same way. This was done because there were an insufficient number of reflections for unrestrained refinement.

Computing details top

Data collection: please provide details; cell refinement: please provide details; data reduction: please provide details; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of Mn12 at 20 K, plotted using PLATON (Spek, 1990) projected onto the tetragonal basal plane (crystallographic [001] direction) with H, D, C, O and Mn atoms represented by spheres of increasing radius. Only C, O and Mn atoms in the asymmetric unit have been labelled, for clarity. One half-occupancy acetic acid molecule is shown superimposed on a symmetry-related half-occupancy acetic acid molecule at the same position.
tetraaquahexadecaacetatododecaoxododecamanganese bis(acetic acid) tetrahydrate top
Crystal data top
[Mn12O12(C2D3O2)16(H2O)4]·2C2HD3O2·4H2ODx = 1.867 Mg m3
Mr = 2115.26Neutron radiation, λ = 0.84050 Å
Tetragonal, I4Cell parameters from 1727 reflections
a = 17.123 (8) Åθ = 4.4–31.0°
c = 12.255 (6) ŵ = 0.09 mm1
V = 3593 (3) Å3T = 20 K
Z = 2Needle, red-black
F(000) = 16252 × 2 × 6 mm
Data collection top
D9 four-circle
diffractometer
θmax = 31°, θmin = 4.4°
Radiation source: ILL nuclear reactorh = 020
equatorial geometry scansk = 019
1727 measured reflectionsl = 014
1727 independent reflections5 standard reflections every 10 reflections
1600 reflections with I > 2σ(I) intensity decay: none
Rint = 0.000
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.57 w = 1/[σ2(Fo2) + (0.066P)2 + 128.3191P]
where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max = 0.003
423 parametersΔρmax = 3.24 e Å3
468 restraintsΔρmin = 1.65 e Å3
Crystal data top
[Mn12O12(C2D3O2)16(H2O)4]·2C2HD3O2·4H2OZ = 2
Mr = 2115.26Neutron radiation, λ = 0.84050 Å
Tetragonal, I4µ = 0.09 mm1
a = 17.123 (8) ÅT = 20 K
c = 12.255 (6) Å2 × 2 × 6 mm
V = 3593 (3) Å3
Data collection top
D9 four-circle
diffractometer
Rint = 0.000
1727 measured reflections5 standard reflections every 10 reflections
1727 independent reflections intensity decay: none
1600 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.089468 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.57 w = 1/[σ2(Fo2) + (0.066P)2 + 128.3191P]
where P = (Fo2 + 2Fc2)/3
1727 reflectionsΔρmax = 3.24 e Å3
423 parametersΔρmin = 1.65 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.4166 (6)0.0178 (5)0.1721 (8)0.0016 (17)
Mn20.2576 (6)0.0483 (6)0.1692 (8)0.0032 (18)
Mn30.3598 (6)0.1992 (6)0.2664 (9)0.007 (2)
O10.4293 (4)0.0154 (4)0.3250 (5)0.0029 (12)
O20.3524 (4)0.1062 (4)0.1835 (6)0.0044 (12)
O30.3243 (4)0.0389 (4)0.1833 (5)0.0037 (12)
O40.4145 (4)0.0196 (4)0.0148 (5)0.0070 (13)
O50.2865 (4)0.0474 (4)0.0083 (6)0.0060 (13)
O60.2338 (6)0.0548 (6)0.3452 (9)0.0290 (19)
O70.3065 (4)0.1502 (4)0.4078 (7)0.0133 (15)
O80.1644 (4)0.0138 (4)0.1481 (6)0.0076 (13)
O90.3606 (4)0.2985 (4)0.3459 (6)0.0096 (14)
O100.1919 (4)0.1374 (4)0.1373 (7)0.0131 (15)
O110.2529 (4)0.2350 (4)0.2217 (6)0.0124 (14)
C10.3549 (3)0.0359 (3)0.0436 (5)0.0049 (11)
C20.3709 (4)0.0429 (4)0.1634 (5)0.0114 (13)
C30.2643 (4)0.0921 (4)0.4204 (6)0.0195 (14)
C40.2449 (8)0.0663 (7)0.5310 (10)0.048 (2)
C50.1517 (3)0.0866 (3)0.1370 (5)0.0047 (11)
C60.0723 (3)0.1096 (4)0.1007 (5)0.0067 (11)
C70.1971 (3)0.2071 (3)0.1676 (5)0.0047 (11)
C80.1304 (3)0.2602 (3)0.1405 (5)0.0067 (12)
D210.3188 (6)0.0384 (6)0.2116 (8)0.040 (2)
D220.3962 (6)0.1010 (6)0.1779 (9)0.038 (2)
D230.4138 (6)0.0001 (6)0.1898 (8)0.037 (2)
D410.1920 (14)0.0308 (13)0.538 (2)0.102 (5)
D420.2931 (14)0.0377 (13)0.5506 (19)0.096 (5)
D430.2447 (10)0.1124 (9)0.5918 (13)0.069 (3)
D610.0603 (6)0.1683 (6)0.1150 (11)0.045 (2)
D620.0700 (7)0.1041 (8)0.0123 (11)0.054 (3)
D630.0298 (6)0.0720 (7)0.1312 (11)0.049 (3)
D810.1424 (6)0.2873 (6)0.0615 (9)0.041 (2)
D820.0778 (5)0.2272 (5)0.1316 (9)0.034 (2)
D830.1245 (6)0.3045 (6)0.2023 (9)0.037 (2)
O120.3986 (5)0.2647 (5)0.1219 (7)0.0181 (17)
O130.3115 (5)0.2163 (5)0.0532 (8)0.0191 (17)
H10.3698 (12)0.2495 (12)0.0560 (19)0.047 (4)
H20.2839 (14)0.1696 (15)0.041 (2)0.056 (5)*
H30.4478 (19)0.2707 (18)0.125 (3)0.076 (7)
H40.280 (2)0.245 (2)0.087 (3)0.088 (9)*
C90.0397 (12)0.0131 (15)0.3582 (16)0.029 (3)0.50
C100.0473 (14)0.027 (2)0.363 (2)0.040 (3)0.50
O140.0852 (12)0.0723 (14)0.3719 (17)0.028 (4)0.50
D150.0668 (13)0.0348 (14)0.281 (2)0.045 (4)0.50
D160.0644 (15)0.0755 (15)0.412 (2)0.053 (5)0.50
O170.0648 (14)0.0557 (15)0.343 (2)0.030 (4)0.50
D180.0748 (18)0.0315 (18)0.388 (2)0.053 (5)0.50
H50.123 (2)0.060 (2)0.336 (4)0.045 (8)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0015 (19)0.0016 (19)0.0019 (19)0.0001 (11)0.0000 (11)0.0001 (11)
Mn20.003 (2)0.003 (2)0.004 (2)0.0005 (11)0.0005 (11)0.0001 (11)
Mn30.007 (2)0.007 (2)0.008 (2)0.0003 (11)0.0003 (11)0.0003 (11)
O10.0030 (15)0.0026 (15)0.0031 (15)0.0002 (10)0.0000 (10)0.0006 (10)
O20.0038 (15)0.0038 (15)0.0054 (15)0.0003 (10)0.0000 (10)0.0002 (10)
O30.0034 (15)0.0031 (15)0.0046 (15)0.0004 (10)0.0008 (10)0.0002 (10)
O40.006 (2)0.007 (2)0.009 (2)0.0009 (17)0.0006 (17)0.0000 (17)
O50.004 (2)0.007 (2)0.006 (2)0.0012 (17)0.0012 (17)0.0001 (17)
O60.029 (3)0.030 (3)0.029 (3)0.0100 (19)0.0030 (19)0.0059 (19)
O70.012 (2)0.013 (2)0.014 (2)0.0060 (17)0.0004 (17)0.0019 (18)
O80.006 (2)0.005 (2)0.012 (2)0.0000 (19)0.000 (2)0.002 (2)
O90.007 (2)0.009 (2)0.013 (2)0.0001 (17)0.0026 (17)0.0028 (17)
O100.011 (2)0.009 (2)0.019 (2)0.0015 (17)0.0041 (18)0.0027 (18)
O110.010 (2)0.011 (2)0.016 (2)0.0032 (17)0.0027 (18)0.0020 (17)
C10.0050 (18)0.0034 (18)0.0064 (18)0.0006 (15)0.0026 (15)0.0021 (15)
C20.012 (2)0.010 (2)0.012 (2)0.003 (2)0.002 (2)0.0002 (19)
C30.0203 (17)0.0182 (17)0.0199 (17)0.0022 (10)0.0003 (10)0.0006 (10)
C40.061 (4)0.041 (4)0.040 (4)0.009 (4)0.009 (4)0.007 (3)
C50.0040 (14)0.0045 (14)0.0056 (14)0.0002 (10)0.0007 (10)0.0002 (10)
C60.0059 (18)0.0042 (19)0.0099 (19)0.0002 (16)0.0004 (16)0.0018 (16)
C70.0040 (14)0.0043 (14)0.0059 (14)0.0001 (10)0.0003 (10)0.0003 (10)
C80.0066 (19)0.0045 (18)0.0091 (19)0.0002 (16)0.0026 (16)0.0007 (16)
D210.038 (4)0.047 (4)0.035 (4)0.006 (3)0.009 (3)0.005 (3)
D220.042 (4)0.034 (4)0.039 (4)0.007 (3)0.003 (3)0.004 (3)
D230.042 (4)0.037 (4)0.034 (4)0.009 (3)0.004 (3)0.002 (3)
D410.110 (7)0.100 (6)0.097 (7)0.014 (5)0.011 (5)0.003 (5)
D420.102 (6)0.095 (6)0.091 (6)0.005 (5)0.004 (5)0.002 (5)
D430.084 (5)0.062 (5)0.060 (5)0.013 (4)0.006 (4)0.008 (4)
D610.036 (4)0.040 (4)0.060 (5)0.006 (3)0.011 (4)0.007 (4)
D620.046 (4)0.061 (5)0.053 (5)0.013 (4)0.009 (4)0.002 (4)
D630.034 (4)0.054 (4)0.060 (5)0.005 (4)0.002 (4)0.022 (4)
D810.037 (4)0.045 (4)0.042 (4)0.010 (3)0.001 (3)0.010 (4)
D820.028 (4)0.026 (3)0.047 (4)0.003 (3)0.004 (3)0.000 (3)
D830.033 (4)0.033 (4)0.046 (4)0.008 (3)0.010 (3)0.012 (3)
O120.019 (2)0.016 (2)0.019 (2)0.0047 (18)0.0017 (19)0.0048 (18)
O130.020 (3)0.015 (3)0.023 (3)0.001 (3)0.001 (3)0.000 (3)
H10.048 (6)0.047 (6)0.046 (6)0.004 (5)0.004 (5)0.000 (5)
H30.075 (9)0.074 (8)0.077 (9)0.007 (5)0.000 (5)0.000 (5)
C90.026 (4)0.033 (5)0.028 (4)0.003 (4)0.001 (4)0.001 (4)
C100.038 (5)0.041 (5)0.040 (5)0.001 (4)0.000 (4)0.001 (4)
O140.028 (5)0.029 (5)0.026 (5)0.000 (4)0.001 (4)0.005 (4)
D150.044 (6)0.046 (6)0.046 (6)0.001 (5)0.001 (5)0.000 (5)
D160.048 (6)0.057 (6)0.053 (6)0.002 (5)0.002 (5)0.004 (5)
O170.030 (6)0.033 (6)0.027 (6)0.002 (4)0.002 (4)0.003 (5)
D180.051 (6)0.052 (6)0.055 (6)0.001 (5)0.000 (5)0.004 (5)
H50.045 (10)0.044 (9)0.045 (10)0.002 (5)0.000 (5)0.003 (5)
Geometric parameters (Å, º) top
Mn1—O31.861 (11)C1—C21.498 (9)
Mn1—O21.876 (11)C2—D211.074 (12)
Mn1—O11.887 (12)C2—D231.089 (12)
Mn1—O1i1.912 (11)C2—D221.099 (12)
Mn1—O1ii1.919 (11)C3—C41.463 (14)
Mn1—O41.928 (12)C4—D420.99 (2)
Mn1—Mn22.773 (14)C4—D431.085 (18)
Mn1—Mn1i2.813 (17)C4—D411.09 (2)
Mn1—Mn1ii2.813 (17)C5—O9i1.260 (9)
Mn1—C12.863 (11)C5—C61.484 (8)
Mn1—Mn1iii2.92 (2)C5—Mn3i2.959 (12)
Mn1—Mn3i3.439 (14)C6—D611.040 (12)
Mn2—O31.888 (11)C6—D631.041 (12)
Mn2—O21.911 (11)C6—D621.089 (15)
Mn2—O81.934 (12)C7—C81.497 (8)
Mn2—O101.934 (12)C8—D821.069 (11)
Mn2—O62.198 (14)C8—D831.077 (12)
Mn2—O52.231 (13)C8—D811.092 (13)
Mn2—C72.909 (11)C9—C10iv0.70 (3)
Mn2—C52.963 (11)C9—D18iv0.77 (3)
Mn2—Mn33.340 (14)C9—O141.29 (3)
Mn2—Mn3i3.405 (14)C9—D15iv1.34 (3)
Mn3—O3ii1.884 (12)C9—O171.27 (3)
Mn3—O21.893 (13)C9—C9iv1.43 (4)
Mn3—O91.959 (13)C9—C101.51 (3)
Mn3—O112.006 (13)C10—O17iv0.63 (3)
Mn3—O72.131 (13)C10—C9iv0.70 (3)
Mn3—O122.199 (14)C10—D151.07 (3)
Mn3—C5ii2.959 (12)C10—D161.07 (4)
Mn3—C73.040 (12)C10—D181.14 (4)
Mn3—Mn2ii3.405 (14)C10—O14iv1.82 (4)
Mn3—Mn1ii3.439 (14)C10—C10iv1.86 (6)
O1—Mn1ii1.912 (11)O14—D18iv0.75 (3)
O1—Mn1i1.919 (11)O14—C10iv1.82 (4)
O3—Mn3i1.884 (12)D15—O17iv0.84 (3)
O4—C11.277 (9)D15—C9iv1.34 (3)
O5—C11.264 (9)D16—O17iv0.91 (3)
O6—C31.237 (13)O17—C10iv0.63 (3)
O7—C31.239 (11)O17—D15iv0.84 (3)
O8—C51.273 (9)O17—D16iv0.91 (3)
O9—C5ii1.260 (9)D18—C9iv0.77 (3)
O10—C71.253 (10)D18—O14iv0.75 (3)
O11—C71.256 (10)
O3—Mn1—O285.3 (5)O7—Mn3—Mn2ii107.6 (5)
O3—Mn1—O190.7 (5)O12—Mn3—Mn2ii77.9 (4)
O2—Mn1—O190.6 (5)C5ii—Mn3—Mn2ii54.9 (3)
O3—Mn1—O1i95.9 (5)C7—Mn3—Mn2ii162.1 (4)
O2—Mn1—O1i174.4 (7)Mn2—Mn3—Mn2ii138.4 (5)
O1—Mn1—O1i83.9 (5)O3ii—Mn3—Mn1ii23.2 (3)
O3—Mn1—O1ii173.7 (7)O2—Mn3—Mn1ii71.6 (4)
O2—Mn1—O1ii97.7 (5)O9—Mn3—Mn1ii112.7 (5)
O1—Mn1—O1ii83.7 (5)O11—Mn3—Mn1ii162.5 (5)
O1i—Mn1—O1ii80.6 (5)O7—Mn3—Mn1ii86.1 (4)
O3—Mn1—O493.8 (5)O12—Mn3—Mn1ii103.5 (5)
O2—Mn1—O492.9 (5)C5ii—Mn3—Mn1ii99.5 (4)
O1—Mn1—O4174.5 (6)C7—Mn3—Mn1ii146.5 (4)
O1i—Mn1—O492.5 (5)Mn2—Mn3—Mn1ii92.5 (3)
O1ii—Mn1—O491.6 (5)Mn2ii—Mn3—Mn1ii47.8 (3)
O3—Mn1—Mn242.7 (3)O3ii—Mn3—Mn170.0 (4)
O2—Mn1—Mn243.4 (3)O2—Mn3—Mn123.5 (3)
O1—Mn1—Mn297.5 (5)O9—Mn3—Mn1160.8 (6)
O1i—Mn1—Mn2138.4 (5)O11—Mn3—Mn1116.1 (5)
O1ii—Mn1—Mn2141.0 (5)O7—Mn3—Mn192.2 (4)
O4—Mn1—Mn288.0 (5)O12—Mn3—Mn196.0 (5)
O3—Mn1—Mn1i88.1 (5)C5ii—Mn3—Mn1145.3 (4)
O2—Mn1—Mn1i132.9 (7)C7—Mn3—Mn199.5 (4)
O1—Mn1—Mn1i42.8 (4)Mn2—Mn3—Mn148.1 (3)
O1i—Mn1—Mn1i41.9 (3)Mn2ii—Mn3—Mn190.3 (3)
O1ii—Mn1—Mn1i85.8 (3)Mn1ii—Mn3—Mn148.2 (4)
O4—Mn1—Mn1i134.1 (6)Mn1—O1—Mn1ii95.5 (5)
Mn2—Mn1—Mn1i121.1 (5)Mn1—O1—Mn1i95.3 (5)
O3—Mn1—Mn1ii133.0 (7)Mn1ii—O1—Mn1i99.3 (5)
O2—Mn1—Mn1ii89.3 (5)Mn1—O2—Mn3132.8 (6)
O1—Mn1—Mn1ii42.6 (4)Mn1—O2—Mn294.1 (5)
O1i—Mn1—Mn1ii85.9 (3)Mn3—O2—Mn2122.8 (5)
O1ii—Mn1—Mn1ii41.9 (3)Mn1—O3—Mn3i133.3 (6)
O4—Mn1—Mn1ii133.1 (6)Mn1—O3—Mn295.4 (5)
Mn2—Mn1—Mn1ii122.6 (5)Mn3i—O3—Mn2129.0 (6)
Mn1i—Mn1—Mn1ii62.5 (4)C1—O4—Mn1125.4 (6)
O3—Mn1—C179.1 (4)C1—O5—Mn2122.7 (6)
O2—Mn1—C176.4 (4)C3—O6—Mn2132.8 (8)
O1—Mn1—C1164.1 (5)C3—O7—Mn3131.9 (7)
O1i—Mn1—C1109.1 (5)C5—O8—Mn2133.9 (6)
O1ii—Mn1—C1106.9 (5)C5ii—O9—Mn3132.4 (6)
O4—Mn1—C121.3 (3)C7—O10—Mn2130.5 (6)
Mn2—Mn1—C166.8 (3)C7—O11—Mn3136.2 (6)
Mn1i—Mn1—C1147.2 (5)O5—C1—O4125.6 (7)
Mn1ii—Mn1—C1144.2 (5)O5—C1—C2119.5 (6)
O3—Mn1—Mn1iii136.2 (6)O4—C1—C2114.9 (6)
O2—Mn1—Mn1iii137.9 (6)O5—C1—Mn192.4 (5)
O1—Mn1—Mn1iii83.3 (4)O4—C1—Mn133.3 (4)
O1i—Mn1—Mn1iii40.4 (3)C2—C1—Mn1147.7 (5)
O1ii—Mn1—Mn1iii40.3 (3)D21—C2—D23110.4 (10)
O4—Mn1—Mn1iii91.2 (3)D21—C2—D22107.6 (9)
Mn2—Mn1—Mn1iii178.6 (5)D23—C2—D22107.4 (9)
Mn1i—Mn1—Mn1iii58.7 (2)D21—C2—C1112.4 (8)
Mn1ii—Mn1—Mn1iii58.7 (2)D23—C2—C1111.2 (8)
C1—Mn1—Mn1iii112.5 (2)D22—C2—C1107.7 (8)
O3—Mn1—Mn3i23.5 (3)O7—C3—O6124.6 (9)
O2—Mn1—Mn3i106.3 (5)O7—C3—C4119.4 (8)
O1—Mn1—Mn3i80.3 (4)O6—C3—C4116.0 (8)
O1i—Mn1—Mn3i73.9 (4)D42—C4—D43101 (2)
O1ii—Mn1—Mn3i151.1 (5)D42—C4—D41113 (2)
O4—Mn1—Mn3i102.8 (4)D43—C4—D41110.4 (19)
Mn2—Mn1—Mn3i65.5 (3)D42—C4—C3100.7 (17)
Mn1i—Mn1—Mn3i66.2 (4)D43—C4—C3114.7 (12)
Mn1ii—Mn1—Mn3i121.4 (5)D41—C4—C3115.2 (18)
C1—Mn1—Mn3i94.3 (3)O9i—C5—O8124.7 (6)
Mn1iii—Mn1—Mn3i113.5 (5)O9i—C5—C6118.7 (6)
O3—Mn2—O283.6 (5)O8—C5—C6116.6 (6)
O3—Mn2—O894.4 (5)O9i—C5—Mn3i29.2 (4)
O2—Mn2—O8176.7 (7)O8—C5—Mn3i96.5 (5)
O3—Mn2—O10173.5 (7)C6—C5—Mn3i145.9 (5)
O2—Mn2—O1095.9 (5)O9i—C5—Mn297.1 (5)
O8—Mn2—O1085.8 (5)O8—C5—Mn228.0 (4)
O3—Mn2—O693.5 (5)C6—C5—Mn2143.8 (4)
O2—Mn2—O692.4 (5)Mn3i—C5—Mn270.2 (3)
O8—Mn2—O690.3 (5)D61—C6—D63113.4 (11)
O10—Mn2—O692.9 (5)D61—C6—D62104.2 (11)
O3—Mn2—O587.1 (5)D63—C6—D62106.2 (12)
O2—Mn2—O584.5 (4)D61—C6—C5112.8 (8)
O8—Mn2—O592.8 (5)D63—C6—C5111.7 (8)
O10—Mn2—O586.4 (5)D62—C6—C5107.9 (9)
O6—Mn2—O5176.7 (6)O10—C7—O11124.9 (6)
O3—Mn2—Mn141.9 (3)O10—C7—C8117.2 (6)
O2—Mn2—Mn142.4 (3)O11—C7—C8117.8 (6)
O8—Mn2—Mn1135.1 (5)O10—C7—Mn230.4 (4)
O10—Mn2—Mn1136.2 (5)O11—C7—Mn294.7 (5)
O6—Mn2—Mn1100.3 (5)C8—C7—Mn2147.1 (4)
O5—Mn2—Mn178.0 (4)O10—C7—Mn398.1 (5)
O3—Mn2—C7162.8 (5)O11—C7—Mn327.2 (4)
O2—Mn2—C779.5 (4)C8—C7—Mn3144.5 (4)
O8—Mn2—C7102.7 (4)Mn2—C7—Mn368.3 (3)
O10—Mn2—C719.1 (3)D82—C8—D83111.4 (9)
O6—Mn2—C783.9 (4)D82—C8—D81107.0 (9)
O5—Mn2—C794.5 (4)D83—C8—D81110.0 (10)
Mn1—Mn2—C7121.7 (4)D82—C8—C7110.3 (7)
O3—Mn2—C576.4 (4)D83—C8—C7110.0 (7)
O2—Mn2—C5159.5 (5)D81—C8—C7108.2 (7)
O8—Mn2—C518.0 (3)C10iv—C9—D18iv102 (4)
O10—Mn2—C5103.4 (4)C10iv—C9—O14130 (4)
O6—Mn2—C593.2 (4)D18iv—C9—O1431 (3)
O5—Mn2—C590.0 (4)C10iv—C9—D15iv53 (3)
Mn1—Mn2—C5117.1 (4)D18iv—C9—D15iv108 (3)
C7—Mn2—C5120.7 (4)O14—C9—D15iv111 (2)
O3—Mn2—Mn3105.2 (5)C10iv—C9—O1716 (3)
O2—Mn2—Mn328.4 (3)D18iv—C9—O17101 (3)
O8—Mn2—Mn3154.8 (5)O14—C9—O17123 (2)
O10—Mn2—Mn376.5 (4)D15iv—C9—O1737.7 (14)
O6—Mn2—Mn373.0 (4)C10iv—C9—C9iv83 (4)
O5—Mn2—Mn3103.7 (4)D18iv—C9—C9iv150 (3)
Mn1—Mn2—Mn368.1 (3)O14—C9—C9iv145 (3)
C7—Mn2—Mn357.7 (3)D15iv—C9—C9iv98 (2)
C5—Mn2—Mn3166.2 (4)O17—C9—C9iv92 (3)
O3—Mn2—Mn3i25.5 (3)C10iv—C9—C10110 (4)
O2—Mn2—Mn3i106.6 (5)D18iv—C9—C10133 (4)
O8—Mn2—Mn3i71.9 (4)O14—C9—C10118 (3)
O10—Mn2—Mn3i157.0 (5)D15iv—C9—C10118 (2)
O6—Mn2—Mn3i82.0 (4)O17—C9—C10119 (3)
O5—Mn2—Mn3i99.9 (4)C9iv—C9—C1027.2 (11)
Mn1—Mn2—Mn3i66.7 (3)O17iv—C10—C9iv146 (6)
C7—Mn2—Mn3i164.8 (4)O17iv—C10—D1552 (3)
C5—Mn2—Mn3i54.9 (3)C9iv—C10—D1596 (4)
Mn3—Mn2—Mn3i122.5 (4)O17iv—C10—D1658 (4)
O3ii—Mn3—O293.3 (6)C9iv—C10—D16150 (4)
O3ii—Mn3—O990.9 (5)D15—C10—D16110 (4)
O2—Mn3—O9175.7 (7)O17iv—C10—D18127 (4)
O3ii—Mn3—O11173.9 (7)C9iv—C10—D1841 (3)
O2—Mn3—O1192.8 (5)D15—C10—D18104 (3)
O9—Mn3—O1183.0 (5)D16—C10—D18114 (3)
O3ii—Mn3—O792.5 (5)O17iv—C10—C9125 (4)
O2—Mn3—O794.4 (5)C9iv—C10—C970 (4)
O9—Mn3—O786.6 (5)D15—C10—C9107 (2)
O11—Mn3—O787.2 (5)D16—C10—C9114 (3)
O3ii—Mn3—O1295.4 (6)D18—C10—C9106 (4)
O2—Mn3—O1291.0 (5)O17iv—C10—O14iv126 (4)
O9—Mn3—O1287.5 (5)C9iv—C10—O14iv33 (3)
O11—Mn3—O1284.3 (5)D15—C10—O14iv94 (2)
O7—Mn3—O12170.2 (7)D16—C10—O14iv127 (2)
O3ii—Mn3—C5ii76.6 (4)D18—C10—O14iv12.9 (18)
O2—Mn3—C5ii163.9 (6)C9—C10—O14iv102 (3)
O9—Mn3—C5ii18.3 (3)O17iv—C10—C10iv143 (4)
O11—Mn3—C5ii97.4 (5)C9iv—C10—C10iv50 (3)
O7—Mn3—C5ii98.5 (5)D15—C10—C10iv110 (2)
O12—Mn3—C5ii77.8 (4)D16—C10—C10iv128 (2)
O3ii—Mn3—C7169.5 (6)D18—C10—C10iv86 (3)
O2—Mn3—C776.3 (4)C9—C10—C10iv20.6 (10)
O9—Mn3—C799.6 (5)O14iv—C10—C10iv82 (2)
O11—Mn3—C716.6 (3)D18iv—O14—C933 (3)
O7—Mn3—C787.1 (4)D18iv—O14—C10iv20 (3)
O12—Mn3—C786.2 (4)C9—O14—C10iv17.0 (12)
C5ii—Mn3—C7113.9 (4)O17iv—D15—C1036 (2)
O3ii—Mn3—Mn2115.7 (5)O17iv—D15—C9iv67 (3)
O2—Mn3—Mn228.7 (3)C10—D15—C9iv31.2 (17)
O9—Mn3—Mn2148.5 (5)O17iv—D16—C1035.8 (19)
O11—Mn3—Mn270.2 (4)C10iv—O17—D15iv92 (4)
O7—Mn3—Mn276.2 (4)C10iv—O17—D16iv86 (4)
O12—Mn3—Mn2105.4 (5)D15iv—O17—D16iv176 (4)
C5ii—Mn3—Mn2166.5 (4)C10iv—O17—C918 (3)
C7—Mn3—Mn254.0 (3)D15iv—O17—C976 (3)
O3ii—Mn3—Mn2ii25.5 (3)D16iv—O17—C9102 (3)
O2—Mn3—Mn2ii111.7 (5)C9iv—D18—O14iv116 (5)
O9—Mn3—Mn2ii71.9 (4)C9iv—D18—C1036 (2)
O11—Mn3—Mn2ii149.5 (5)O14iv—D18—C10147 (5)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) y+1/2, x1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1···O130.98 (2)1.76 (2)2.741 (13)174 (2)
O12—H3···O6ii0.85 (4)1.87 (3)2.706 (13)167 (3)
O13—H2···O50.94 (3)2.13 (3)2.974 (11)149 (2)
O13—H4···O7v0.84 (5)2.32 (4)3.089 (12)151 (3)
O13—H4···O11v0.84 (5)2.43 (4)3.086 (12)135 (3)
O13—H4···O9v0.84 (5)2.64 (4)3.205 (11)125 (3)
O17—H5···O61.01 (5)1.90 (4)2.89 (3)169 (4)
Symmetry codes: (ii) y+1/2, x1/2, z+1/2; (v) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn12O12(C2D3O2)16(H2O)4]·2C2HD3O2·4H2O
Mr2115.26
Crystal system, space groupTetragonal, I4
Temperature (K)20
a, c (Å)17.123 (8), 12.255 (6)
V3)3593 (3)
Z2
Radiation typeNeutron, λ = 0.84050 Å
µ (mm1)0.09
Crystal size (mm)2 × 2 × 6
Data collection
DiffractometerD9 four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1727, 1727, 1600
Rint0.000
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.209, 1.57
No. of reflections1727
No. of parameters423
No. of restraints468
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.066P)2 + 128.3191P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.24, 1.65

Computer programs: please provide details, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1···O130.98 (2)1.76 (2)2.741 (13)174 (2)
O12—H3···O6i0.85 (4)1.87 (3)2.706 (13)167 (3)
O13—H2···O50.94 (3)2.13 (3)2.974 (11)149 (2)
O13—H4···O7ii0.84 (5)2.32 (4)3.089 (12)151 (3)
O13—H4···O11ii0.84 (5)2.43 (4)3.086 (12)135 (3)
O13—H4···O9ii0.84 (5)2.64 (4)3.205 (11)125 (3)
O17—H5···O61.01 (5)1.90 (4)2.89 (3)169 (4)
Symmetry codes: (i) y+1/2, x1/2, z+1/2; (ii) x+1/2, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds