Download citation
Download citation
link to html
The crystal structure of tricaesium cobalt pentachloride has been determined by X-ray diffraction at 10 K. The Co atom is at a site with {\overline 4}2m symmetry, one Cs atom is at a site with 42 symmetry, the other has mm site symmetry, one Cl ligand has 4/m symmetry and the other has m symmetry. The accurate and extensive data set collected should be suitable for charge-density analysis studies. In the CoCl42- ion, as the temperature is lowered, the Co-Cl bond length increases a little and the small distortion of the tetrahedron (site symmetry \overline 42m) is slightly reduced.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017297/br1294sup1.cif
Contains datablocks I, publ

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017297/br1294Isup2.hkl
Contains datablock I

Comment top

Cs3CoCl5 is of interest in inorganic chemistry as it provides a well defined example of a high-spin CoII complex with four monatomic ligands and only slightly distorted tetrahedral stereochemistry. We have determined the crystal structure of Cs3CoCl5 by X-ray diffraction at 10 (2) K. It is made up of Cs+ cations and [CoCl4]2- and Cl- anions and the unit-cell contents are illustrated in Figure 1. The structural features, including the coordination polyhedra, have been described before for higher temperature studies both by X-ray (Reynolds et al., 1981; Figgis, Kucharski & Reynolds, 1989a) and neutron diffraction (Williams et al., 1980) and also at 4.2 K by neutron diffraction (Figgis, Mason et al., 1980) and our new results present no unusual features. The relationship between the charge density at 115 K (Figgis, Kucharski & Reynolds, 1989a) and the spin density obtained from polarized neutron diffraction (Figgis, Reynolds & Williams et al., 1980; Figgis, Reynolds, Williams et al., 1980) and theoretical calculations has been discussed (Chandler et al., 1982, Figgis, Kucharski & Reynolds et al., 1989b, Li et al., 2000). The bond length and angles for the [CoCl4]2- ion at various temperatures by the two methods are given in Table 1.

The [CoCl4]2- ion consists of a regular tetrahedron distorted along one of its (-4) axes so as to reduce the Cl2—Co—Cl2i angle by 2.3% at 10 K. As determined by X-rays, the Co—Cl2 bond length increases very slightly (0.008 Å) as temperature falls from ambient to 115 K, but then is unchanged to very low temperatures. The Cl2—Co—Cl2i angle rises slightly (0.2°) from ambient to 115 K, but then remains constant to 4 K. Over the same temperature ranges the Cl2—Co—Cl2v angle falls by 0.15° and similarly remains constant.

The unbonded ion Cl- has approximate octahedral coordination by Cs+ ions, 2Cs1+ at sim 3.6 Å and 4Cs2+ at 3···4 Å, but the Cs+ environments are not simple - roughly, that of Cs1+ is a bicapped square antiprism, that of Cs2+ a bicapped trigonal prism.

The atomic displacement parameters (ADP) decrease with temperature largely as expected. At higher temperatures they are approximately proportional to temperature; the average value of Ueq115/Ueq295 is 0.45, but this becomes 0.31 if Cs1, which hardly changes, is excluded. For reference, the temperature ratio, 115/295 is 0.39. This proportionality is not seen at lower temperatures because of zero-point motion. The average value of Ueq10/ Ueq115 is 0.40, whereas the temperature ratio is 0.09. The Ueq value for Cs1 falls rapidly in this range, so that at 10 K it is not markedly different from the other atoms, as it was at 115 K. Complexities of the thermal motion of Cs1 which restricted the reliability of the charge density analysis at 115 K should be much reduced in the present 10 K data.

The agreement between the ADP at 10 K with those found for the compound by neutron diffraction at 4.2 K is not good. The average value for Ueq reported here is some 30% larger than for the 4.2 K neutron study. Good agreement is expected for non-hydrogen atoms at these very low temperatures, as has been shown for (ND4)2Cu(SO4)2·six-dimensional2O at 15 K (Iversen et al., 1994), Ni(NH3)4(NO2)2 at 13 K (Iversen et al., 1996) and (ND4)2Fe(SO4)2·six-dimensional2O at 12 K (Figgis et al., 1998). For the latter, two cases of neutron diffraction structures at 4.2 K (Figgis et al., 1981; Figgis, Kucharski, Reynolds & Tasset et al., 1989) were also available and showed disagreement with the later neutron studies at 13 and 12 K, and of a similar magnitude to the present instance. The disagreement in positional parameters was less marked. It seems likely that data collected on the D15 diffractometer at the Institute Laue-Langevin on this substance and also on Ni(NH3)4(NO2)2 and on (ND4)2Fe(SO4)2·six-dimensional2O contained some systematic error. The error does not seem to be associated with the normal beam Weissenberg diffraction geometry of D15, as the good agreement for (ND4)2Cu(SO4)2·six-dimensional2O was obtained with a diffractometer employing that configuration.

Related literature top

For related literature, see: Chandler et al. (1982); Figgis et al. (1981, 1989, 1989a, 1989b, 1998); Figgis, Mason, Smith & Williams (1980); Figgis, Reynolds & Williams (1980); Figgis, Reynolds, Williams, Mason, Smith & Varghese (1980); Iversen et al. (1994); Larsen (1995); Li et al. (2000); Reynolds et al. (1981); Streltsov & Zavodnik (1989); Williams et al. (1980).

Experimental top

Cs3CoCl5 was prepared by evaporation of an aqueous solution of CoCl2 containing an excess of CsCl.

Refinement top

The very low temperature data set was collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Hendricksen et al., 1986; Larsen, 1995). A full sphere of data was collected. Lists of calculated and observed structure factors are given in the supplementary material.

The correction for the absorption by the beryllium thermal shields was performed by the PROFIT (Streltsov & Zavodnik, 1989) program.

Computing details top

Data collection: local diffractometer control software; cell refinement: local diffractometer control software; data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The CoCl42- distorted tetrahedron and the ClCs65+ distorted octahedron coordination polyhedra in Cs3CoCl5 at 10 K. The displacement ellipsoids are shown at the 75% probability level.
(I) top
Crystal data top
Cs3CoCl5Dx = 3.532 Mg m3
Mr = 634.91Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mcmCell parameters from 32 reflections
Hall symbol: -I 4 2cθ = 29.7–35.3°
a = 9.0793 (3) ŵ = 11.50 mm1
c = 14.4862 (8) ÅT = 10 K
V = 1194.15 (9) Å3Prism, dark blue
Z = 40.32 × 0.28 × 0.28 mm
F(000) = 1108
Data collection top
Huber 512 goniometer
diffractometer
1706 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.026
None monochromatorθmax = 50.1°, θmin = 2.8°
ω–2θ scanh = 1919
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
k = 1919
Tmin = 0.120, Tmax = 0.141l = 3131
23863 measured reflections3 standard reflections every 100 reflections
1708 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0092P)2 + 6.8514P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.002
S = 1.44Δρmax = 3.41 e Å3
1708 reflectionsΔρmin = 1.52 e Å3
18 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0118 (2)
Crystal data top
Cs3CoCl5Z = 4
Mr = 634.91Mo Kα radiation
Tetragonal, I4/mcmµ = 11.50 mm1
a = 9.0793 (3) ÅT = 10 K
c = 14.4862 (8) Å0.32 × 0.28 × 0.28 mm
V = 1194.15 (9) Å3
Data collection top
Huber 512 goniometer
diffractometer
1706 reflections with I > 2σ(I)
Absorption correction: gaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Rint = 0.026
Tmin = 0.120, Tmax = 0.1413 standard reflections every 100 reflections
23863 measured reflections intensity decay: 1%
1708 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02118 parameters
wR(F2) = 0.0450 restraints
S = 1.44Δρmax = 3.41 e Å3
1708 reflectionsΔρmin = 1.52 e Å3
Special details top

Experimental. The correction for the absorption by the beryllium thermal shields was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.00000.50000.25000.00387 (6)
Cs10.00000.00000.25000.00418 (3)
Cs20.662190 (10)1.162190 (10)0.00000.00356 (3)
Cl10.00000.00000.00000.00598 (10)
Cl20.14216 (3)0.64216 (3)0.15710 (3)0.00616 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00426 (8)0.00426 (8)0.00309 (12)0.0000.0000.000
Cs10.00441 (4)0.00441 (4)0.00370 (5)0.0000.0000.000
Cs20.00359 (3)0.00359 (3)0.00349 (4)0.00005 (3)0.0000.000
Cl10.00554 (14)0.00554 (14)0.0069 (2)0.0000.0000.000
Cl20.00649 (8)0.00649 (8)0.00552 (11)0.00122 (9)0.00082 (7)0.00082 (7)
Geometric parameters (Å, º) top
Co—Cl2i2.2679 (4)Cs2—Cl2xvii3.3896 (4)
Co—Cl2ii2.2679 (4)Cs2—Cl1xviii3.4023 (1)
Co—Cl2iii2.2679 (4)Cs2—Cl1xix3.4023 (1)
Co—Cl22.2679 (4)Cs2—Cl2xx3.5844 (4)
Co—Cs2iv4.1776 (2)Cs2—Cl2xxi3.5844 (4)
Co—Cs2v4.1776 (2)Cs2—Cl2xxii3.5844 (4)
Co—Cs2vi4.1776 (2)Cs2—Cl2xxiii3.5844 (4)
Co—Cs2vii4.1776 (2)Cs2—Cs2xvii4.1651 (3)
Cs1—Cl1viii3.6215 (2)Cs2—Coxxiv4.1776 (2)
Cs1—Cl13.6215 (2)Cs2—Covii4.1776 (2)
Cs1—Cl2ix3.7460 (3)Cs2—Cs2xxv4.8115 (2)
Cs1—Cl2iii3.7460 (3)Cl1—Cs2v3.4023 (1)
Cs1—Cl2x3.7460 (3)Cl1—Cs2xiv3.4023 (1)
Cs1—Cl2vi3.7460 (3)Cl1—Cs2xxvi3.4023 (1)
Cs1—Cl2xi3.7460 (3)Cl1—Cs2xxvii3.4023 (1)
Cs1—Cl2xii3.7460 (3)Cl1—Cs1xxviii3.6215 (2)
Cs1—Cl2xiii3.7460 (3)Cl2—Cs2xvii3.3896 (4)
Cs1—Cl2i3.7460 (3)Cl2—Cs2vi3.5844 (4)
Cs1—Cs2xiv4.9690 (2)Cl2—Cs2v3.5844 (4)
Cs1—Cs2xv4.9690 (2)Cl2—Cs1xxix3.7460 (3)
Cs2—Cl2xvi3.3896 (4)Cl2—Cs1xi3.7460 (3)
Cl2i—Co—Cl2ii110.619 (11)Cl2xvi—Cs2—Cl1xviii75.783 (3)
Cl2i—Co—Cl2iii110.619 (11)Cl2xvii—Cs2—Cl1xviii75.783 (3)
Cl2ii—Co—Cl2iii107.20 (2)Cl2xvi—Cs2—Cl1xix75.783 (3)
Cl2i—Co—Cl2107.20 (2)Cl2xvii—Cs2—Cl1xix75.783 (3)
Cl2ii—Co—Cl2110.619 (11)Cl1xviii—Cs2—Cl1xix141.293 (4)
Cl2iii—Co—Cl2110.619 (11)Cl2xvi—Cs2—Cl2xx148.964 (6)
Cl2i—Co—Cs2iv156.301 (11)Cl2xvii—Cs2—Cl2xx90.248 (11)
Cl2ii—Co—Cs2iv59.040 (9)Cl1xviii—Cs2—Cl2xx73.265 (6)
Cl2iii—Co—Cs2iv59.040 (9)Cl1xix—Cs2—Cl2xx132.301 (7)
Cl2—Co—Cs2iv96.500 (12)Cl2xvi—Cs2—Cl2xxi148.964 (6)
Cl2i—Co—Cs2v59.040 (9)Cl2xvii—Cs2—Cl2xxi90.248 (11)
Cl2ii—Co—Cs2v156.301 (11)Cl1xviii—Cs2—Cl2xxi132.301 (7)
Cl2iii—Co—Cs2v96.500 (12)Cl1xix—Cs2—Cl2xxi73.265 (6)
Cl2—Co—Cs2v59.040 (9)Cl2xx—Cs2—Cl2xxi61.229 (13)
Cs2iv—Co—Cs2v138.721 (3)Cl2xvi—Cs2—Cl2xxii90.248 (11)
Cl2i—Co—Cs2vi59.040 (9)Cl2xvii—Cs2—Cl2xxii148.964 (6)
Cl2ii—Co—Cs2vi96.500 (12)Cl1xviii—Cs2—Cl2xxii73.265 (6)
Cl2iii—Co—Cs2vi156.301 (11)Cl1xix—Cs2—Cl2xxii132.301 (7)
Cl2—Co—Cs2vi59.040 (9)Cl2xx—Cs2—Cl2xxii78.825 (12)
Cs2iv—Co—Cs2vi138.721 (3)Cl2xxi—Cs2—Cl2xxii108.958 (9)
Cs2v—Co—Cs2vi59.801 (5)Cl2xvi—Cs2—Cl2xxiii90.248 (11)
Cl2i—Co—Cs2vii96.500 (12)Cl2xvii—Cs2—Cl2xxiii148.964 (6)
Cl2ii—Co—Cs2vii59.040 (9)Cl1xviii—Cs2—Cl2xxiii132.301 (7)
Cl2iii—Co—Cs2vii59.040 (9)Cl1xix—Cs2—Cl2xxiii73.265 (6)
Cl2—Co—Cs2vii156.301 (11)Cl2xx—Cs2—Cl2xxiii108.958 (9)
Cs2iv—Co—Cs2vii59.801 (5)Cl2xxi—Cs2—Cl2xxiii78.825 (12)
Cs2v—Co—Cs2vii138.721 (3)Cl2xxii—Cs2—Cl2xxiii61.229 (13)
Cs2vi—Co—Cs2vii138.721 (3)Cl2xvi—Cs2—Cs2xvii137.826 (8)
Cl1viii—Cs1—Cl1180.0Cl2xvii—Cs2—Cs2xvii137.827 (8)
Cl1viii—Cs1—Cl2ix111.055 (6)Cl1xviii—Cs2—Cs2xvii109.353 (2)
Cl1—Cs1—Cl2ix68.945 (6)Cl1xix—Cs2—Cs2xvii109.353 (2)
Cl1viii—Cs1—Cl2iii68.945 (6)Cl2xx—Cs2—Cs2xvii54.479 (5)
Cl1—Cs1—Cl2iii111.055 (6)Cl2xxi—Cs2—Cs2xvii54.479 (5)
Cl2ix—Cs1—Cl2iii136.615 (12)Cl2xxii—Cs2—Cs2xvii54.479 (5)
Cl1viii—Cs1—Cl2x68.945 (6)Cl2xxiii—Cs2—Cs2xvii54.479 (5)
Cl1—Cs1—Cl2x111.055 (6)Cl2xvi—Cs2—Coxxiv162.074 (8)
Cl2ix—Cs1—Cl2x62.056 (12)Cl2xvii—Cs2—Coxxiv77.727 (8)
Cl2iii—Cs1—Cl2x137.889 (12)Cl1xviii—Cs2—Coxxiv99.509 (1)
Cl1viii—Cs1—Cl2vi111.055 (6)Cl1xix—Cs2—Coxxiv99.509 (1)
Cl1—Cs1—Cl2vi68.945 (6)Cl2xx—Cs2—Coxxiv32.859 (7)
Cl2ix—Cs1—Cl2vi137.889 (12)Cl2xxi—Cs2—Coxxiv32.859 (7)
Cl2iii—Cs1—Cl2vi62.056 (12)Cl2xxii—Cs2—Coxxiv105.115 (6)
Cl2x—Cs1—Cl2vi136.615 (12)Cl2xxiii—Cs2—Coxxiv105.115 (6)
Cl1viii—Cs1—Cl2xi68.945 (6)Cs2xvii—Cs2—Coxxiv60.099 (2)
Cl1—Cs1—Cl2xi111.055 (6)Cl2xvi—Cs2—Covii77.727 (8)
Cl2ix—Cs1—Cl2xi139.689 (12)Cl2xvii—Cs2—Covii162.074 (8)
Cl2iii—Cs1—Cl2xi82.584 (4)Cl1xviii—Cs2—Covii99.509 (1)
Cl2x—Cs1—Cl2xi82.584 (4)Cl1xix—Cs2—Covii99.509 (1)
Cl2vi—Cs1—Cl2xi59.708 (13)Cl2xx—Cs2—Covii105.115 (6)
Cl1viii—Cs1—Cl2xii111.055 (6)Cl2xxi—Cs2—Covii105.115 (7)
Cl1—Cs1—Cl2xii68.945 (6)Cl2xxii—Cs2—Covii32.859 (7)
Cl2ix—Cs1—Cl2xii82.584 (4)Cl2xxiii—Cs2—Covii32.859 (7)
Cl2iii—Cs1—Cl2xii139.689 (12)Cs2xvii—Cs2—Covii60.099 (2)
Cl2x—Cs1—Cl2xii59.708 (13)Coxxiv—Cs2—Covii120.199 (4)
Cl2vi—Cs1—Cl2xii82.584 (4)Cl2xvi—Cs2—Cs2xxv48.079 (7)
Cl2xi—Cs1—Cl2xii62.056 (12)Cl2xvii—Cs2—Cs2xxv48.079 (7)
Cl1viii—Cs1—Cl2xiii68.945 (6)Cl1xviii—Cs2—Cs2xxv45.0
Cl1—Cs1—Cl2xiii111.055 (6)Cl1xix—Cs2—Cs2xxv96.293 (4)
Cl2ix—Cs1—Cl2xiii59.708 (13)Cl2xx—Cs2—Cs2xxv107.658 (5)
Cl2iii—Cs1—Cl2xiii82.584 (4)Cl2xxi—Cs2—Cs2xxv138.089 (6)
Cl2x—Cs1—Cl2xiii82.584 (4)Cl2xxii—Cs2—Cs2xxv107.658 (5)
Cl2vi—Cs1—Cl2xiii139.689 (12)Cl2xxiii—Cs2—Cs2xxv138.088 (6)
Cl2xi—Cs1—Cl2xiii137.889 (12)Cs2xvii—Cs2—Cs2xxv154.353 (2)
Cl2xii—Cs1—Cl2xiii136.615 (12)Coxxiv—Cs2—Cs2xxv116.704 (2)
Cl1viii—Cs1—Cl2i111.055 (6)Covii—Cs2—Cs2xxv116.704 (2)
Cl1—Cs1—Cl2i68.945 (6)Cs2v—Cl1—Cs2xiv180.000 (1)
Cl2ix—Cs1—Cl2i82.584 (4)Cs2v—Cl1—Cs2xxvi90.0
Cl2iii—Cs1—Cl2i59.708 (13)Cs2xiv—Cl1—Cs2xxvi90.0
Cl2x—Cs1—Cl2i139.689 (12)Cs2v—Cl1—Cs2xxvii90.0
Cl2vi—Cs1—Cl2i82.584 (4)Cs2xiv—Cl1—Cs2xxvii90.0
Cl2xi—Cs1—Cl2i136.615 (12)Cs2xxvi—Cl1—Cs2xxvii180.000 (1)
Cl2xii—Cs1—Cl2i137.889 (12)Cs2v—Cl1—Cs190.0
Cl2xiii—Cs1—Cl2i62.056 (12)Cs2xiv—Cl1—Cs190.0
Cl1viii—Cs1—Cs2xiv136.788 (2)Cs2xxvi—Cl1—Cs190.0
Cl1—Cs1—Cs2xiv43.212 (2)Cs2xxvii—Cl1—Cs190.0
Cl2ix—Cs1—Cs2xiv42.984 (7)Cs2v—Cl1—Cs1xxviii90.0
Cl2iii—Cs1—Cs2xiv154.065 (6)Cs2xiv—Cl1—Cs1xxviii90.0
Cl2x—Cs1—Cs2xiv67.939 (7)Cs2xxvi—Cl1—Cs1xxviii90.0
Cl2vi—Cs1—Cs2xiv101.997 (6)Cs2xxvii—Cl1—Cs1xxviii90.0
Cl2xi—Cs1—Cs2xiv107.830 (6)Cs1—Cl1—Cs1xxviii180.0
Cl2xii—Cs1—Cs2xiv45.968 (6)Co—Cl2—Cs2xvii174.227 (19)
Cl2xiii—Cs1—Cs2xiv102.562 (7)Co—Cl2—Cs2vi88.101 (12)
Cl2i—Cs1—Cs2xiv99.868 (7)Cs2xvii—Cl2—Cs2vi87.201 (9)
Cl1viii—Cs1—Cs2xv43.212 (2)Co—Cl2—Cs2v88.101 (12)
Cl1—Cs1—Cs2xv136.788 (2)Cs2xvii—Cl2—Cs2v87.201 (9)
Cl2ix—Cs1—Cs2xv154.065 (6)Cs2vi—Cl2—Cs2v71.042 (9)
Cl2iii—Cs1—Cs2xv42.984 (7)Co—Cl2—Cs1xxix94.836 (9)
Cl2x—Cs1—Cs2xv101.997 (6)Cs2xvii—Cl2—Cs1xxix88.124 (8)
Cl2vi—Cs1—Cs2xv67.939 (7)Cs2vi—Cl2—Cs1xxix85.323 (3)
Cl2xi—Cs1—Cs2xv45.968 (6)Cs2v—Cl2—Cs1xxix156.092 (10)
Cl2xii—Cs1—Cs2xv107.830 (6)Co—Cl2—Cs1xi94.836 (9)
Cl2xiii—Cs1—Cs2xv99.868 (7)Cs2xvii—Cl2—Cs1xi88.124 (8)
Cl2i—Cs1—Cs2xv102.562 (7)Cs2vi—Cl2—Cs1xi156.092 (10)
Cs2xiv—Cs1—Cs2xv153.770 (3)Cs2v—Cl2—Cs1xi85.323 (3)
Cl2xvi—Cs2—Cl2xvii84.347 (16)Cs1xxix—Cl2—Cs1xi117.944 (12)
Symmetry codes: (i) x, y+1, z; (ii) y+1/2, x+1/2, z+1/2; (iii) y1/2, x+1/2, z+1/2; (iv) x1/2, y1/2, z+1/2; (v) y1, x+1, z; (vi) y+1, x, z; (vii) x+1/2, y+3/2, z+1/2; (viii) x, y, z+1/2; (ix) y1, x, z; (x) y+1/2, x1/2, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1, z; (xiii) x1/2, y1/2, z+1/2; (xiv) y+1, x1, z; (xv) y+3/2, x1/2, z+1/2; (xvi) x+1, y+2, z; (xvii) x+1, y+2, z; (xviii) x+1, y+1, z; (xix) x+1/2, y+3/2, z; (xx) y, x+1, z; (xxi) y+1, x+1, z; (xxii) y, x+1, z; (xxiii) y+1, x+1, z; (xxiv) x+1/2, y+1/2, z1/2; (xxv) y, x+2, z; (xxvi) x+1, y+1, z; (xxvii) x1, y1, z; (xxviii) x, y, z; (xxix) x, y+1, z.

Experimental details

Crystal data
Chemical formulaCs3CoCl5
Mr634.91
Crystal system, space groupTetragonal, I4/mcm
Temperature (K)10
a, c (Å)9.0793 (3), 14.4862 (8)
V3)1194.15 (9)
Z4
Radiation typeMo Kα
µ (mm1)11.50
Crystal size (mm)0.32 × 0.28 × 0.28
Data collection
DiffractometerHuber 512 goniometer
diffractometer
Absorption correctionGaussian
Xtal 3.7 (Hall, du Boulay & Olthof-Hazekamp, 2000)
Tmin, Tmax0.120, 0.141
No. of measured, independent and
observed [I > 2σ(I)] reflections
23863, 1708, 1706
Rint0.026
(sin θ/λ)max1)1.080
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.44
No. of reflections1708
No. of parameters18
Δρmax, Δρmin (e Å3)3.41, 1.52

Computer programs: local diffractometer control software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Bond lengths (Å) and angles (°) in the CoCl4 anion and Cs-Cl distances (Å) at various temperatures by x-ray (X) and neutron (N) diffraction top
ParameterMultiplicity295 K (X)295 K (N)115 K (X)10 K (X)4.2 K(N)
Co-Cl242.260 (1)2.2653 (3)2.2677 (6)2.2679 (4)2.2625 (6)
Cl1-Cs123.6384 (6)3.6384 (6)3.625 (1)3.6215 (2)3.6125 (3)
Cl1-Cs2i83.815 (1)3.8148 (5)3.765 (1)3.7460 (3)3.739 (2)
Cs2-Cl1ii23.4442 (7)3.4446 (7)3.414 (1)3.4023 (1)30396 (2)
Cs2-Cl2iii23.428 (1)3.4235 (5)3.3975 (9)3.3896 (4)3.3826 (9)
Cs2-Cl2iv43.639 (1)3.6383 (6)3.601 (1)3.5844 (4)3.577 (1)
Cl2-Co-Cl2i2106.98 (4)106.97 (1)107.22 (3)107.20 (2)107.22 (1)
Cl2-Co-Cl2v4110.75 (3)110.74 (1)110.60 (3)110.62 (1)110.61 (1)
Symmetry codes: (i) -x, -y + 1, z; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 2, z; (iv) y, -x + 1, -z; (v) y - 1/2, -x + 1/2, -z + 1/2; (vi) -y + 1/2, x + 1/2, -z + 1/2; (vii) x - 1, y - 1, z; (viii) -y + 1, x - 1, z; (ix) -x, -y, -z; (x) -x + 1, -y + 1, -z; (xi) y - 1, -x + 1, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds