Download citation
Download citation
link to html
Neutral 8-(5-iodo-n-pentyl)-3-(η5-penta­methyl­cyclo­pentadi­enyl)-arachno-3-rhoda-7,8-di­thia­undecaborane, [Rh(C5H19B8­IS2)­(C10H15)], obtained from the [arachno-7,8-S2B9H10] anion by treatment with I(CH2)5I followed by [Rh(C5Me5)Cl2]2 and N,N,N′,N′-tetra­methyl-1,8-di­amino­naphthalene, has the 11-vertex cluster geometry of [arachno-7,8-S2B9H10], but with an {Rh(C5Me5)} unit in the 3-position instead of a {BH} unit, and with a –(CH2)5I chain attached exo to an S atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010100244X/br1313sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010100244X/br1313Isup2.hkl
Contains datablock I

CCDC reference: 164624

Comment top

A contemporary survey of boron chemistry (Davidson et al., 2000) shows that there is much current interest in the linking together of boron-containing clusters with varying degrees of intimacy to give a remarkable variety of larger macromolecular assemblies (Lamrani et al., 2000; Hawthorne, 2000; Grimes, 2000; Colquhoun et al., 2000; Bould et al., 1999; Barton et al., 2000; Sivaev et al., 2000). Within this variety, there is a classification that may be described as consisting of 'bola' boranes, in which two clusters are linked together by a long flexible chain, for example the {–P—C—C—P–}-linked rhodathiaborane clusters in [(dppe)RhSB9H8(PPh2CH2CH2PPh2)B9H8SRh(dppe)] (Barton, 2000) and the {–O—C—C—C—C–}-linked borane and carborane units in the [B12H11O(CH2)4C2B10H11]2- dianion (Sivaev et al., 2000). In this context, we report the formation and structural characterization of a potential precursor, viz. [8-{I(CH2)5}-5-(η5-C5Me5)-arachno-5,7,8-RhS2B8H9], compound (I), to another type of bola-borane species. \sch

The heteroborane cluster architecture (Figure 1) is seen to be based on the arachno-type eleven-vertex cluster structure of the starting [S2B9H10]- anion, (II), but with the {BH(exo)} vertex at the 3-position replaced by the 'isolobal' cluster contributor {Rh(η5-C5Me5)}. It is of interest that, during the course of the reaction, there has been an effective replacement of {BH(exo)} by {Rh(η5-C5Me5)}. Since this is a very intimately bound cluster position (cluster connectivity five), however, it implies that the replacement mechanism will be complex. Interestingly, in the closely related reaction of neutral [MeS2B9H10] with [{Rh(η5-C5Me5)Cl2}2] the product [(η4-C5Me5H)RhSB9H9SMe] is quite different (Macías et al., 1997): (a) it retains all boron atoms, (b) there is a hydrogen atom transfer to the hydrocarbon ligand and an associated reduction in intimacy of the rhodium-to-hydrocarbon bonding, and (c) the alkylated sulfur atom is partially extruded from the cluster into a boron-boron bridging position. In [8-{I(CH2)5}-3- (η5-C5Me5)-arachno-3,7,8-RhS2B8H9], the other feature different from the [S2B9H10]- anion is of course the alkylation of one of the sulfur atoms, S8, by the long-chain -(CH2)5I moiety. There is some precedent for S-alkylation in the structurally characterized neutral [MeS2B9H10] species obtainable from [S2B9H10]- by iodide displacement from MeI (Holub et al., 1994), but here the alkylated sulfur is again extruded to a boron-boron bridging position, in contrast to the present compound. As expected, the bridging hydrogen atom on the open face is at the B10–B11 site distal from the alkylated, formally positive, S8 sulfur site, rather than at the adjacent B9–B10 position. The distance from the Rh atom to the alkylated sulfur atom S8 at 2.6185 (16) Å is significantly longer than that to non-alkylated S7 at 2.3922 (16) Å, and the boron-sulfur distance B4–S8 at 2.064 (8) Å is similarly longer than the otherwise corresponding B2–S7 distance of 1.938 (9) Å. Comparison of dimensions given in the Table shows that there are related differential effects throughout the cluster associated with the S-alkylation and the concomitant siting of the bridging hydrogen atom at B10–B11. The establishment of compound (I) leads to the interesting idea of a potential bolaborane (Barton, 2000) by use of an excess of the starting thiaborane, followed by excess of the organometallic substrate, to give [8,8'-{α,ω-(CH2)5}-{3-(η5-C5Me5)- arachno-3,7,8-RhS2B8H9}2], (III), and analogous structures when the concept is extended to other related systems. We currently examine for these and related possibilities.

Related literature top

For related literature, see: Barton (2000); Bould et al. (1999); Colquhoun et al. (2000); Davidson et al. (2000); Grimes (2000); Hawthorne (2000); Heřmánek (1999); Holub et al. (1994); Lamrani et al. (2000); Reed (1993); Sivaev et al. (2000).

Experimental top

A solution of [tmndH]+[S2B9H10]- (500 mg, 1.3 mmol, tmnd = N,N,N',N'-tetramethyl-1,8-diaminonaphthalene) and I(CH2)5I (200 mg, 0.1 ml, 0.6 mmol) in CH2Cl2 (30 ml) was heated at reflux under N2 for 24 h, the pale yellow solution filtered, and the solvent removed from the filtrate (rotary evaporator). The resulting yellow solid evaporate was extracted with hexane. Evaporation of the hexane extract gave a colourless oily residue, for which integrated 1H NMR spectroscopy indicated a ca 50% conversion of I(CH2)5I. The 11B NMR spectrum showed nine different resonances, at δ(11B) +32.9, +13.0, +9.8, +0.8, -1.8, -9.2, -18.6, -21.7 and -34.2 p.p.m.. These are very similar to those reported for [MeS2B9H10] (Holub et al., 1994), supporting mono-S-alkylation and the generation of [I(CH2)5S2B9H10] (185 mg, mmol, 0.6 mmol, 50%). This crude product was dissolved in CH2Cl2 (30 ml) and stirred with tmnd (128 mg, 0.6 mmol), and then [(C5Me5)RhCl2]2 (185 mg, 0.3 mmol) was added. The brown-black solution was stirred for 1 h, filtered through silica and reduced in volume. Preparative thin-layer chromatography (Silica GF254; 60% CH2Cl2/40% hexane) yielded a number of coloured components. The principal species was dark amber [8-{I(CH2)5}-3- (η5-C5Me5)-arachno-3,7,8-RhS2B8H9] [compound (I), RF ca 0.5; 12 mg, 0.02 mmol, 3%]. Crystallization was from dichloromethane-hexane. Selected NMR data for CD2Cl2 solution of [{I(CH2)5}(C5Me5)RhS2B8H9], (I), at 294–300 K as follows; cluster assignments by [11B–11B], [1H–1H] and (1H)-{11B} correlation experiments [Heřmánek, 1999; Reed, 1993]; ordered as assignment δ(11B)/p.p.m. [δ(1H)/p.p.m. for directly attached exo-hydrogen]: BH1 - 4.9 [+1.84], BH2 + 4.6 [+2.42], BH4 - 14.1 [+1.06], BH5 + 8.9 [+3.81], BH6 - 16.9 [+1.72], BH9 - 8.4 [+2.11], BH10 - 33.9 [+0.59] and BH11 - 1.6 [+3.11], with δ(1H)(µ-10,11) -1.75 [stronger coupling to B10 than to B11], and δ(1H)(C5Me5) at +1.89, {S(CH2)5I} {CH2} groups along the chain successively at δ(1H) +2.40 (α to S), +1.76, +1.51, +1.85 and +3.24 (α to I).

Refinement top

Cage H atoms were located from the Fourier difference syntheses and, were although their positional parameters were included in structure factor calculations, they were not refined. Non-cage H atoms were constrained in calculated positions with isotropic displacement parameters of 1.2Ueq of the parent C atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: WC (Thornton-Pett, 2000).

Figures top
[Figure 1] Fig. 1. Crystallographically determined molecular structure of (I) drawn with 40% probability ellipsoids and with H atoms shown as small circles of artificial radii.
[8-(5-iodo-n-hexyl)-5-(pentahapto-pentamethylcyclopentadienyl)- arachno-3-rhoda-7,8-dithia-arachno-undecaborane] top
Crystal data top
[Rh(C5H19B8IS2)(C10H15)]F(000) = 2352
Mr = 594.83Dx = 1.657 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 28.6498 (4) ÅCell parameters from 31844 reflections
b = 10.6700 (2) Åθ = 1.7–26.0°
c = 18.2997 (4) ŵ = 2.19 mm1
β = 121.524 (1)°T = 180 K
V = 4768.53 (15) Å3Prism, dark red
Z = 80.33 × 0.20 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4616 independent reflections
Radiation source: fine-focus sealed tube4244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 1.7°
1 degree ϕ exposures scansh = 3535
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1312
Tmin = 0.532, Tmax = 0.764l = 2222
31844 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0723P)2 + 27.1436P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4616 reflectionsΔρmax = 1.84 e Å3
250 parametersΔρmin = 1.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (2)
Crystal data top
[Rh(C5H19B8IS2)(C10H15)]V = 4768.53 (15) Å3
Mr = 594.83Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.6498 (4) ŵ = 2.19 mm1
b = 10.6700 (2) ÅT = 180 K
c = 18.2997 (4) Å0.33 × 0.20 × 0.13 mm
β = 121.524 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4616 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4244 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.764Rint = 0.100
31844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0723P)2 + 27.1436P]
where P = (Fo2 + 2Fc2)/3
4616 reflectionsΔρmax = 1.84 e Å3
250 parametersΔρmin = 1.16 e Å3
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 15 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh30.154692 (18)0.02351 (4)0.35982 (3)0.0455 (2)
C10.1723 (2)0.0846 (6)0.2617 (3)0.0515 (13)
C20.1153 (2)0.0514 (6)0.2202 (3)0.0473 (12)
C30.1112 (2)0.0767 (6)0.2375 (3)0.0505 (13)
C40.1662 (3)0.1253 (6)0.2903 (4)0.0543 (13)
C50.2036 (3)0.0242 (6)0.3037 (4)0.0556 (14)
C60.1957 (3)0.2095 (7)0.2589 (4)0.0695 (19)
H6A0.23040.22330.31290.104*
H6B0.16980.27610.25060.104*
H6C0.20200.21050.21120.104*
C70.0680 (3)0.1321 (6)0.1606 (3)0.0557 (14)
H7A0.07920.22030.17070.084*
H7B0.03800.11930.17090.084*
H7C0.05560.10990.10120.084*
C80.0590 (3)0.1509 (7)0.2001 (4)0.0644 (16)
H8A0.05080.18890.14590.097*
H8B0.02900.09520.18970.097*
H8C0.06330.21700.24030.097*
C90.1812 (3)0.2567 (7)0.3152 (5)0.0737 (19)
H9A0.17950.30280.26750.111*
H9B0.15560.29410.32930.111*
H9C0.21840.26090.36540.111*
C100.2641 (3)0.0378 (9)0.3495 (6)0.078 (2)
H10A0.27440.07330.31040.117*
H10B0.27650.09370.39880.117*
H10C0.28130.04450.36940.117*
C110.0798 (3)0.3467 (7)0.3238 (4)0.0679 (17)
H11A0.07040.32210.26550.081*
H11B0.04610.34170.32620.081*
C160.1011 (4)0.4796 (7)0.3416 (5)0.0686 (18)
H16A0.07580.53240.29190.082*
H16B0.13710.48100.34640.082*
C130.1075 (3)0.5387 (7)0.4241 (5)0.0690 (18)
H13A0.12710.47890.47220.083*
H13B0.13000.61540.43860.083*
C140.0541 (3)0.5713 (8)0.4148 (5)0.0700 (18)
H14A0.03190.49400.40090.084*
H14B0.03420.62940.36570.084*
C150.0584 (3)0.6309 (7)0.4928 (5)0.0725 (18)
H15A0.02190.66210.47760.087*
H15B0.08330.70390.51010.087*
B10.1105 (4)0.0666 (7)0.4177 (4)0.0574 (17)
H10.08990.17220.39080.069*
B20.1856 (3)0.0876 (7)0.4864 (4)0.0600 (17)
H20.20570.19300.49640.072*
B40.0820 (3)0.0836 (8)0.3771 (4)0.0548 (16)
H40.04410.08560.32950.066*
B50.0889 (4)0.0321 (9)0.4711 (5)0.0641 (19)
H50.05020.00130.47270.077*
B60.1477 (4)0.0570 (8)0.5348 (5)0.0643 (19)
H60.13920.13890.56390.077*
S70.23388 (7)0.04961 (19)0.50007 (10)0.0623 (4)
S80.13148 (7)0.23828 (15)0.40274 (9)0.0543 (4)
B90.0991 (3)0.1897 (8)0.4679 (4)0.0630 (18)
H90.06430.27540.45940.076*
B100.1460 (4)0.1040 (8)0.5633 (4)0.0635 (19)
H100.14020.12080.61290.076*
H1010.19340.16380.56860.076*
B110.2087 (4)0.0295 (8)0.5795 (5)0.0628 (18)
H110.24280.00780.64860.075*
I150.08834 (2)0.50440 (5)0.60066 (4)0.0747 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh30.0514 (3)0.0528 (3)0.0379 (3)0.00072 (18)0.0272 (2)0.00154 (16)
C10.060 (3)0.065 (4)0.042 (3)0.007 (3)0.036 (3)0.002 (2)
C20.059 (3)0.058 (3)0.035 (2)0.001 (3)0.031 (2)0.001 (2)
C30.059 (3)0.057 (3)0.043 (3)0.005 (3)0.033 (3)0.004 (2)
C40.062 (3)0.057 (3)0.051 (3)0.003 (3)0.034 (3)0.001 (3)
C50.054 (3)0.071 (4)0.050 (3)0.001 (3)0.033 (3)0.008 (3)
C60.084 (5)0.077 (5)0.061 (4)0.025 (4)0.047 (4)0.007 (3)
C70.062 (3)0.066 (4)0.041 (3)0.005 (3)0.029 (3)0.003 (3)
C80.066 (4)0.069 (4)0.055 (3)0.017 (3)0.029 (3)0.005 (3)
C90.092 (5)0.065 (4)0.063 (4)0.015 (4)0.040 (4)0.002 (3)
C100.051 (4)0.113 (7)0.075 (5)0.004 (4)0.037 (4)0.017 (4)
C110.084 (5)0.070 (4)0.047 (3)0.006 (4)0.032 (3)0.002 (3)
C160.082 (5)0.074 (5)0.056 (4)0.009 (4)0.041 (4)0.013 (3)
C130.082 (5)0.061 (4)0.063 (4)0.004 (3)0.037 (4)0.002 (3)
C140.081 (5)0.071 (5)0.062 (4)0.006 (4)0.041 (4)0.005 (3)
C150.084 (5)0.063 (4)0.075 (4)0.004 (4)0.045 (4)0.003 (3)
B10.097 (5)0.052 (4)0.050 (3)0.001 (3)0.058 (4)0.009 (3)
B20.083 (5)0.055 (4)0.042 (3)0.007 (4)0.033 (3)0.008 (3)
B40.050 (3)0.076 (5)0.048 (3)0.001 (3)0.032 (3)0.004 (3)
B50.076 (5)0.084 (5)0.047 (4)0.008 (4)0.042 (4)0.000 (3)
B60.088 (5)0.066 (5)0.046 (3)0.010 (4)0.039 (4)0.002 (3)
S70.0573 (9)0.0770 (11)0.0471 (8)0.0021 (8)0.0234 (7)0.0021 (7)
S80.0671 (9)0.0554 (8)0.0458 (7)0.0033 (7)0.0333 (7)0.0017 (6)
B90.077 (5)0.074 (5)0.046 (3)0.002 (4)0.037 (3)0.004 (3)
B100.083 (5)0.074 (5)0.039 (3)0.003 (4)0.036 (3)0.004 (3)
B110.072 (5)0.069 (5)0.050 (4)0.002 (4)0.034 (4)0.004 (3)
I150.0792 (4)0.0839 (4)0.0730 (4)0.0085 (2)0.0480 (3)0.0124 (2)
Geometric parameters (Å, º) top
Rh3—C42.165 (6)C16—H16A0.99
Rh3—C52.187 (6)C16—H16B0.99
Rh3—C32.189 (6)C13—C141.489 (11)
Rh3—C12.203 (5)C13—H13A0.99
Rh3—C22.209 (5)C13—H13B0.99
Rh3—B12.249 (6)C14—C151.508 (9)
Rh3—B22.326 (7)C14—H14A0.99
Rh3—B42.354 (6)C14—H14B0.99
Rh3—S72.3922 (16)C15—I152.163 (8)
Rh3—S82.6185 (16)C15—H15A0.99
C1—C51.422 (9)C15—H15B0.99
C1—C21.440 (8)B1—B51.753 (11)
C1—C61.503 (9)B1—B41.776 (11)
C2—C31.422 (9)B1—B61.831 (10)
C2—C71.492 (8)B1—B21.854 (12)
C3—C41.446 (9)B1—H11.25
C3—C81.503 (8)B2—B61.754 (11)
C4—C51.449 (9)B2—B111.929 (11)
C4—C91.467 (9)B2—S71.938 (9)
C5—C101.487 (10)B2—H21.23
C6—H6A0.98B4—B51.715 (10)
C6—H6B0.98B4—B91.852 (10)
C6—H6C0.98B4—S82.064 (8)
C7—H7A0.98B4—H40.97
C7—H7B0.98B5—B91.713 (12)
C7—H7C0.98B5—B61.745 (13)
C8—H8A0.98B5—B101.796 (12)
C8—H8B0.98B5—H51.17
C8—H8C0.98B6—B111.755 (12)
C9—H9A0.98B6—B101.803 (12)
C9—H9B0.98B6—H61.11
C9—H9C0.98S7—B111.943 (8)
C10—H10A0.98S8—B91.925 (7)
C10—H10B0.98B9—B101.799 (11)
C10—H10C0.98B9—H91.30
C11—C161.509 (10)B10—B111.840 (12)
C11—S81.839 (7)B10—H101.02
C11—H11A0.99B10—H1011.46
C11—H11B0.99B11—H1011.48
C16—C131.556 (10)B11—H111.15
C4—Rh3—C538.9 (2)C14—C15—H15A108.9
C4—Rh3—C338.8 (2)I15—C15—H15A108.9
C5—Rh3—C364.4 (2)C14—C15—H15B108.9
C4—Rh3—C164.4 (2)I15—C15—H15B108.9
C5—Rh3—C137.8 (2)H15A—C15—H15B107.7
C3—Rh3—C164.0 (2)B5—B1—B458.1 (4)
C4—Rh3—C264.0 (2)B5—B1—B658.2 (5)
C5—Rh3—C263.4 (2)B4—B1—B6107.4 (5)
C3—Rh3—C237.7 (2)B5—B1—B2108.5 (5)
C1—Rh3—C238.1 (2)B4—B1—B2120.6 (5)
C4—Rh3—B1105.0 (2)B6—B1—B256.9 (4)
C5—Rh3—B1141.2 (3)B5—B1—Rh3117.0 (5)
C3—Rh3—B196.5 (2)B4—B1—Rh370.5 (3)
C1—Rh3—B1159.5 (3)B6—B1—Rh3113.6 (5)
C2—Rh3—B1122.0 (3)B2—B1—Rh368.3 (3)
C4—Rh3—B296.6 (2)B5—B1—H1122.1
C5—Rh3—B2110.2 (3)B4—B1—H1129.1
C3—Rh3—B2119.1 (3)B6—B1—H1112.3
C1—Rh3—B2146.3 (3)B2—B1—H1107.5
C2—Rh3—B2156.8 (3)Rh3—B1—H1117.8
B1—Rh3—B247.8 (3)B6—B2—B160.9 (4)
C4—Rh3—B4134.1 (3)B6—B2—B1156.7 (4)
C5—Rh3—B4162.9 (2)B1—B2—B11105.1 (5)
C3—Rh3—B4101.5 (2)B6—B2—S7112.5 (5)
C1—Rh3—B4128.7 (2)B1—B2—S7119.6 (4)
C2—Rh3—B499.6 (2)B11—B2—S760.3 (4)
B1—Rh3—B445.3 (3)B6—B2—Rh3113.2 (5)
B2—Rh3—B484.7 (3)B1—B2—Rh363.9 (3)
C4—Rh3—S7111.45 (17)B11—B2—Rh3109.0 (4)
C5—Rh3—S792.85 (18)S7—B2—Rh367.5 (2)
C3—Rh3—S7150.16 (17)B6—B2—H2117.3
C1—Rh3—S7110.29 (16)B1—B2—H2119.8
C2—Rh3—S7148.19 (16)B11—B2—H2122.9
B1—Rh3—S789.8 (2)S7—B2—H2115.1
B2—Rh3—S748.5 (2)Rh3—B2—H2121.2
B4—Rh3—S7103.53 (17)B5—B4—B160.3 (4)
C4—Rh3—S8163.48 (16)B5—B4—B957.2 (4)
C5—Rh3—S8132.08 (18)B1—B4—B9109.1 (5)
C3—Rh3—S8129.52 (17)B5—B4—S8108.8 (5)
C1—Rh3—S8100.82 (17)B1—B4—S8121.0 (5)
C2—Rh3—S899.98 (16)B9—B4—S858.6 (3)
B1—Rh3—S886.50 (19)B5—B4—Rh3113.6 (5)
B2—Rh3—S899.88 (19)B1—B4—Rh364.2 (3)
B4—Rh3—S848.7 (2)B9—B4—Rh3116.6 (4)
S7—Rh3—S879.83 (6)S8—B4—Rh372.4 (2)
C5—C1—C2107.7 (5)B5—B4—H4113.3
C5—C1—C6125.2 (6)B1—B4—H4116.6
C2—C1—C6127.0 (6)B9—B4—H4116.0
C5—C1—Rh370.5 (3)S8—B4—H4119.8
C2—C1—Rh371.2 (3)Rh3—B4—H4122.4
C6—C1—Rh3125.9 (4)B9—B5—B465.4 (5)
C3—C2—C1108.9 (5)B9—B5—B6115.8 (6)
C3—C2—C7124.6 (5)B4—B5—B6114.2 (6)
C1—C2—C7126.2 (6)B9—B5—B1117.0 (5)
C3—C2—Rh370.4 (3)B4—B5—B161.6 (4)
C1—C2—Rh370.7 (3)B6—B5—B163.1 (5)
C7—C2—Rh3129.9 (4)B9—B5—B1061.6 (5)
C2—C3—C4107.8 (5)B4—B5—B10112.1 (6)
C2—C3—C8125.7 (6)B6—B5—B1061.2 (5)
C4—C3—C8126.3 (6)B1—B5—B10111.5 (6)
C2—C3—Rh371.9 (3)B9—B5—H5117.2
C4—C3—Rh369.7 (3)B4—B5—H5119.9
C8—C3—Rh3128.4 (4)B6—B5—H5115.2
C3—C4—C5107.3 (5)B1—B5—H5117.3
C3—C4—C9126.2 (6)B10—B5—H5120.4
C5—C4—C9126.0 (6)B5—B6—B2113.6 (5)
C3—C4—Rh371.5 (3)B5—B6—B11113.7 (6)
C5—C4—Rh371.4 (3)B2—B6—B1166.7 (5)
C9—C4—Rh3128.9 (4)B5—B6—B1060.8 (5)
C1—C5—C4108.4 (5)B2—B6—B10116.1 (6)
C1—C5—C10127.2 (7)B11—B6—B1062.3 (5)
C4—C5—C10124.4 (7)B5—B6—B158.7 (4)
C1—C5—Rh371.7 (3)B2—B6—B162.3 (4)
C4—C5—Rh369.7 (3)B11—B6—B1113.8 (5)
C10—C5—Rh3127.1 (5)B10—B6—B1107.7 (5)
C1—C6—H6A109.5B5—B6—H6111.7
C1—C6—H6B109.5B2—B6—H6116.3
H6A—C6—H6B109.5B11—B6—H6127.1
C1—C6—H6C109.5B10—B6—H6124.3
H6A—C6—H6C109.5B1—B6—H6112.1
H6B—C6—H6C109.5B2—S7—B1159.6 (3)
C2—C7—H7A109.5B2—S7—Rh364.0 (2)
C2—C7—H7B109.5B11—S7—Rh3106.0 (3)
H7A—C7—H7B109.5C11—S8—B9101.9 (4)
C2—C7—H7C109.5C11—S8—B498.6 (3)
H7A—C7—H7C109.5B9—S8—B455.2 (3)
H7B—C7—H7C109.5C11—S8—Rh3122.8 (2)
C3—C8—H8A109.5B9—S8—Rh3103.3 (3)
C3—C8—H8B109.5B4—S8—Rh358.95 (19)
H8A—C8—H8B109.5B5—B9—B1061.4 (5)
C3—C8—H8C109.5B5—B9—B457.4 (4)
H8A—C8—H8C109.5B10—B9—B4105.9 (6)
H8B—C8—H8C109.5B5—B9—S8115.6 (5)
C4—C9—H9A109.5B10—B9—S8112.4 (5)
C4—C9—H9B109.5B4—B9—S866.2 (3)
H9A—C9—H9B109.5B5—B9—H9124.1
C4—C9—H9C109.5B10—B9—H9127.6
H9A—C9—H9C109.5B4—B9—H9119.7
H9B—C9—H9C109.5S8—B9—H9108.9
C5—C10—H10A109.5B5—B10—B956.9 (5)
C5—C10—H10B109.5B5—B10—B658.0 (5)
H10A—C10—H10B109.5B9—B10—B6108.9 (5)
C5—C10—H10C109.5B5—B10—B11107.4 (5)
H10A—C10—H10C109.5B9—B10—B11123.1 (5)
H10B—C10—H10C109.5B6—B10—B1157.6 (5)
C16—C11—S8110.7 (5)B5—B10—H10114.8
C16—C11—H11A109.5B9—B10—H10112.8
S8—C11—H11A109.5B6—B10—H10117.8
C16—C11—H11B109.5B11—B10—H10122.1
S8—C11—H11B109.5B5—B10—H101127.5
H11A—C11—H11B108.1B9—B10—H10192.2
C11—C16—C13114.8 (6)B6—B10—H101105.8
C11—C16—H16A108.6B11—B10—H10151.8
C13—C16—H16A108.6H10—B10—H101116.3
C11—C16—H16B108.6B6—B11—B1060.1 (5)
C13—C16—H16B108.6B6—B11—B256.6 (4)
H16A—C16—H16B107.5B10—B11—B2106.4 (5)
C14—C13—C16113.0 (7)B6—B11—S7112.2 (5)
C14—C13—H13A109.0B10—B11—S7123.0 (5)
C16—C13—H13A109.0B2—B11—S760.1 (3)
C14—C13—H13B109.0B6—B11—H101107.1
C16—C13—H13B109.0B10—B11—H10150.6
H13A—C13—H13B107.8B2—B11—H101124.6
C13—C14—C15114.8 (7)S7—B11—H10189.6
C13—C14—H14A108.6B6—B11—H11118.3
C15—C14—H14A108.6B10—B11—H11117.5
C13—C14—H14B108.6B2—B11—H11122.9
C15—C14—H14B108.6S7—B11—H11114.3
H14A—C14—H14B107.6H101—B11—H11111.4
C14—C15—I15113.5 (5)

Experimental details

Crystal data
Chemical formula[Rh(C5H19B8IS2)(C10H15)]
Mr594.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)28.6498 (4), 10.6700 (2), 18.2997 (4)
β (°) 121.524 (1)
V3)4768.53 (15)
Z8
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.33 × 0.20 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.532, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
31844, 4616, 4244
Rint0.100
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.09
No. of reflections4616
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0723P)2 + 27.1436P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.84, 1.16

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1996), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), WC (Thornton-Pett, 2000).

Selected geometric parameters (Å, º) top
Rh3—B12.249 (6)B2—S71.938 (9)
Rh3—B22.326 (7)B4—B51.715 (10)
Rh3—B42.354 (6)B4—B91.852 (10)
Rh3—S72.3922 (16)B4—S82.064 (8)
Rh3—S82.6185 (16)B5—B91.713 (12)
C11—S81.839 (7)B5—B61.745 (13)
C15—I152.163 (8)B5—B101.796 (12)
B1—B51.753 (11)B6—B111.755 (12)
B1—B41.776 (11)B6—B101.803 (12)
B1—B61.831 (10)S7—B111.943 (8)
B1—B21.854 (12)S8—B91.925 (7)
B2—B61.754 (11)B9—B101.799 (11)
B2—B111.929 (11)B10—B111.840 (12)
S7—Rh3—S879.83 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds