Download citation
Download citation
link to html
Two iridanonaborane compounds, 4-carbonyl-5,6:8,9-bis-μH-4-hydrido-4-bis­(tri­methyl­phosphine)-4-irida-arachno-nonaborane(12), [IrH(B8H12)(C3H9P)2(CO)], (Ia), and 2-carbonyl-2,5:6,9:8,9-tri-μH-4-chloro-2-bis­(tri­methyl­phosphine)-2-irida-nido-nonaborane(11), [Ir(B8H10Cl)(C3H9P)2(CO)], (II), are described. Compound (II) shows evidence of effective chlorine-substituent migration during its formation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015213/br1295sup1.cif
Contains datablocks Ia, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015213/br1295Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015213/br1295IIsup3.hkl
Contains datablock II

CCDC references: 158243; 158244

Comment top

The arachno-iridanonaborane [4,4,4,4-CO(PMe3)2H-arachno-4-IrB8H12], (Ia), and its chloro analogue [4,4,4,4-(CO)(PMe3)2H-arachno-4-IrB8H11-2-Cl], (Ib), are obtained from the reaction of [IrCl(CO)(PMe3)2] with the [nido-B9H12]- anion (Bould et al., 1982, 1984). In the original reports on these compounds, the arachno structural type was characterized by a single-crystal X-ray diffraction analysis of the chlorinated derivative, (Ib), but the data were of insufficient quality for H-atom location, although they were reasonably positioned from the results of NMR spectroscopy. In the report on the structure of (Ib) it was surmised that the two endo-terminal H atoms may have partial bridging character (hatched lines in the scheme). However, recent experimental observations and theoretical considerations on non-metal-containing arachno nine-vertex species (Hofmann & Schleyer, 1999; Bould et al., 2000) suggest that one of these H atoms may be bridging and one endo-terminal, with rapid equilibration between the two in solution, and it is useful to attempt to investigate their character crystallographically. \sch

Compound (Ib) has the symmetric ligand disposition shown in the scheme. The structural determination of (Ia) (Fig. 1) now confirms that it has the alternative asymmetric ligand disposition reasonably proposed from NMR spectroscopy. Otherwise, interatomic dimensions in (Ia) are very similar to those in (Ib), with the main differences arising principally from metal hydride trans effects. Thus, the Ir4—P2 distance of 2.368 (2) Å trans to the hydride in (Ia) is significantly longer than the cis-to-H Ir4—P distances in (Ib) [2.334 (2) and 2.346 (2) Å] and Ir4—P1 in (Ia) [2.3319 (15) Å]. Although the Cl substituent on B2 has a noticeable effect on the thermodynamic parameters for the arachno nido closure process (Bould et al., 1984), its absence in (Ia) shows no significant effect on the interatomic dimensions regarding vertex B2 when compared with (Ib). Unfortunately, the H atoms did not refine satisfactorily and their disposition as endo-terminal or bridging H atoms remains unresolved in nine-vertex arachno-metallanonaborane clusters.

The arachno nine-vertex iridaboranes are also interesting starting materials for a good variety of interesting metallaborane chemistry (Bould et al., 1996, 1997). Fusion of arachno metallanonaboaranes in molten decaborane affords a number of interesting fused macropolyhedral species (Bould et al., 1999). For example, compound (Ia) gives the mixed cluster fusion products [(PMe3)2IrB26H24Ir(CO)(PMe3)2] and [(CO)(PMe3)2IrB17H20] in low yields. In an attempt to vary these yields and products we have used the chloro-substituted species, (Ib). In the event, however, fusion of an intimate mixture of decaborane(14) and (Ib) at 396 K yielded the second title compound, [2,2,2-(CO)(PMe3)2-nido-2-IrB8H10-4-Cl], (II), as the only isolatable product. A single-crystal X-ray diffraction study was carried out in order to confirm the position of the Cl substituent deduced from NMR spectroscopy (Experimental).

All atoms, including H atoms, were located and freely refined in reasonable positions for (II) (Fig. 2). Additionally, the position of the Cl substituent is confirmed. It differs from the position previously reported for [2,2,2-(CO)(PMe3)2-nido-2-IrB8H10-3-Cl] obtained from the thermolysis of (Ib) in the absence of B10H14 (Bould et al., 1984). The cluster is also similar to the other structurally characterized nido-metallanonaborane species, namely, the third-row rhenaborane [(PMe2Ph)3H2-nido-ReB8H11] (Beckett et al., 1988), in which all H atoms were located except for the terminal and bridging metal hydrides, and the nido-{IrB8} subcluster in the macropolyhedral species [(PMe3)2IrB26H24Ir(CO)(PMe3)2] (Bould et al., 1997).

The position of the Cl substituent in (II) indicates that, during the thermolysis of the arachno-metallaborane precursor compound (Ib) to give (II), the substituent has moved from a B vertex adjacent to the metal atom in the precursor to a position one vertex removed from the metal. In this context, it may be noted that strong heating of a xylene solution of [2,2,2-(CO)(PMe3)2-nido-2-IrB8H10-3-Cl] results in cluster closure, to give the iso-closo species [(PMe3)2HIrB8H7Cl] in which a comparable movement of the Cl to a B vertex remote from the metal centre has been noted (Bould et al., 1982). A mechanism was proposed in which the migration would occur via a cluster diamond-square-diamond rearrangement during the nido iso-closo step. The low yield in the precursive arachno nido closure reported here makes the proposal of a reaction mechanism speculative, although it does suggest that the Cl-migration step could also possibly occur prior to the nido iso-closo closure.

Experimental top

The previously reported arachno compounds (Ia) and (Ib) were prepared as described by Bould et al. (1984). Single crystals of (Ia) were obtained by diffusion of pentane through a benzene layer into a CDCl3 solution of the compound. The previously unreported nido compound, (II), was isolated from the thermolysis of the arachno compound (Ib) as follows. A finely ground mixture of [4,4,4,4-(CO)(PMe3)2H-4-IrB8H11-2-Cl] [(Ib), 73 mg, 145 µmol] and B10H14 (0.51 g, 4200 µmol) was placed in a 10 mm soda glass NMR tube which was then evacuated, refilled with nitrogen and heated in an oil bath at 396 K for 55 min, after which time the excess B10H14 was removed by sublimation (357 K, ca 0.01 mm H g). Thin-layer chromatography of the residue (Aldrich standard grade silica gel with gypsum binder and fluorescent indicator, 70:30 CH2Cl2/hexane) showed a number of diffuse faint yellow and red bands between RF 0.1 and 0.8. Separation and identification of these bands proved difficult, but one yellow band, at RF 0.1, after further separation by high-performance liquid chromatography [silica, Lichosorb Si60 7 µm, 260 × 16 mm column, CH2Cl2/hexane (80:20, 5 ml min-1), RT 15 min] and crystallization by diffusion of pentane through a benzene layer into a CDCl3 solution of the compound, gave crystals of (II) suitable for diffraction analysis (2 mg, 4 µmol, 3%). NMR spectroscopic analysis: (p.p.m., CDCl3, 300 K, Bruker 250 ARX spectrometer, δ(11B) [δ(1H) in square brackets]: B1 19.9 [4.77], B4 19.9 (site of Cl substituent), B6 - 4.8 [3.01], B3, B8, B9 - 12.2 [-1.35] -14.2 (2) [-2.8 and -1.30], B5 - 35.8 [0.14], B7 - 51.7 [-1.11]; 1H NMR (δ, p.p.m.): H2/H5 - 14.46 [2J(31P-1H) 62 Hz], H6/H9 and H8/H9 - 2.76 and -2.02, P(CH3)3 1.91 and 1.78 [2J(31P-1H) 10 Hz]; 31P NMR (δ, p.p.m.): -42.0 and -51.5.

Refinement top

Data were collected for compound (Ia) using a mixture of area-detector ω and ϕ exposures, with the CCD detector positioned 30 mm from the sample. Methyl H atoms were constrained to calculated positions with isotropic displacement parameters equal to 1.2Ueq of the parent C atom. Cluster-associated H atoms were located via Fourier difference syntheses and were included in structure factor calculations but were not refined. For both compounds, all boron-cage H atoms were located from the difference Fourier map and were refined freely. Non-boron-cage H atoms were included in their idealized geometry and were treated with the appropriate riding model (AFIX in? SHELXTL; Sheldrick, 1998). Please clarify - s.u.s only given for (II).

Computing details top

Data collection: COLLECT (Nonius, 1998) for (Ia); SMART (Bruker, 1997) for (II). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1996) for (Ia); SMART for (II). Data reduction: DENZO-SMN for (Ia); SAINT (Bruker, 1997) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEX (McArdle, 1995) for (Ia); SHELXTL (Sheldrick, 1998) for (II). For both compounds, software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. A perspective view of a single molecule of (Ia) drawn with 40% probability displacement ellipsoids and with H atoms shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. A perspective view of a single molecule of (II) drawn with 40% probability displacement ellipsoids and with H atoms shown as small circles of arbitrary radii.
(Ia) 5,6:8,9-bis-µH-4-carbonyl-4-hydrido-4-bis(trimethylphosphine)-4-irido- arachno-nonaborane(12) top
Crystal data top
[IrH(B8H12)(C3H9P)2(CO)]F(000) = 912
Mr = 471.94Dx = 1.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2035 (2) ÅCell parameters from 11332 reflections
b = 15.9788 (5) Åθ = 1–27.5°
c = 13.2013 (3) ŵ = 7.13 mm1
β = 99.670 (2)°T = 150 K
V = 1913.81 (8) Å3Prism, colourless
Z = 40.62 × 0.25 × 0.11 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3737 independent reflections
Radiation source: Fine-focus sealed tube3547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 26°, θmin = 3.0°
ϕ scans for χ = 0°, 1° ω scans for χ = 90°h = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1919
Tmin = 0.096, Tmax = 0.508l = 1616
15922 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0588P)2 + 4.8183P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3737 reflectionsΔρmax = 2.01 e Å3
179 parametersΔρmin = 2.88 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
[IrH(B8H12)(C3H9P)2(CO)]V = 1913.81 (8) Å3
Mr = 471.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2035 (2) ŵ = 7.13 mm1
b = 15.9788 (5) ÅT = 150 K
c = 13.2013 (3) Å0.62 × 0.25 × 0.11 mm
β = 99.670 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3737 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3547 reflections with I > 2σ(I)
Tmin = 0.096, Tmax = 0.508Rint = 0.075
15922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 2.01 e Å3
3737 reflectionsΔρmin = 2.88 e Å3
179 parameters
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10° ϕ range.

Detector set at 30 mm from sample with different 2θ offsets. 1° ϕ exposures for χ = 0° settings, 1° ω exposures for χ = 90° settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir40.04951 (2)0.162921 (12)0.114177 (13)0.02470 (14)
H40.08580.06430.11710.03*
C10.0339 (7)0.1480 (4)0.0250 (5)0.0334 (12)
O10.0874 (6)0.1340 (4)0.1078 (4)0.0576 (12)
P10.2957 (2)0.17093 (9)0.09333 (13)0.0322 (3)
C110.3930 (8)0.0739 (5)0.1210 (7)0.064 (2)
H11A0.34160.02940.07810.096*
H11B0.39680.05970.19370.096*
H11C0.49340.07960.10650.096*
C120.3291 (7)0.1918 (5)0.0359 (5)0.0453 (15)
H12A0.43540.19090.03660.068*
H12B0.28940.2470.05810.068*
H12C0.28060.14890.08270.068*
C130.4160 (7)0.2466 (5)0.1677 (6)0.056 (2)
H13A0.40750.24150.24050.084*
H13B0.38730.30320.14360.084*
H13C0.51810.23610.15930.084*
P20.0012 (2)0.30854 (10)0.10708 (10)0.0310 (3)
C210.0615 (8)0.3635 (5)0.0001 (5)0.049 (2)
H21A0.02780.42170.00120.073*
H21B0.01980.3360.06460.073*
H21C0.16940.36220.00870.073*
C220.1938 (9)0.3353 (4)0.0875 (6)0.047 (2)
H22A0.20540.39580.07730.071*
H22B0.23580.31850.14790.071*
H22C0.24530.3060.02670.071*
C230.0803 (8)0.3728 (4)0.2165 (5)0.0447 (15)
H23A0.1880.37010.22550.067*
H23B0.04720.3520.27860.067*
H23C0.04810.43090.20410.067*
B10.0623 (7)0.1731 (4)0.2528 (5)0.0283 (13)
H10.09490.23950.26440.034*
B20.1763 (7)0.0909 (4)0.2821 (5)0.0346 (13)
H20.27860.10190.31560.042*
B30.0038 (7)0.1093 (4)0.3588 (5)0.0341 (13)
H30.00240.13140.43950.041*
B50.1714 (7)0.1168 (5)0.1500 (5)0.0340 (14)
H50.26680.14330.10340.041*
H560.15230.05850.1090.041*
B60.1866 (8)0.0075 (5)0.1978 (6)0.0400 (15)
H60.30110.02510.18420.048*
H670.07730.04150.21430.048*
B70.0535 (8)0.0059 (5)0.3178 (6)0.043 (2)
H70.06820.05240.3610.051*
H780.10370.01550.30190.051*
B80.1403 (8)0.0416 (5)0.3439 (5)0.0388 (14)
H80.21620.00710.4180.047*
H890.19010.08250.27780.047*
B90.1298 (8)0.1493 (5)0.2858 (6)0.0356 (15)
H90.19260.18270.31840.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir40.0232 (2)0.0314 (2)0.0200 (2)0.00028 (6)0.00525 (10)0.00015 (6)
C10.030 (3)0.043 (3)0.025 (3)0.005 (2)0.002 (2)0.000 (2)
O10.065 (3)0.070 (4)0.034 (3)0.008 (3)0.003 (2)0.011 (2)
P10.0251 (7)0.0407 (9)0.0327 (8)0.0017 (5)0.0100 (6)0.0029 (6)
C110.040 (4)0.065 (5)0.093 (6)0.016 (3)0.030 (4)0.030 (4)
C120.046 (4)0.056 (4)0.041 (3)0.008 (3)0.027 (3)0.004 (3)
C130.036 (3)0.085 (6)0.048 (4)0.016 (3)0.011 (3)0.011 (4)
P20.0352 (7)0.0353 (8)0.0232 (7)0.0032 (6)0.0072 (5)0.0008 (6)
C210.062 (4)0.044 (4)0.043 (4)0.003 (3)0.019 (3)0.014 (3)
C220.051 (4)0.045 (4)0.048 (4)0.014 (3)0.014 (3)0.007 (3)
C230.059 (4)0.041 (4)0.035 (3)0.005 (3)0.010 (3)0.011 (3)
B10.033 (3)0.032 (3)0.023 (3)0.001 (2)0.015 (3)0.001 (2)
B20.033 (3)0.039 (4)0.034 (3)0.001 (3)0.013 (3)0.002 (3)
B30.036 (3)0.042 (4)0.027 (3)0.002 (3)0.011 (3)0.003 (3)
B50.027 (3)0.048 (4)0.027 (3)0.002 (3)0.007 (2)0.004 (3)
B60.034 (3)0.045 (4)0.044 (4)0.007 (3)0.016 (3)0.005 (3)
B70.046 (4)0.045 (4)0.041 (4)0.001 (3)0.017 (3)0.006 (3)
B80.043 (4)0.040 (4)0.035 (3)0.002 (3)0.012 (3)0.005 (3)
B90.034 (3)0.039 (4)0.034 (4)0.009 (3)0.005 (3)0.000 (3)
Geometric parameters (Å, º) top
Ir4—C11.883 (6)B1—B21.764 (9)
Ir4—B12.251 (6)B1—B51.789 (9)
Ir4—B92.272 (8)B1—B91.789 (10)
Ir4—B52.285 (6)B2—B61.727 (10)
Ir4—P12.3319 (15)B2—B31.759 (9)
Ir4—P22.368 (2)B2—B71.779 (10)
C1—O11.143 (7)B2—B51.800 (9)
P1—C111.797 (7)B3—B81.748 (9)
P1—C131.813 (7)B3—B71.774 (10)
P1—C121.814 (6)B3—B91.802 (9)
P2—C221.821 (8)B5—B61.870 (10)
P2—C231.821 (6)B6—B71.832 (11)
P2—C211.827 (6)B7—B81.850 (10)
B1—B31.743 (9)B8—B91.879 (10)
C1—Ir4—B1129.4 (3)B6—B2—B763.0 (4)
C1—Ir4—B9166.2 (3)B3—B2—B760.2 (4)
B1—Ir4—B946.6 (3)B1—B2—B7104.6 (4)
C1—Ir4—B586.0 (2)B6—B2—B564.0 (4)
B1—Ir4—B546.4 (2)B3—B2—B5110.7 (4)
B9—Ir4—B585.1 (2)B1—B2—B560.2 (4)
C1—Ir4—P197.9 (2)B7—B2—B5108.3 (4)
B1—Ir4—P1132.7 (2)B1—B3—B8114.1 (4)
B9—Ir4—P187.9 (2)B1—B3—B260.5 (4)
B5—Ir4—P1163.4 (2)B8—B3—B2117.4 (5)
C1—Ir4—P292.5 (2)B1—B3—B7105.7 (5)
B1—Ir4—P281.5 (2)B8—B3—B763.4 (4)
B9—Ir4—P299.3 (2)B2—B3—B760.5 (4)
B5—Ir4—P299.0 (2)B1—B3—B960.6 (4)
P1—Ir4—P296.96 (5)B8—B3—B963.9 (4)
O1—C1—Ir4175.7 (6)B2—B3—B9112.4 (5)
C11—P1—C13103.2 (4)B7—B3—B9109.3 (5)
C11—P1—C12101.1 (4)B1—B5—B258.9 (3)
C13—P1—C12101.7 (3)B1—B5—B6106.1 (4)
C11—P1—Ir4112.9 (2)B2—B5—B656.1 (4)
C13—P1—Ir4119.3 (2)B1—B5—Ir465.8 (3)
C12—P1—Ir4116.3 (2)B2—B5—Ir4116.3 (4)
C22—P2—C23103.5 (3)B6—B5—Ir4119.4 (4)
C22—P2—C21101.4 (3)B2—B6—B759.9 (4)
C23—P2—C21102.1 (4)B2—B6—B559.9 (4)
C22—P2—Ir4114.2 (2)B7—B6—B5103.2 (5)
C23—P2—Ir4118.4 (2)B3—B7—B259.3 (4)
C21—P2—Ir4115.0 (2)B3—B7—B6110.6 (5)
B3—B1—B260.2 (4)B2—B7—B657.1 (4)
B3—B1—B5111.9 (5)B3—B7—B857.6 (4)
B2—B1—B560.9 (4)B2—B7—B8111.3 (5)
B3—B1—B961.3 (4)B6—B7—B8129.8 (5)
B2—B1—B9112.8 (5)B3—B8—B759.0 (4)
B5—B1—B9118.9 (4)B3—B8—B959.5 (4)
B3—B1—Ir4119.3 (4)B7—B8—B9103.0 (5)
B2—B1—Ir4119.6 (4)B1—B9—B358.1 (4)
B5—B1—Ir467.8 (3)B1—B9—B8106.0 (4)
B9—B1—Ir467.3 (3)B3—B9—B856.7 (4)
B6—B2—B3116.5 (5)B1—B9—Ir466.1 (3)
B6—B2—B1113.8 (4)B3—B9—Ir4115.5 (4)
B3—B2—B159.3 (4)B8—B9—Ir4118.7 (4)
(II) 2,5:6,9:8,9-tri-µH-2-carbonyl-4-chloro-2-bis(trimethylphosphine)-2-irido- nido-nonaborane(11) top
Crystal data top
[Ir(B8H10Cl)(C3H9P)2(CO)]F(000) = 968
Mr = 504.36Dx = 1.766 Mg m3
Dm = no Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2655 (1) ÅCell parameters from 8192 reflections
b = 12.1784 (1) Åθ = 2–27°
c = 16.8668 (1) ŵ = 7.34 mm1
β = 94.702 (1)°T = 223 K
V = 1896.83 (3) Å3Rectangular, yellow
Z = 40.23 × 0.22 × 0.10 mm
Data collection top
Nonius KappaCCD? area-detector
diffractometer
4150 independent reflections
Radiation source: normal-focus sealed tube3824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
h = 1111
Tmin = 0.283, Tmax = 0.528k = 1515
55769 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.012P)2 + 2.6P]
where P = (Fo2 + 2Fc2)/3
4150 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ir(B8H10Cl)(C3H9P)2(CO)]V = 1896.83 (3) Å3
Mr = 504.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2655 (1) ŵ = 7.34 mm1
b = 12.1784 (1) ÅT = 223 K
c = 16.8668 (1) Å0.23 × 0.22 × 0.10 mm
β = 94.702 (1)°
Data collection top
Nonius KappaCCD? area-detector
diffractometer
4150 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
3824 reflections with I > 2σ(I)
Tmin = 0.283, Tmax = 0.528Rint = 0.038
55769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 1.00 e Å3
4150 reflectionsΔρmin = 0.51 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir20.491487 (11)0.265072 (8)0.314885 (6)0.02152 (4)
Cl10.65539 (9)0.03900 (7)0.15775 (6)0.0440 (2)
P10.58407 (10)0.23739 (7)0.44779 (5)0.03146 (17)
P20.25027 (9)0.25232 (6)0.34079 (5)0.02895 (16)
O10.4718 (3)0.51658 (19)0.32160 (15)0.0464 (6)
B10.5458 (4)0.0977 (3)0.2880 (2)0.0271 (7)
B30.4297 (4)0.1506 (3)0.2098 (2)0.0295 (7)
B40.6024 (4)0.0947 (3)0.1944 (2)0.0290 (7)
B50.7063 (4)0.1694 (3)0.2678 (2)0.0280 (7)
B60.4431 (4)0.2941 (3)0.1792 (2)0.0318 (7)
B70.5249 (4)0.1907 (3)0.1227 (2)0.0357 (8)
B80.7127 (4)0.2036 (3)0.1618 (2)0.0337 (8)
B90.6026 (5)0.3170 (4)0.1258 (2)0.0403 (9)
C10.4794 (3)0.4230 (3)0.32131 (17)0.0295 (6)
C20.4818 (5)0.1528 (3)0.5118 (2)0.0518 (10)
H2A0.38270.17900.51000.078*
H2B0.52540.15710.56600.078*
H2C0.48260.07720.49380.078*
C30.6099 (4)0.3625 (3)0.5052 (2)0.0471 (9)
H3A0.51990.40350.50260.071*
H3B0.68450.40670.48370.071*
H3C0.63910.34430.56020.071*
C40.7615 (4)0.1749 (4)0.4605 (2)0.0578 (11)
H4A0.76050.10590.43180.087*
H4B0.78710.16150.51660.087*
H4C0.83220.22380.44000.087*
C50.1220 (3)0.2922 (3)0.2591 (2)0.0405 (8)
H5A0.13940.24950.21230.061*
H5B0.13370.36970.24780.061*
H5C0.02430.27880.27340.061*
C60.1981 (4)0.3410 (3)0.4203 (2)0.0419 (8)
H6A0.26050.32680.46830.063*
H6B0.09830.32620.43030.063*
H6C0.20770.41720.40480.063*
C70.1878 (4)0.1161 (3)0.3663 (2)0.0457 (9)
H7A0.25040.08690.41030.069*
H7B0.19040.06800.32060.069*
H7C0.08940.12080.38170.069*
H10.544 (3)0.016 (3)0.3286 (18)0.030 (8)*
H30.314 (3)0.107 (2)0.1950 (17)0.021 (7)*
H50.807 (4)0.150 (3)0.301 (2)0.038 (9)*
H60.345 (4)0.339 (3)0.157 (2)0.044 (10)*
H70.472 (4)0.132 (3)0.056 (2)0.051 (11)*
H80.802 (4)0.180 (3)0.130 (2)0.045 (10)*
H90.612 (3)0.375 (3)0.0736 (19)0.037 (9)*
H250.658 (4)0.270 (3)0.284 (2)0.052 (11)*
H690.551 (4)0.370 (3)0.178 (2)0.048 (10)*
H890.717 (4)0.298 (3)0.169 (2)0.053 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir20.02085 (6)0.02513 (6)0.01844 (6)0.00061 (4)0.00067 (4)0.00186 (4)
Cl10.0382 (4)0.0392 (4)0.0558 (5)0.0032 (3)0.0117 (4)0.0163 (4)
P10.0385 (5)0.0338 (4)0.0211 (4)0.0058 (3)0.0034 (3)0.0030 (3)
P20.0247 (4)0.0358 (4)0.0270 (4)0.0004 (3)0.0059 (3)0.0031 (3)
O10.0509 (15)0.0294 (13)0.0586 (17)0.0043 (10)0.0018 (13)0.0016 (11)
B10.0283 (17)0.0263 (16)0.0267 (16)0.0012 (13)0.0032 (13)0.0040 (13)
B30.0264 (17)0.0361 (18)0.0260 (17)0.0020 (14)0.0025 (13)0.0096 (13)
B40.0247 (16)0.0319 (17)0.0305 (18)0.0006 (13)0.0043 (14)0.0082 (13)
B50.0221 (16)0.0310 (17)0.0307 (17)0.0015 (13)0.0020 (13)0.0042 (13)
B60.0322 (18)0.044 (2)0.0193 (16)0.0062 (15)0.0020 (13)0.0020 (14)
B70.0323 (19)0.049 (2)0.0265 (17)0.0080 (16)0.0050 (14)0.0043 (15)
B80.0293 (18)0.041 (2)0.0326 (18)0.0006 (15)0.0096 (15)0.0004 (15)
B90.046 (2)0.048 (2)0.0286 (19)0.0086 (18)0.0122 (17)0.0078 (16)
C10.0275 (15)0.0355 (17)0.0254 (15)0.0014 (12)0.0009 (12)0.0010 (12)
C20.073 (3)0.044 (2)0.038 (2)0.0006 (19)0.0047 (19)0.0129 (16)
C30.065 (3)0.044 (2)0.0303 (18)0.0024 (18)0.0043 (17)0.0101 (15)
C40.054 (2)0.083 (3)0.0339 (19)0.026 (2)0.0151 (17)0.0094 (19)
C50.0240 (16)0.056 (2)0.0410 (19)0.0087 (14)0.0008 (14)0.0047 (16)
C60.0390 (19)0.054 (2)0.0337 (18)0.0065 (16)0.0119 (15)0.0083 (15)
C70.039 (2)0.047 (2)0.052 (2)0.0126 (16)0.0110 (17)0.0006 (17)
Geometric parameters (Å, º) top
Ir2—C11.930 (3)B6—B91.814 (5)
Ir2—B12.156 (3)B6—H61.10 (4)
Ir2—B32.291 (3)B6—H691.36 (4)
Ir2—P22.3174 (8)B7—B91.697 (6)
Ir2—B62.323 (3)B7—B81.816 (5)
Ir2—P12.3578 (8)B7—H71.39 (4)
Ir2—B52.491 (3)B8—B91.793 (6)
Ir2—H251.67 (4)B8—H81.07 (4)
Cl1—B41.823 (3)B8—H891.16 (4)
P1—C41.809 (4)B9—H91.14 (3)
P1—C31.811 (3)B9—H691.23 (4)
P1—C21.815 (4)B9—H891.26 (4)
P2—C51.810 (3)C2—H2A0.9700
P2—C61.818 (3)C2—H2B0.9700
P2—C71.820 (4)C2—H2C0.9700
O1—C11.142 (4)C3—H3A0.9700
B1—B41.705 (5)C3—H3B0.9700
B1—B31.756 (5)C3—H3C0.9700
B1—B51.781 (5)C4—H4A0.9700
B1—H11.21 (3)C4—H4B0.9700
B3—B41.777 (5)C4—H4C0.9700
B3—B61.830 (5)C5—H5A0.9700
B3—B71.840 (5)C5—H5B0.9700
B3—H31.21 (3)C5—H5C0.9700
B4—B51.758 (5)C6—H6A0.9700
B4—B81.788 (5)C6—H6B0.9700
B4—B71.789 (5)C6—H6C0.9700
B5—B81.841 (5)C7—H7A0.9700
B5—H51.08 (3)C7—H7B0.9700
B5—H251.34 (4)C7—H7C0.9700
B6—B71.785 (5)
C1—Ir2—B1165.75 (13)B7—B6—B361.2 (2)
C1—Ir2—B3129.64 (13)B9—B6—B3111.3 (3)
B1—Ir2—B346.39 (13)B7—B6—Ir2111.2 (2)
C1—Ir2—P289.72 (9)B9—B6—Ir2114.4 (2)
B1—Ir2—P2102.81 (9)B3—B6—Ir265.71 (15)
B3—Ir2—P285.48 (9)B7—B6—H6122.7 (19)
C1—Ir2—B684.04 (13)B9—B6—H6115.7 (19)
B1—Ir2—B688.10 (13)B3—B6—H6120.0 (19)
B3—Ir2—B646.72 (13)Ir2—B6—H6120.3 (18)
P2—Ir2—B694.85 (9)B7—B6—H6997.6 (16)
C1—Ir2—P196.16 (9)B9—B6—H6942.7 (16)
B1—Ir2—P189.51 (9)B3—B6—H69136.1 (16)
B3—Ir2—P1134.20 (9)Ir2—B6—H6991.8 (15)
P2—Ir2—P195.31 (3)H6—B6—H69104 (2)
B6—Ir2—P1169.84 (9)B9—B7—B662.7 (2)
C1—Ir2—B5122.37 (12)B9—B7—B4115.2 (3)
B1—Ir2—B544.33 (12)B6—B7—B4105.4 (2)
B3—Ir2—B567.93 (11)B9—B7—B861.3 (2)
P2—Ir2—B5146.78 (8)B6—B7—B8100.5 (3)
B6—Ir2—B581.49 (12)B4—B7—B859.5 (2)
P1—Ir2—B589.90 (8)B9—B7—B3116.5 (3)
C1—Ir2—H2592.3 (12)B6—B7—B360.6 (2)
B1—Ir2—H2574.5 (12)B4—B7—B358.64 (19)
B3—Ir2—H2587.9 (13)B8—B7—B3104.0 (2)
P2—Ir2—H25172.8 (14)B9—B7—H7127.4 (15)
B6—Ir2—H2578.5 (14)B6—B7—H7131.0 (15)
P1—Ir2—H2591.3 (14)B4—B7—H7108.2 (15)
B5—Ir2—H2530.2 (12)B8—B7—H7127.2 (15)
C4—P1—C3102.20 (19)B3—B7—H7110.7 (15)
C4—P1—C2101.8 (2)B4—B8—B9110.6 (3)
C3—P1—C2102.21 (19)B4—B8—B759.5 (2)
C4—P1—Ir2115.44 (13)B9—B8—B756.1 (2)
C3—P1—Ir2114.21 (12)B4—B8—B557.93 (19)
C2—P1—Ir2118.68 (14)B9—B8—B5116.1 (3)
C5—P2—C6101.81 (16)B7—B8—B5103.1 (2)
C5—P2—C7102.90 (18)B4—B8—H8116 (2)
C6—P2—C7104.93 (17)B9—B8—H8119 (2)
C5—P2—Ir2114.93 (12)B7—B8—H8123.6 (19)
C6—P2—Ir2114.72 (12)B5—B8—H8121.2 (19)
C7—P2—Ir2115.84 (13)B4—B8—H89135.8 (19)
B4—B1—B361.8 (2)B9—B8—H8944.3 (19)
B4—B1—B560.54 (19)B7—B8—H8998 (2)
B3—B1—B598.4 (2)B5—B8—H8996.9 (19)
B4—B1—Ir2108.0 (2)H8—B8—H89108 (3)
B3—B1—Ir270.85 (16)B7—B9—B862.6 (2)
B5—B1—Ir277.87 (16)B7—B9—B661.0 (2)
B4—B1—H1121.7 (15)B8—B9—B6100.3 (3)
B3—B1—H1133.6 (15)B7—B9—H9126.6 (17)
B5—B1—H1124.4 (15)B8—B9—H9131.2 (17)
Ir2—B1—H1130.3 (15)B6—B9—H9126.8 (17)
B1—B3—B457.70 (19)B7—B9—H69108.2 (18)
B1—B3—B6120.7 (2)B8—B9—H69114.1 (17)
B4—B3—B6104.0 (2)B6—B9—H6948.7 (17)
B1—B3—B7113.1 (2)H9—B9—H69107 (2)
B4—B3—B759.2 (2)B7—B9—H89100.6 (19)
B6—B3—B758.2 (2)B8—B9—H8939.9 (18)
B1—B3—Ir262.77 (15)B6—B9—H89111.2 (18)
B4—B3—Ir2100.08 (18)H9—B9—H89117 (2)
B6—B3—Ir267.57 (15)H69—B9—H8992 (2)
B7—B3—Ir2110.5 (2)O1—C1—Ir2177.0 (3)
B1—B3—H3118.2 (14)P1—C2—H2A109.5
B4—B3—H3126.6 (14)P1—C2—H2B109.5
B6—B3—H3116.4 (14)H2A—C2—H2B109.5
B7—B3—H3115.4 (14)P1—C2—H2C109.5
Ir2—B3—H3126.3 (14)H2A—C2—H2C109.5
B1—B4—B561.9 (2)H2B—C2—H2C109.5
B1—B4—B360.5 (2)P1—C3—H3A109.5
B5—B4—B398.4 (2)P1—C3—H3B109.5
B1—B4—B8119.7 (2)H3A—C3—H3B109.5
B5—B4—B862.5 (2)P1—C3—H3C109.5
B3—B4—B8107.8 (2)H3A—C3—H3C109.5
B1—B4—B7118.4 (2)H3B—C3—H3C109.5
B5—B4—B7107.7 (2)P1—C4—H4A109.5
B3—B4—B762.1 (2)P1—C4—H4B109.5
B8—B4—B761.0 (2)H4A—C4—H4B109.5
B1—B4—Cl1116.4 (2)P1—C4—H4C109.5
B5—B4—Cl1123.6 (2)H4A—C4—H4C109.5
B3—B4—Cl1131.5 (2)H4B—C4—H4C109.5
B8—B4—Cl1112.4 (2)P2—C5—H5A109.5
B7—B4—Cl1117.3 (2)P2—C5—H5B109.5
B4—B5—B157.60 (19)H5A—C5—H5B109.5
B4—B5—B859.5 (2)P2—C5—H5C109.5
B1—B5—B8113.0 (2)H5A—C5—H5C109.5
B4—B5—Ir293.49 (18)H5B—C5—H5C109.5
B1—B5—Ir257.80 (14)P2—C6—H6A109.5
B8—B5—Ir2107.08 (19)P2—C6—H6B109.5
B4—B5—H5130.8 (18)H6A—C6—H6B109.5
B1—B5—H5119.3 (18)P2—C6—H6C109.5
B8—B5—H5117.6 (18)H6A—C6—H6C109.5
Ir2—B5—H5128.2 (18)H6B—C6—H6C109.5
B4—B5—H25116.7 (17)P2—C7—H7A109.5
B1—B5—H2596.5 (17)P2—C7—H7B109.5
B8—B5—H2592.0 (17)H7A—C7—H7B109.5
Ir2—B5—H2538.7 (17)P2—C7—H7C109.5
H5—B5—H25112 (3)H7A—C7—H7C109.5
B7—B6—B956.3 (2)H7B—C7—H7C109.5

Experimental details

(Ia)(II)
Crystal data
Chemical formula[IrH(B8H12)(C3H9P)2(CO)][Ir(B8H10Cl)(C3H9P)2(CO)]
Mr471.94504.36
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)150223
a, b, c (Å)9.2035 (2), 15.9788 (5), 13.2013 (3)9.2655 (1), 12.1784 (1), 16.8668 (1)
α, β, γ (°)90, 99.670 (2), 9090, 94.702 (1), 90
V3)1913.81 (8)1896.83 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)7.137.34
Crystal size (mm)0.62 × 0.25 × 0.110.23 × 0.22 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD? area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Empirical (using intensity measurements)
(SADABS; Blessing, 1995)
Tmin, Tmax0.096, 0.5080.283, 0.528
No. of measured, independent and
observed [I > 2σ(I)] reflections
15922, 3737, 3547 55769, 4150, 3824
Rint0.0750.038
(sin θ/λ)max1)0.6170.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.10 0.017, 0.041, 1.17
No. of reflections37374150
No. of parameters179221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.01, 2.881.00, 0.51

Computer programs: COLLECT (Nonius, 1998), SMART (Bruker, 1997), DENZO-SMN (Otwinowski & Minor, 1996), SMART, DENZO-SMN, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXTL (Sheldrick, 1998), local program.

Selected geometric parameters (Å, º) for (Ia) top
Ir4—C11.883 (6)Ir4—P12.3319 (15)
Ir4—B12.251 (6)Ir4—P22.368 (2)
Ir4—B92.272 (8)C1—O11.143 (7)
Ir4—B52.285 (6)
C1—Ir4—B1129.4 (3)B5—Ir4—P1163.4 (2)
C1—Ir4—B9166.2 (3)C1—Ir4—P292.5 (2)
B1—Ir4—B946.6 (3)B1—Ir4—P281.5 (2)
C1—Ir4—B586.0 (2)B9—Ir4—P299.3 (2)
B9—Ir4—B585.1 (2)B5—Ir4—P299.0 (2)
C1—Ir4—P197.9 (2)P1—Ir4—P296.96 (5)
B1—Ir4—P1132.7 (2)O1—C1—Ir4175.7 (6)
B9—Ir4—P187.9 (2)
Selected geometric parameters (Å, º) for (II) top
Ir2—C11.930 (3)Ir2—P12.3578 (8)
Ir2—B12.156 (3)Ir2—B52.491 (3)
Ir2—B32.291 (3)Cl1—B41.823 (3)
Ir2—P22.3174 (8)O1—C11.142 (4)
Ir2—B62.323 (3)
C1—Ir2—B1165.75 (13)B1—Ir2—P189.51 (9)
C1—Ir2—B3129.64 (13)B3—Ir2—P1134.20 (9)
B1—Ir2—B346.39 (13)P2—Ir2—P195.31 (3)
C1—Ir2—P289.72 (9)B6—Ir2—P1169.84 (9)
B1—Ir2—P2102.81 (9)C1—Ir2—B5122.37 (12)
B3—Ir2—P285.48 (9)B1—Ir2—B544.33 (12)
C1—Ir2—B684.04 (13)B3—Ir2—B567.93 (11)
B1—Ir2—B688.10 (13)P2—Ir2—B5146.78 (8)
B3—Ir2—B646.72 (13)B6—Ir2—B581.49 (12)
P2—Ir2—B694.85 (9)P1—Ir2—B589.90 (8)
C1—Ir2—P196.16 (9)O1—C1—Ir2177.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds