Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, tetra­carbonyl­(4,7-di­phenyl-1,10-phen­an­throline-N,N')­molyb­denum(0), [Mo(C24H16N2)(CO)4], the Mo-atom coordination is distorted octahedral, with two CO groups cis to each other, but each trans to an N atom of the 4,7-di­phenyl-1,10-phenanthroline (dpphen) ligand, and with the other two CO groups trans to each other and on the axis position. The complex has better solubility than [Mo(phen)(CO)4], where phen is 1,10-phenanthroline.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101004164/br1317sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004164/br1317Isup2.hkl
Contains datablock I

CCDC reference: 166969

Comment top

As a precursor, [M(L—L)(CO)4] [M = Mo or W, L—L = 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy); Stiddard et al., 1962] reacted with fullerene to form stable molybdenum or tungsten complexes of fullerene [M(eta2-C60)(L—L)(CO)3] (Tang et al., 1996). These complexes are only sparingly soluble in chlorobenzene and o-dichlorobenzene. Crystals suitable for X-ray diffraction have not been obtained. However, when one carbonyl group of [M(eta2-C60)(phen)(CO)3] was displaced by dibutyl maleate (dbm), the resulting complexes [M(eta2-C60)(phen)(dbm)(CO)3] have good solubilities in a number of organic solvents and their crystal structures were determined by X-ray diffraction (Tang et al., 1997). If dbm is replaced by another C60 ligand, we can obtain dumb-bell complexes [M(eta2-C60)2(L—L)(CO)3], which are expected to have better optical or electric properties than [M(eta2-C60)(phen)(dbm)(CO)2] (Zhang et al., 1998). But the key problem is still the poor solubility of the dumb-bell complex, so that they are difficult to analyse and use in applications. However, when two phenyl groups were introduced into 1,10-phenanthroline, we obtained the title complex, (I), which has much better solubility in aromatic sovents compared with [Mo(phen)(CO)4]. It could be the precursor for further reaction with fullerenes to obtain complexes which are expected to have good solubility.

The structure determination of (I) indicated that the Mo-atom coordination is distorted octahedral, with two CO groups cis to each other, but each trans to an N atom of dpphen (Fig. 1). The C2—Mo1—N2 and C3—Mo1—N1 bond angles are 170.45 (8) and 170.92 (9)°, respectively. Atoms C2, C3, N1, N2 and Mo1 are in the equatorial plane, coplanar to within 0.07 Å. The dihedral angle between the phen and C2/C3/N1/N2/Mo1 planes is 10.70 (8) Å. The two phenyl groups make angles of 42.45 and 54.05° with the phen plane. The other two CO groups are trans to each other and on the axis position of the distorted octahedron.

Related literature top

For related literature, see: Stiddard (1962); Tang et al. (1996, 1997); Zhang et al. (1998).

Experimental top

The title compound was prepared by the reaction of Mo(CO)6 and dpphen (in a 1:1 molar ratio) in toluene under a nitrogen atmosphere using Schlenk techniques, followed by chromatography over silica gel. Red crystals were formed by diffusion of n-pentane into a benzene solution of the title complex.

Refinement top

H atoms were placed in calculated positions with C—H distances constrained to 0.00–0.00 Å.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: SHELXS97 (Sheldrick, 1997); program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.
4,7-diphenyl-1,10-phenanthrolinetetracarbonylmolybdenum top
Crystal data top
[Mo(C24H16N2)(CO)4]F(000) = 1088
Mr = 540.37Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8354 (1) ÅCell parameters from 39842 reflections
b = 7.5648 (1) Åθ = 2.4–27.5°
c = 31.1172 (4) ŵ = 0.61 mm1
β = 94.4628 (4)°T = 123 K
V = 2308.19 (5) Å3Block, red
Z = 40.60 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5265 independent reflections
Radiation source: fine-focus sealed tube4055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 100 x 100 micron pixels mm-1θmax = 27.5°, θmin = 2.4°
Oscillation scansh = 1212
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.662, Tmax = 0.807l = 4040
39842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: H atoms are generated by HFIX instructions
wR(F2) = 0.054H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.7259P]
where P = (Fo2 + 2Fc2)/3
5265 reflections(Δ/σ)max = 0.012
316 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Mo(C24H16N2)(CO)4]V = 2308.19 (5) Å3
Mr = 540.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8354 (1) ŵ = 0.61 mm1
b = 7.5648 (1) ÅT = 123 K
c = 31.1172 (4) Å0.60 × 0.40 × 0.20 mm
β = 94.4628 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5265 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
4055 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.807Rint = 0.038
39842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 0.93Δρmax = 0.46 e Å3
5265 reflectionsΔρmin = 0.61 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.015428 (13)0.15173 (2)1.127326 (5)0.01763 (5)
N10.18411 (13)0.00218 (19)1.09929 (4)0.0184 (3)
N20.19588 (13)0.1581 (2)1.17623 (4)0.0180 (3)
O10.12608 (13)0.1646 (2)1.17390 (5)0.0396 (4)
O20.21366 (14)0.0831 (2)1.05392 (5)0.0387 (4)
O30.18290 (14)0.4062 (2)1.17063 (5)0.0406 (4)
O40.08051 (13)0.49805 (18)1.07475 (4)0.0320 (3)
C10.06811 (16)0.0557 (3)1.15779 (6)0.0244 (4)
C20.12821 (18)0.1111 (2)1.08088 (6)0.0243 (4)
C30.10983 (18)0.3087 (3)1.15531 (6)0.0252 (4)
C40.06613 (16)0.3717 (3)1.09405 (6)0.0225 (4)
C110.17548 (17)0.0833 (2)1.06195 (6)0.0222 (4)
H110.09100.08871.04630.027*
C120.28584 (16)0.1651 (2)1.04492 (5)0.0218 (4)
H120.27320.22501.01880.026*
C130.41472 (16)0.1585 (2)1.06643 (5)0.0185 (3)
C140.42792 (16)0.0625 (2)1.10587 (5)0.0173 (4)
C150.55449 (16)0.0384 (2)1.13117 (5)0.0191 (4)
H150.63510.07341.11990.023*
C160.55969 (16)0.0340 (2)1.17094 (5)0.0190 (4)
H160.64350.04301.18680.023*
C170.43986 (17)0.0975 (2)1.18948 (6)0.0167 (4)
C180.43617 (16)0.1568 (2)1.23265 (5)0.0179 (3)
C190.31203 (16)0.2113 (2)1.24559 (6)0.0199 (4)
H190.30520.24611.27400.024*
C200.19647 (16)0.2148 (2)1.21655 (6)0.0203 (4)
H200.11580.25931.22600.024*
C210.31595 (16)0.0932 (2)1.16316 (6)0.0167 (4)
C220.30986 (16)0.0114 (2)1.12136 (5)0.0168 (4)
C230.53015 (16)0.2507 (2)1.04845 (6)0.0206 (4)
C240.61972 (17)0.3574 (3)1.07430 (6)0.0245 (4)
H240.60550.37311.10330.029*
C250.72879 (19)0.4394 (3)1.05726 (6)0.0291 (5)
H250.78700.51081.07470.035*
C260.75152 (19)0.4156 (3)1.01437 (7)0.0315 (5)
H260.82720.46671.00320.038*
C270.66103 (19)0.3153 (3)0.98811 (6)0.0291 (4)
H270.67470.30240.95900.035*
C280.55114 (17)0.2345 (2)1.00474 (6)0.0238 (4)
H280.49050.16870.98670.029*
C290.55871 (16)0.1560 (2)1.26411 (5)0.0186 (3)
C300.68178 (17)0.2293 (2)1.25402 (6)0.0209 (4)
H300.68840.28151.22720.025*
C310.79521 (17)0.2253 (3)1.28361 (6)0.0243 (4)
H310.87720.27431.27650.029*
C320.78649 (17)0.1488 (3)1.32361 (6)0.0260 (4)
H320.86280.14431.34320.031*
C330.66363 (18)0.0788 (2)1.33445 (6)0.0242 (4)
H330.65720.02871.36150.029*
C340.54974 (18)0.0831 (2)1.30492 (6)0.0208 (4)
H340.46720.03701.31250.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01445 (7)0.02069 (8)0.01791 (8)0.00202 (7)0.00224 (5)0.00242 (8)
N10.0166 (7)0.0204 (8)0.0182 (7)0.0014 (6)0.0017 (6)0.0024 (7)
N20.0181 (6)0.0178 (7)0.0183 (7)0.0025 (7)0.0026 (6)0.0007 (7)
O10.0240 (7)0.0405 (9)0.0552 (10)0.0008 (7)0.0093 (7)0.0230 (9)
O20.0366 (8)0.0465 (9)0.0307 (8)0.0072 (7)0.0126 (7)0.0056 (7)
O30.0450 (9)0.0352 (8)0.0452 (9)0.0137 (7)0.0270 (8)0.0069 (7)
O40.0337 (7)0.0299 (8)0.0334 (8)0.0012 (6)0.0098 (7)0.0077 (7)
C10.0138 (8)0.0309 (11)0.0280 (10)0.0073 (8)0.0010 (8)0.0047 (9)
C20.0218 (8)0.0241 (10)0.0276 (10)0.0006 (8)0.0065 (8)0.0044 (8)
C30.0238 (9)0.0280 (11)0.0242 (10)0.0008 (8)0.0043 (8)0.0073 (8)
C40.0192 (8)0.0282 (11)0.0205 (9)0.0030 (8)0.0039 (7)0.0024 (9)
C110.0217 (9)0.0231 (9)0.0211 (9)0.0007 (8)0.0019 (7)0.0002 (8)
C120.0267 (8)0.0218 (9)0.0168 (8)0.0007 (8)0.0016 (7)0.0027 (8)
C130.0197 (7)0.0177 (8)0.0184 (8)0.0005 (8)0.0035 (7)0.0024 (8)
C140.0185 (8)0.0183 (8)0.0155 (8)0.0001 (7)0.0043 (7)0.0027 (7)
C150.0140 (7)0.0221 (9)0.0216 (9)0.0019 (7)0.0040 (7)0.0013 (8)
C160.0157 (8)0.0215 (9)0.0197 (9)0.0007 (7)0.0020 (7)0.0006 (8)
C170.0178 (8)0.0147 (8)0.0179 (9)0.0007 (7)0.0029 (7)0.0018 (7)
C180.0209 (8)0.0150 (8)0.0180 (8)0.0010 (8)0.0025 (7)0.0003 (8)
C190.0226 (8)0.0206 (9)0.0170 (9)0.0011 (7)0.0045 (7)0.0023 (8)
C200.0179 (8)0.0212 (9)0.0224 (9)0.0030 (7)0.0062 (7)0.0007 (8)
C210.0152 (8)0.0165 (8)0.0188 (9)0.0003 (7)0.0037 (7)0.0024 (7)
C220.0164 (7)0.0161 (8)0.0180 (9)0.0009 (7)0.0018 (7)0.0028 (7)
C230.0239 (8)0.0175 (9)0.0205 (9)0.0003 (8)0.0029 (7)0.0018 (8)
C240.0291 (9)0.0234 (9)0.0212 (9)0.0035 (9)0.0030 (7)0.0000 (9)
C250.0289 (10)0.0271 (10)0.0311 (11)0.0089 (9)0.0011 (9)0.0003 (9)
C260.0293 (10)0.0289 (10)0.0375 (12)0.0073 (9)0.0098 (9)0.0085 (10)
C270.0364 (10)0.0298 (11)0.0223 (10)0.0003 (9)0.0098 (8)0.0048 (9)
C280.0281 (9)0.0214 (9)0.0221 (9)0.0021 (8)0.0033 (8)0.0010 (8)
C290.0218 (8)0.0155 (8)0.0183 (8)0.0009 (8)0.0015 (7)0.0040 (8)
C300.0232 (8)0.0197 (9)0.0200 (9)0.0012 (8)0.0025 (7)0.0010 (8)
C310.0204 (8)0.0245 (9)0.0283 (10)0.0026 (8)0.0028 (8)0.0047 (9)
C320.0258 (9)0.0246 (9)0.0264 (10)0.0033 (9)0.0053 (8)0.0044 (10)
C330.0334 (10)0.0224 (9)0.0168 (9)0.0042 (8)0.0012 (8)0.0012 (8)
C340.0230 (9)0.0196 (9)0.0202 (9)0.0001 (8)0.0037 (8)0.0029 (8)
Geometric parameters (Å, º) top
Mo1—C31.963 (2)C15—C161.351 (2)
Mo1—C21.965 (2)C16—C171.434 (2)
Mo1—C12.039 (2)C17—C211.415 (2)
Mo1—C42.042 (2)C17—C181.419 (2)
Mo1—N12.2402 (14)C18—C191.378 (2)
Mo1—N22.2468 (15)C18—C291.492 (2)
N1—C111.327 (2)C19—C201.396 (2)
N1—C221.369 (2)C21—C221.437 (2)
N2—C201.326 (2)C23—C281.397 (3)
N2—C211.369 (2)C23—C241.402 (2)
O1—C11.140 (2)C24—C251.380 (2)
O2—C21.160 (2)C25—C261.382 (3)
O3—C31.158 (2)C26—C271.387 (3)
O4—C41.143 (2)C27—C281.377 (2)
C11—C121.390 (2)C29—C301.389 (2)
C12—C131.388 (2)C29—C341.394 (2)
C13—C141.423 (2)C30—C311.391 (2)
C13—C231.479 (2)C31—C321.381 (3)
C14—C221.407 (2)C32—C331.385 (3)
C14—C151.432 (2)C33—C341.393 (2)
C3—Mo1—C288.90 (8)C16—C15—C14121.65 (16)
C3—Mo1—C188.28 (8)C15—C16—C17122.03 (15)
C2—Mo1—C185.93 (7)C21—C17—C18118.09 (15)
C3—Mo1—C485.30 (7)C21—C17—C16117.21 (15)
C2—Mo1—C486.82 (7)C18—C17—C16124.65 (15)
C1—Mo1—C4170.40 (6)C19—C18—C17117.35 (15)
C3—Mo1—N1170.97 (7)C19—C18—C29119.87 (15)
C2—Mo1—N198.42 (6)C17—C18—C29122.74 (14)
C1—Mo1—N197.46 (7)C18—C19—C20120.78 (16)
C4—Mo1—N189.81 (6)N2—C20—C19123.34 (15)
C3—Mo1—N2100.17 (7)N2—C21—C17122.93 (16)
C2—Mo1—N2170.52 (7)N2—C21—C22116.55 (15)
C1—Mo1—N291.56 (6)C17—C21—C22120.46 (15)
C4—Mo1—N296.59 (6)N1—C22—C14123.04 (15)
N1—Mo1—N272.82 (5)N1—C22—C21116.63 (15)
C11—N1—C22117.26 (15)C14—C22—C21120.24 (15)
C11—N1—Mo1126.04 (11)C28—C23—C24118.39 (16)
C22—N1—Mo1116.51 (11)C28—C23—C13120.21 (16)
C20—N2—C21117.19 (14)C24—C23—C13121.40 (16)
C20—N2—Mo1126.38 (11)C25—C24—C23120.73 (17)
C21—N2—Mo1116.42 (11)C26—C25—C24120.07 (18)
O1—C1—Mo1173.75 (14)C25—C26—C27119.74 (18)
O2—C2—Mo1178.30 (16)C28—C27—C26120.52 (18)
O3—C3—Mo1177.38 (16)C27—C28—C23120.45 (17)
O4—C4—Mo1173.00 (15)C30—C29—C34118.81 (16)
N1—C11—C12123.53 (16)C30—C29—C18121.57 (15)
C13—C12—C11120.75 (16)C34—C29—C18119.61 (15)
C12—C13—C14116.94 (15)C31—C30—C29120.66 (17)
C12—C13—C23119.99 (15)C32—C31—C30120.19 (17)
C14—C13—C23123.06 (14)C31—C32—C33119.76 (16)
C22—C14—C13118.41 (14)C32—C33—C34120.16 (17)
C22—C14—C15117.79 (15)C33—C34—C29120.38 (17)
C13—C14—C15123.80 (15)

Experimental details

Crystal data
Chemical formula[Mo(C24H16N2)(CO)4]
Mr540.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.8354 (1), 7.5648 (1), 31.1172 (4)
β (°) 94.4628 (4)
V3)2308.19 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.662, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
39842, 5265, 4055
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 0.93
No. of reflections5265
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.61

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1997), SHELXS97, SHELXL97 (Sheldrick, 1997), XP (Siemens, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Mo1—C31.963 (2)Mo1—C42.042 (2)
Mo1—C21.965 (2)Mo1—N12.2402 (14)
Mo1—C12.039 (2)Mo1—N22.2468 (15)
C3—Mo1—C288.90 (8)C1—Mo1—N197.46 (7)
C3—Mo1—C188.28 (8)C4—Mo1—N189.81 (6)
C2—Mo1—C185.93 (7)C3—Mo1—N2100.17 (7)
C3—Mo1—C485.30 (7)C2—Mo1—N2170.52 (7)
C2—Mo1—C486.82 (7)C1—Mo1—N291.56 (6)
C1—Mo1—C4170.40 (6)C4—Mo1—N296.59 (6)
C3—Mo1—N1170.97 (7)N1—Mo1—N272.82 (5)
C2—Mo1—N198.42 (6)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds