Download citation
Download citation
link to html
The crystal structure of dicaesium potassium hexacyanomanganese(III) has been determined by X-ray diffraction at 293, 85 and 10 K. The Mn and K atoms lie on inversion centres and the Cs atom is in a general position. The accurate and extensive data sets collected should be suitable for charge-density analysis studies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005369/br1288sup1.cif
Contains datablocks I293K, I85K, I10K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005369/br1288I293Ksup2.hkl
Contains datablock I293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005369/br1288I85Ksup3.hkl
Contains datablock I85K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005369/br1288I10Ksup4.hkl
Contains datablock I10K

Comment top

The trivalent first transition series metals from Cr to Co and some second and third series elements form complexes of formulation Cs2MI[MIII(CN)6] (MI = Li–Cs), with the elpasolite structure. They crystallize well and are of interest in inorganic chemistry as classical coordination complexes involving the most covalently bonding of ligands, the cyanide ion, and for which the physical properties are well defined. There are previous structural studies of these elpasolites by X-ray and neutron diffraction both at room and at lower temperatures, for example, Cs2K[Cr(CN)6] (Figgis et al., 1983; Brown et al., 1987), Cs2K[Mn(CN)6] (Ziegler et al., 1989; Blake et al., 1994) and Cs2K[Fe(CN)6] (Fletcher & Gibb, 1977; Herren et al., 1979; Figgis et al., 1990).

In particular, for MI = K, magnetic susceptibility and polarized neutron diffraction experiments have been performed on their single crystals (Figgis et al., 1985; Brown et al., 1987; Figgis & Reynolds, 1987; Reynolds et al., 1992; Blake et al., 1994). Also, for MI = Li, the complexities of thermal motion have received attention; see, for example, Chadwick et al. (1988) and Ryan & Swanson (1974).

We have determined by X-ray diffraction the crystal structure of Cs2K[Mn(CN)6] at 293, 85 and 10 K. Salts of this type are made up of Cs+ and K+ cations and [M(CN)6]3− anions, and this anion is illustrated in Fig. 1. The structural features have been described before and the present case presents no unusual results. Selected bond lengths and angles for the [Mn(CN)6]3− ion at the three temperatures are given in the Table 1. The results for the 293 K study are very similar to those of Ziegler et al. (1989) at ambient temperature, but with s.u.'s lower by a factor approaching 2.

The [Mn(CN)6]3− ion is very close to regular octahedral stereochemistry at each of the temperatures, with the bond from Mn to C3 just significantly shorter than those to C1 and C2. All the C—Mn—C angles for adjacent ligands differ from 90° by ca 0.15°, and the C—Mn—N angles are all ca 1.5° off the linear configuration. The Mn—C bond lengths are essentially independent of temperaure although the C—N bonds apparently lengthen significantly, presumably due to reduced libration, as we lower the temperature from 293 to 10 K. The mean Mn—C bond length at 85 K [1.989 (4) Å] lies between those in the [Cr(CN)6]3− ion [2.066 (4) Å; Figgis & Reynolds, 1987] and in the [Fe(CN)6]3− ion (1.932 Å; Figgis et al., 1990), while the average C—N separation of 1.159 (1) Å matches that for the Cr salt [1.160 (1) Å] and is slightly lower than for the Fe salt [1.166 (2) Å]. The Mn (d4) and Fe (d5) cases are low spin and have orbitally degenerate ground states and so are formally Jahn–Teller unstable. On the other hand, the Cr (d3) case has an orbital singlet ground state and is Jahn–Teller stable. However, the bond lengths within the respective [M(CN)6]3− ions do not show the differences which might be expected on that account. The Cs atomic displacement parameters (adp's) are quite isotropic at all temperatures. This contrasts with the results for the Cs adp's of Cs2K[Cr(CN)6] at 120 K and, to a lesser extent, of Cs2K[Fe(CN)6] at 85 K, where apparent anomalies in the thermal motion placed limitations on the interpretation of the X-ray data in terms of valence orbital parameters in a charge–density analysis. Such anomalies appear to even greater degree in the analagous Co salt (Figgis & Sobolev, 2000) and preclude its use in a charge–density study.

Experimental top

Cs2K[Mn(CN)6] was prepared by a standard procedure (Brauer, 1963). Single crystals of the complex were obtained by recrystallization from aqueous solution. Room temperature and the very low-temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Hendricksen et al., 1986; Larsen, 1995). The 85 K data were collected on a Syntex P21 diffractometer equipped with a locally developed nitrogen gas stream cooling device.

Computing details top

Data collection: local software for I293K, I10K; P3/P4-PC Software (Siemens, 1991) for I85K. Cell refinement: local software for I293K, I10K; P3/P4-PC Software for I85K. For all compounds, data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1983); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Conventional atomic numbering of the [Mn(CN)6]3− octahedron with 50% probability displacement ellipsoids at 85 K.
(I293K) dicesium potassium hexacyanomanganate(III) top
Crystal data top
Cs2K[Mn(CN)6]Dx = 2.420 Mg m3
Mr = 515.98Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.207 (2) ÅCell parameters from 12 reflections
b = 8.210 (1) Åθ = 15.2–16.4°
c = 7.696 (1) ŵ = 6.28 mm1
β = 90.25 (1)°T = 293 K
V = 708.1 (2) Å3Prism, dark red–brown
Z = 20.36 × 0.23 × 0.23 mm
F(000) = 464
Data collection top
Huber 512 goniometer
diffractometer
1217 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.025
None monochromatorθmax = 25.0°, θmin = 3.1°
ω–2θ scansh = 1313
Absorption correction: gaussian
(Xtal3.4; Hall et al., 1994)
k = 99
Tmin = 0.197, Tmax = 0.268l = 99
4814 measured reflections3 standard reflections every 100 reflections
1254 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.9408P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.48 e Å3
1254 reflectionsΔρmin = 1.02 e Å3
77 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0512 (16)
Crystal data top
Cs2K[Mn(CN)6]V = 708.1 (2) Å3
Mr = 515.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.207 (2) ŵ = 6.28 mm1
b = 8.210 (1) ÅT = 293 K
c = 7.696 (1) Å0.36 × 0.23 × 0.23 mm
β = 90.25 (1)°
Data collection top
Huber 512 goniometer
diffractometer
1217 reflections with I > 2σ(I)
Absorption correction: gaussian
(Xtal3.4; Hall et al., 1994)
Rint = 0.025
Tmin = 0.197, Tmax = 0.2683 standard reflections every 100 reflections
4814 measured reflections intensity decay: 1%
1254 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02577 parameters
wR(F2) = 0.0600 restraints
S = 1.12Δρmax = 0.48 e Å3
1254 reflectionsΔρmin = 1.02 e Å3
Special details top

Experimental. no special details

Geometry. All e.s.d.'s (except those in the dihedral angles between pairs of l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.25072 (2)0.43000 (3)0.02177 (4)0.05019 (17)
K0.00000.50000.50000.0330 (2)
Mn0.00000.00000.00000.02501 (19)
C10.0330 (3)0.1298 (4)0.2141 (4)0.0355 (7)
N10.0540 (3)0.2043 (4)0.3356 (5)0.0594 (9)
C20.0406 (3)0.2049 (4)0.1269 (4)0.0356 (7)
N20.0658 (3)0.3212 (4)0.2003 (5)0.0571 (9)
C30.1698 (3)0.0231 (4)0.0728 (4)0.0364 (7)
N30.2671 (3)0.0409 (5)0.1165 (5)0.0561 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.0550 (2)0.0424 (2)0.0532 (2)0.00163 (9)0.00202 (12)0.00519 (9)
K0.0347 (5)0.0287 (5)0.0356 (5)0.0005 (4)0.0003 (4)0.0009 (4)
Mn0.0263 (3)0.0215 (3)0.0272 (3)0.0011 (2)0.0015 (2)0.0009 (2)
C10.0375 (16)0.0304 (16)0.0387 (18)0.0048 (13)0.0037 (13)0.0000 (14)
N10.081 (2)0.0482 (19)0.0496 (19)0.0127 (17)0.0189 (17)0.0195 (16)
C20.0388 (16)0.0341 (17)0.0340 (16)0.0006 (13)0.0028 (13)0.0021 (14)
N20.077 (2)0.0406 (18)0.053 (2)0.0170 (16)0.0083 (17)0.0168 (16)
C30.0356 (18)0.0345 (17)0.0392 (18)0.0001 (13)0.0010 (14)0.0045 (14)
N30.0326 (17)0.067 (2)0.069 (2)0.0023 (15)0.0045 (15)0.0081 (19)
Geometric parameters (Å, º) top
Cs—N1i3.330 (4)Mn—C11.999 (3)
Cs—N13.753 (4)Mn—C21.999 (3)
Cs—N1ii3.844 (4)Mn—C31.991 (3)
Cs—N2iii3.214 (3)Mn—C1vii1.999 (3)
Cs—N2i3.619 (4)Mn—C2vii1.999 (3)
Cs—N3iv3.256 (4)Mn—C3vii1.991 (3)
Cs—N33.372 (4)Mn—Csvii4.5156 (5)
Cs—C1i3.569 (3)C1—N11.142 (5)
Cs—C13.766 (3)C1—Csxi3.569 (3)
Cs—C2i3.749 (3)N1—Kxii2.803 (3)
Cs—C33.538 (3)N1—Csxi3.330 (4)
Cs—C3iv3.645 (3)N1—Csxiii3.844 (4)
K—N1v2.803 (3)C2—N21.146 (5)
K—N1vi2.803 (3)C2—Csxi3.749 (3)
K—N2vii2.829 (3)C2—Csxiv3.895 (3)
K—N2viii2.829 (3)N2—Kxv2.829 (3)
K—N3ix2.784 (3)N2—Csxiv3.214 (3)
K—N3iv2.784 (3)N2—Csxi3.619 (4)
K—Csiv4.5046 (5)C3—N31.149 (5)
K—Csix4.5046 (5)C3—Csxvi3.645 (3)
K—Csv4.6563 (7)N3—Kxvi2.784 (3)
K—Csvi4.6563 (7)N3—Csxvi3.256 (4)
K—Csx4.9446 (7)
N2iii—Cs—N3iv100.93 (9)Csiv—K—Csv107.739 (8)
N2iii—Cs—N1i81.55 (10)Csix—K—Csv72.261 (8)
N3iv—Cs—N1i99.76 (9)N3ix—K—Csvi107.09 (8)
N2iii—Cs—N3140.44 (9)N3iv—K—Csvi72.91 (8)
N3iv—Cs—N388.06 (6)N1v—K—Csvi126.30 (9)
N1i—Cs—N3135.22 (9)N1vi—K—Csvi53.70 (9)
N2iii—Cs—C3121.50 (9)N2vii—K—Csvi137.28 (7)
N3iv—Cs—C392.88 (9)N2viii—K—Csvi42.72 (7)
N1i—Cs—C3151.13 (8)Csiv—K—Csvi72.261 (8)
N3—Cs—C318.94 (8)Csix—K—Csvi107.739 (8)
N2iii—Cs—C1i84.42 (9)Csv—K—Csvi180.0
N3iv—Cs—C1i117.47 (8)N3ix—K—Cs141.67 (8)
N1i—Cs—C1i18.64 (8)N3iv—K—Cs38.33 (8)
N3—Cs—C1i125.39 (8)N1v—K—Cs81.74 (7)
C3—Cs—C1i136.59 (8)N1vi—K—Cs98.26 (7)
N2iii—Cs—N2i118.47 (5)N2vii—K—Cs54.86 (8)
N3iv—Cs—N2i139.72 (8)N2viii—K—Cs125.14 (8)
N1i—Cs—N2i79.31 (8)Csiv—K—Cs76.512 (9)
N3—Cs—N2i67.45 (8)Csix—K—Cs103.488 (9)
C3—Cs—N2i74.35 (7)Csv—K—Cs73.473 (13)
C1i—Cs—N2i62.38 (7)Csvi—K—Cs106.527 (13)
N2iii—Cs—C3iv115.24 (8)N3ix—K—Csx38.33 (8)
N3iv—Cs—C3iv18.04 (8)N3iv—K—Csx141.67 (8)
N1i—Cs—C3iv90.71 (8)N1v—K—Csx98.26 (7)
N3—Cs—C3iv83.49 (9)N1vi—K—Csx81.74 (7)
C3—Cs—C3iv93.71 (6)N2vii—K—Csx125.14 (8)
C1i—Cs—C3iv106.24 (8)N2viii—K—Csx54.86 (8)
N2i—Cs—C3iv122.86 (8)Csiv—K—Csx103.488 (9)
N2iii—Cs—C2i106.41 (8)Csix—K—Csx76.512 (8)
N3iv—Cs—C2i144.51 (7)Csv—K—Csx106.527 (13)
N1i—Cs—C2i63.20 (8)Csvi—K—Csx73.473 (13)
N3—Cs—C2i85.11 (8)Cs—K—Csx180.0
C3—Cs—C2i91.76 (8)C1—Mn—C290.1 (1)
C1i—Cs—C2i45.41 (7)C2—Mn—C389.9 (1)
N2i—Cs—C2i17.77 (7)C3—Mn—C190.1 (1)
C3iv—Cs—C2i126.50 (7)C3—Mn—C3vii180.0
N2iii—Cs—N170.28 (8)C3vii—Mn—C290.11 (14)
N3iv—Cs—N1135.76 (8)C3—Mn—C2vii90.11 (14)
N1i—Cs—N1120.47 (6)C3vii—Mn—C2vii89.89 (14)
N3—Cs—N176.48 (8)C2—Mn—C2vii180.00 (18)
C3—Cs—N161.04 (7)C3—Mn—C1vii89.93 (13)
C1i—Cs—N1105.01 (7)C3vii—Mn—C1vii90.07 (13)
N2i—Cs—N170.85 (8)C2—Mn—C1vii89.86 (13)
C3iv—Cs—N1148.64 (7)C2vii—Mn—C1vii90.14 (13)
C2i—Cs—N175.92 (7)C3vii—Mn—C189.93 (13)
N2iii—Cs—C180.34 (8)C2vii—Mn—C189.86 (13)
N3iv—Cs—C1121.15 (8)C1vii—Mn—C1180.0 (2)
N1i—Cs—C1137.61 (8)C3—Mn—Csvii131.17 (10)
N3—Cs—C162.51 (8)C3vii—Mn—Csvii48.83 (10)
C3—Cs—C145.33 (8)C2—Mn—Csvii60.22 (9)
C1i—Cs—C1121.15 (4)C2vii—Mn—Csvii119.78 (9)
N2i—Cs—C176.33 (7)C1vii—Mn—Csvii55.60 (10)
C3iv—Cs—C1131.67 (7)C1—Mn—Csvii124.40 (10)
C2i—Cs—C185.89 (7)C3—Mn—Cs48.83 (10)
N1—Cs—C117.47 (7)C3vii—Mn—Cs131.17 (10)
N2iii—Cs—N1ii155.38 (9)C2—Mn—Cs119.78 (9)
N3iv—Cs—N1ii77.34 (7)C2vii—Mn—Cs60.22 (9)
N1i—Cs—N1ii74.66 (10)C1vii—Mn—Cs124.40 (10)
N3—Cs—N1ii64.15 (8)C1—Mn—Cs55.60 (10)
C3—Cs—N1ii83.08 (8)Csvii—Mn—Cs180.000 (4)
C1i—Cs—N1ii75.09 (8)N1—C1—Mn178.8 (3)
N2i—Cs—N1ii63.45 (7)N1—C1—Csxi68.7 (2)
C3iv—Cs—N1ii59.66 (7)Mn—C1—Csxi110.67 (12)
C2i—Cs—N1ii68.34 (7)N1—C1—Cs80.6 (3)
N1—Cs—N1ii127.90 (4)Mn—C1—Cs98.44 (12)
C1—Cs—N1ii121.94 (7)Csxi—C1—Cs94.83 (7)
N3ix—K—N3iv180.0C1—N1—Kxii142.0 (3)
N3ix—K—N1v92.82 (11)C1—N1—Csxi92.6 (2)
N3iv—K—N1v87.18 (11)Kxii—N1—Csxi125.30 (11)
N3ix—K—N1vi87.18 (11)C1—N1—Cs81.9 (3)
N3iv—K—N1vi92.82 (11)Kxii—N1—Cs89.30 (10)
N1v—K—N1vi180.0Csxi—N1—Cs99.25 (10)
N3ix—K—N2vii87.63 (11)C1—N1—Csxiii88.1 (3)
N3iv—K—N2vii92.37 (11)Kxii—N1—Csxiii83.77 (9)
N1v—K—N2vii91.51 (11)Csxi—N1—Csxiii105.34 (10)
N1vi—K—N2vii88.49 (11)Cs—N1—Csxiii153.84 (10)
N3ix—K—N2viii92.37 (11)N2—C2—Mn178.9 (3)
N3iv—K—N2viii87.63 (11)N2—C2—Csxi74.7 (3)
N1v—K—N2viii88.49 (11)Mn—C2—Csxi104.37 (12)
N1vi—K—N2viii91.51 (11)N2—C2—Csxiv46.4 (2)
N2vii—K—N2viii180.0Mn—C2—Csxiv133.23 (13)
N3ix—K—Csiv131.67 (8)Csxi—C2—Csxiv89.93 (7)
N3iv—K—Csiv48.33 (8)C2—N2—Kxv140.4 (3)
N1v—K—Csiv58.02 (9)C2—N2—Csxiv118.6 (3)
N1vi—K—Csiv121.98 (9)Kxv—N2—Csxiv100.61 (9)
N2vii—K—Csiv126.60 (8)C2—N2—Csxi87.5 (3)
N2viii—K—Csiv53.40 (8)Kxv—N2—Csxi87.73 (9)
N3ix—K—Csix48.33 (8)Csxiv—N2—Csxi104.34 (10)
N3iv—K—Csix131.67 (8)N3—C3—Mn178.0 (3)
N1v—K—Csix121.98 (9)N3—C3—Cs72.3 (2)
N1vi—K—Csix58.02 (9)Mn—C3—Cs106.11 (12)
N2vii—K—Csix53.40 (8)N3—C3—Csxvi61.4 (2)
N2viii—K—Csix126.60 (8)Mn—C3—Csxvi118.44 (13)
Csiv—K—Csix180.0Cs—C3—Csxvi109.34 (9)
N3ix—K—Csv72.91 (8)C3—N3—Kxvi141.3 (3)
N3iv—K—Csv107.09 (8)C3—N3—Csxvi100.5 (3)
N1v—K—Csv53.70 (9)Kxvi—N3—Csxvi109.64 (11)
N1vi—K—Csv126.30 (9)C3—N3—Cs88.8 (3)
N2vii—K—Csv42.72 (7)Kxvi—N3—Cs93.58 (10)
N2viii—K—Csv137.28 (7)Csxvi—N3—Cs124.33 (12)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z; (vi) x, y, z+1; (vii) x, y, z; (viii) x, y+1, z+1; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1, z+1; (xi) x+1/2, y1/2, z1/2; (xii) x, y, z1; (xiii) x1/2, y+1/2, z1/2; (xiv) x, y1, z; (xv) x, y1, z1; (xvi) x+1/2, y1/2, z+1/2.
(I85K) dicesium potassium hexacyanomanganate(III) top
Crystal data top
Cs2K[Mn(CN)6]Dx = 2.472 Mg m3
Mr = 515.98Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.084 (2) ÅCell parameters from 14 reflections
b = 8.213 (1) Åθ = 16.3–20.3°
c = 7.617 (1) ŵ = 6.41 mm1
β = 90.77 (1)°T = 85 K
V = 693.3 (2) Å3Prism, dark red–brown
Z = 20.41 × 0.27 × 0.23 mm
F(000) = 464
Data collection top
Syntex P21
diffractometer
6386 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 50.2°, θmin = 3.1°
ω–2θ scansh = 2123
Absorption correction: gaussian
(Xtal3.4; Hall et al., 1994)
k = 1717
Tmin = 0.192, Tmax = 0.323l = 1616
39456 measured reflections6 standard reflections every 100 reflections
7328 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4475P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.09Δρmax = 2.95 e Å3
7328 reflectionsΔρmin = 1.63 e Å3
77 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0044 (4)
Crystal data top
Cs2K[Mn(CN)6]V = 693.3 (2) Å3
Mr = 515.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.084 (2) ŵ = 6.41 mm1
b = 8.213 (1) ÅT = 85 K
c = 7.617 (1) Å0.41 × 0.27 × 0.23 mm
β = 90.77 (1)°
Data collection top
Syntex P21
diffractometer
6386 reflections with I > 2σ(I)
Absorption correction: gaussian
(Xtal3.4; Hall et al., 1994)
Rint = 0.032
Tmin = 0.192, Tmax = 0.3236 standard reflections every 100 reflections
39456 measured reflections intensity decay: 2%
7328 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03177 parameters
wR(F2) = 0.0790 restraints
S = 1.09Δρmax = 2.95 e Å3
7328 reflectionsΔρmin = 1.63 e Å3
Special details top

Experimental. no special details

Geometry. All e.s.d.'s (except those in the dihedral angles between pairs of l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.251911 (8)0.423963 (10)0.025547 (12)0.01871 (2)
K0.00000.50000.50000.01310 (4)
Mn0.00000.00000.00000.00965 (3)
C10.03440 (11)0.12972 (14)0.21405 (16)0.01479 (15)
N10.05668 (14)0.20427 (16)0.33885 (19)0.0241 (2)
C20.04302 (12)0.20430 (14)0.12643 (16)0.01511 (15)
N20.06954 (15)0.32167 (15)0.20088 (19)0.0237 (2)
C30.17029 (11)0.02527 (15)0.07806 (17)0.01544 (16)
N30.26909 (12)0.04408 (19)0.1257 (2)0.0234 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.02143 (4)0.01474 (3)0.01999 (4)0.00067 (2)0.00096 (3)0.00118 (2)
K0.01399 (11)0.01182 (10)0.01348 (10)0.00029 (8)0.00024 (8)0.00033 (8)
Mn0.00971 (7)0.00861 (6)0.01065 (7)0.00034 (5)0.00041 (5)0.00042 (5)
C10.0169 (4)0.0126 (3)0.0149 (4)0.0010 (3)0.0018 (3)0.0023 (3)
N10.0321 (6)0.0196 (4)0.0209 (5)0.0046 (4)0.0067 (4)0.0083 (4)
C20.0181 (4)0.0122 (3)0.0150 (4)0.0016 (3)0.0004 (3)0.0012 (3)
N20.0329 (6)0.0166 (4)0.0215 (5)0.0066 (4)0.0024 (4)0.0062 (3)
C30.0128 (4)0.0152 (4)0.0182 (4)0.0006 (3)0.0001 (3)0.0022 (3)
N30.0131 (4)0.0278 (5)0.0292 (6)0.0013 (4)0.0018 (4)0.0047 (5)
Geometric parameters (Å, º) top
Mn—C11.989 (1)K—N1vii2.7893 (13)
Mn—C21.996 (1)K—N2i2.8077 (13)
Mn—C31.982 (1)K—N2viii2.8077 (13)
Mn—C1i1.9888 (11)K—N3ix2.7684 (15)
Mn—C2i1.9956 (11)K—N3v2.7684 (15)
Mn—C3i1.9822 (13)K—Csv4.4395 (5)
C1—N11.160 (2)K—Csix4.4395 (5)
C2—N21.158 (2)K—Csvi4.5799 (6)
C3—N31.159 (2)K—Csvii4.5799 (6)
Mn—Csi4.4691 (5)K—Csx4.9509 (7)
Cs—N1ii3.3056 (15)C1—Csxi3.5392 (13)
Cs—N13.6735 (17)N1—Kxii2.7893 (13)
Cs—N1iii3.7965 (18)N1—Csxi3.3056 (15)
Cs—N2iv3.1877 (14)N1—Csxiii3.7965 (18)
Cs—N2ii3.5269 (17)C2—Csxi3.6695 (13)
Cs—N3v3.2129 (16)C2—Csxiv3.9019 (12)
Cs—N33.3304 (16)N2—Kxv2.8077 (13)
Cs—C1ii3.5392 (13)N2—Csxiv3.1877 (14)
Cs—C13.6907 (13)N2—Csxi3.5269 (17)
Cs—C2ii3.6695 (13)C3—Csxvi3.6020 (13)
Cs—C33.4903 (13)N3—Kxvi2.7684 (15)
Cs—C3v3.6020 (13)N3—Csxvi3.2129 (16)
K—N1vi2.7893 (13)
N2iv—Cs—N3v98.18 (4)Csv—K—Csvi72.642 (8)
N2iv—Cs—N1ii79.55 (4)Csix—K—Csvi107.358 (8)
N3v—Cs—N1ii97.89 (4)N3ix—K—Csvii74.58 (4)
N2iv—Cs—N3142.36 (4)N3v—K—Csvii105.42 (4)
N3v—Cs—N387.95 (2)N1vi—K—Csvii126.68 (4)
N1ii—Cs—N3136.60 (4)N1vii—K—Csvii53.32 (3)
N2iv—Cs—C3123.01 (4)N2i—K—Csvii43.36 (3)
N3v—Cs—C392.95 (4)N2viii—K—Csvii136.64 (3)
N1ii—Cs—C3153.31 (3)Csv—K—Csvii107.358 (8)
N3—Cs—C319.39 (3)Csix—K—Csvii72.642 (8)
N2iv—Cs—N2ii119.01 (2)Csvi—K—Csvii180.0
N3v—Cs—N2ii141.63 (3)N3ix—K—Csx37.14 (3)
N1ii—Cs—N2ii81.15 (3)N3v—K—Csx142.86 (3)
N3—Cs—N2ii68.81 (3)N1vi—K—Csx83.12 (3)
C3—Cs—N2ii75.30 (3)N1vii—K—Csx96.88 (3)
N2iv—Cs—C1ii82.97 (4)N2i—K—Csx124.77 (4)
N3v—Cs—C1ii116.25 (3)N2viii—K—Csx55.23 (4)
N1ii—Cs—C1ii19.12 (3)Csv—K—Csx102.788 (8)
N3—Cs—C1ii127.27 (3)Csix—K—Csx77.212 (8)
C3—Cs—C1ii138.77 (3)Csvi—K—Csx73.958 (12)
N2ii—Cs—C1ii63.70 (3)Csvii—K—Csx106.042 (12)
N2iv—Cs—C3v112.80 (3)N3ix—K—Cs142.86 (3)
N3v—Cs—C3v18.47 (3)N3v—K—Cs37.14 (3)
N1ii—Cs—C3v89.33 (3)N1vi—K—Cs96.88 (3)
N3—Cs—C3v82.95 (4)N1vii—K—Cs83.12 (3)
C3—Cs—C3v93.57 (2)N2i—K—Cs55.23 (4)
N2ii—Cs—C3v124.20 (3)N2viii—K—Cs124.77 (4)
C1ii—Cs—C3v105.46 (3)Csv—K—Cs77.212 (8)
N2iv—Cs—C2ii106.32 (3)Csix—K—Cs102.788 (8)
N3v—Cs—C2ii145.73 (3)Csvi—K—Cs106.042 (12)
N1ii—Cs—C2ii64.39 (3)Csvii—K—Cs73.958 (12)
N3—Cs—C2ii87.01 (3)Csx—K—Cs180.0
C3—Cs—C2ii93.38 (3)C1—Mn—C290.29 (5)
N2ii—Cs—C2ii18.39 (3)C2—Mn—C390.00 (5)
C1ii—Cs—C2ii46.09 (3)C3—Mn—C189.86 (5)
C3v—Cs—C2ii127.39 (3)C3—Mn—C3i180.00 (8)
N2iv—Cs—N171.64 (3)C3i—Mn—C190.14 (5)
N3v—Cs—N1135.82 (3)C3—Mn—C1i90.14 (5)
N1ii—Cs—N1120.93 (2)C3i—Mn—C1i89.86 (5)
N3—Cs—N178.17 (3)C1—Mn—C1i180.00 (9)
C3—Cs—N162.22 (3)C3—Mn—C2i90.00 (5)
N2ii—Cs—N170.46 (3)C3i—Mn—C2i90.00 (5)
C1ii—Cs—N1105.26 (3)C1—Mn—C2i89.71 (5)
C3v—Cs—N1149.27 (3)C1i—Mn—C2i90.29 (5)
C2ii—Cs—N175.81 (3)C3i—Mn—C290.00 (5)
N2iv—Cs—C181.89 (3)C1i—Mn—C289.71 (5)
N3v—Cs—C1120.97 (3)C2i—Mn—C2180.00 (9)
N1ii—Cs—C1138.86 (3)C3—Mn—Cs48.59 (4)
N3—Cs—C163.59 (3)C3i—Mn—Cs131.41 (4)
C3—Cs—C145.87 (3)C1—Mn—Cs54.56 (4)
N2ii—Cs—C176.37 (3)C1i—Mn—Cs125.44 (4)
C1ii—Cs—C1122.222 (18)C2i—Mn—Cs61.28 (4)
C3v—Cs—C1131.78 (3)C2—Mn—Cs118.72 (4)
C2ii—Cs—C186.49 (3)C3—Mn—Csi131.41 (4)
N1—Cs—C118.13 (3)C3i—Mn—Csi48.59 (4)
N2iv—Cs—N1iii153.48 (4)C1—Mn—Csi125.44 (4)
N3v—Cs—N1iii78.79 (3)C1i—Mn—Csi54.56 (4)
N1ii—Cs—N1iii74.85 (4)C2i—Mn—Csi118.72 (4)
N3—Cs—N1iii64.16 (3)C2—Mn—Csi61.28 (4)
C3—Cs—N1iii83.52 (3)Cs—Mn—Csi180.000 (3)
N2ii—Cs—N1iii63.84 (3)N1—C1—Mn178.7 (1)
C1ii—Cs—N1iii75.14 (3)N1—C1—Csxi68.98 (9)
C3v—Cs—N1iii60.60 (3)Mn—C1—Csxi109.92 (4)
C2ii—Cs—N1iii68.55 (3)N1—C1—Cs80.10 (10)
N1—Cs—N1iii128.35 (2)Mn—C1—Cs99.40 (5)
C1—Cs—N1iii122.51 (3)Csxi—C1—Cs95.28 (3)
N3ix—K—N3v180.0C1—N1—Kxii140.45 (11)
N3ix—K—N1vi86.43 (5)C1—N1—Csxi91.89 (9)
N3v—K—N1vi93.57 (5)Kxii—N1—Csxi127.64 (5)
N3ix—K—N1vii93.57 (5)C1—N1—Cs81.78 (10)
N3v—K—N1vii86.43 (5)Kxii—N1—Cs89.16 (4)
N1vi—K—N1vii180.0Csxi—N1—Cs99.79 (4)
N3ix—K—N2i88.13 (5)C1—N1—Csxiii87.85 (11)
N3v—K—N2i91.87 (5)Kxii—N1—Csxiii83.26 (4)
N1vi—K—N2i87.74 (4)Csxi—N1—Csxiii105.15 (4)
N1vii—K—N2i92.26 (4)Cs—N1—Csxiii153.25 (4)
N3ix—K—N2viii91.87 (5)N2—C2—Mn178.9 (1)
N3v—K—N2viii88.13 (5)N2—C2—Csxi73.83 (10)
N1vi—K—N2viii92.26 (4)Mn—C2—Csxi105.16 (4)
N1vii—K—N2viii87.74 (4)N2—C2—Csxiv44.88 (9)
N2i—K—N2viii180.0Mn—C2—Csxiv135.06 (5)
N3ix—K—Csv131.48 (3)Csxi—C2—Csxiv89.73 (3)
N3v—K—Csv48.52 (3)C2—N2—Kxv139.70 (12)
N1vi—K—Csv121.87 (4)C2—N2—Csxiv120.26 (11)
N1vii—K—Csv58.13 (4)Kxv—N2—Csxiv99.42 (4)
N2i—K—Csv127.43 (3)C2—N2—Csxi87.78 (10)
N2viii—K—Csv52.57 (3)Kxv—N2—Csxi88.23 (4)
N3ix—K—Csix48.52 (3)Csxiv—N2—Csxi105.35 (5)
N3v—K—Csix131.48 (3)N3—C3—Mn178.2 (1)
N1vi—K—Csix58.13 (4)N3—C3—Cs72.49 (9)
N1vii—K—Csix121.87 (4)Mn—C3—Cs106.21 (4)
N2i—K—Csix52.57 (3)N3—C3—Csxvi61.42 (10)
N2viii—K—Csix127.43 (3)Mn—C3—Csxvi118.33 (5)
Csv—K—Csix180.000 (2)Cs—C3—Csxvi111.79 (3)
N3ix—K—Csvi105.42 (4)C3—N3—Kxvi138.43 (13)
N3v—K—Csvi74.58 (4)C3—N3—Csxvi100.11 (10)
N1vi—K—Csvi53.32 (4)Kxvi—N3—Csxvi111.52 (5)
N1vii—K—Csvi126.68 (3)C3—N3—Cs88.12 (10)
N2i—K—Csvi136.64 (3)Kxvi—N3—Cs92.96 (4)
N2viii—K—Csvi43.36 (3)Csxvi—N3—Cs127.66 (5)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1, z+1; (xi) x+1/2, y1/2, z1/2; (xii) x, y, z1; (xiii) x1/2, y+1/2, z1/2; (xiv) x, y1, z; (xv) x, y1, z1; (xvi) x+1/2, y1/2, z+1/2.
(I10K) dicesium potassium hexacyanomanganate(III) top
Crystal data top
Cs2K[Mn(CN)6]Dx = 2.471 Mg m3
Mr = 515.98Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.074 (7) ÅCell parameters from 16 reflections
b = 8.227 (2) Åθ = 37.4–42.7°
c = 7.6135 (5) ŵ = 6.41 mm1
β = 90.95 (4)°T = 10 K
V = 693.5 (5) Å3Prism, dark red-brown
Z = 20.36 × 0.23 × 0.23 mm
F(000) = 464
Data collection top
Huber 512 goniometer
diffractometer
7143 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.039
None monochromatorθmax = 50.2°, θmin = 3.1°
ω–2θ scansh = 2323
Absorption correction: gaussian
(PROFIT; Streltsov & Zavodnik, 1989)
k = 1717
Tmin = 0.192, Tmax = 0.291l = 1616
28154 measured reflections3 standard reflections every 100 reflections
7317 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.778P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.22Δρmax = 2.18 e Å3
7317 reflectionsΔρmin = 3.75 e Å3
77 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0535 (12)
Crystal data top
Cs2K[Mn(CN)6]V = 693.5 (5) Å3
Mr = 515.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.074 (7) ŵ = 6.41 mm1
b = 8.227 (2) ÅT = 10 K
c = 7.6135 (5) Å0.36 × 0.23 × 0.23 mm
β = 90.95 (4)°
Data collection top
Huber 512 goniometer
diffractometer
7143 reflections with I > 2σ(I)
Absorption correction: gaussian
(PROFIT; Streltsov & Zavodnik, 1989)
Rint = 0.039
Tmin = 0.192, Tmax = 0.2913 standard reflections every 100 reflections
28154 measured reflections intensity decay: 1%
7317 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03177 parameters
wR(F2) = 0.0770 restraints
S = 1.22Δρmax = 2.18 e Å3
7317 reflectionsΔρmin = 3.75 e Å3
Special details top

Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Geometry. All e.s.d.'s (except those in the dihedral angles between pairs of l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.252711 (6)0.421945 (8)0.026975 (9)0.00883 (2)
K0.00000.50000.50000.00896 (5)
Mn0.00000.00000.00000.00650 (3)
C10.03499 (12)0.12958 (15)0.21408 (16)0.01033 (14)
N10.05787 (13)0.20445 (16)0.33885 (17)0.01469 (17)
C20.04456 (12)0.20376 (15)0.12616 (16)0.01046 (14)
N20.07206 (13)0.32080 (15)0.20091 (17)0.01414 (16)
C30.17055 (11)0.02607 (15)0.08083 (17)0.01070 (15)
N30.26977 (11)0.04553 (17)0.12979 (18)0.01415 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.00929 (4)0.00759 (3)0.00964 (3)0.00016 (1)0.00060 (2)0.00016 (1)
K0.00900 (11)0.00869 (10)0.00918 (10)0.00023 (8)0.00009 (8)0.00019 (8)
Mn0.00633 (7)0.00632 (7)0.00685 (7)0.00007 (5)0.00042 (5)0.00014 (5)
C10.0114 (4)0.0097 (3)0.0100 (3)0.0002 (3)0.0013 (3)0.0012 (3)
N10.0183 (5)0.0128 (4)0.0131 (4)0.0014 (3)0.0033 (3)0.0043 (3)
C20.0119 (4)0.0092 (3)0.0103 (3)0.0005 (3)0.0008 (3)0.0007 (3)
N20.0182 (5)0.0110 (3)0.0133 (4)0.0028 (3)0.0003 (3)0.0027 (3)
C30.0089 (3)0.0110 (4)0.0122 (4)0.0004 (3)0.0007 (3)0.0012 (3)
N30.0096 (4)0.0167 (4)0.0162 (4)0.0012 (3)0.0011 (3)0.0012 (3)
Geometric parameters (Å, º) top
Cs—N1i3.3040 (17)Mn—C11.991 (1)
Cs—N13.650 (2)Mn—C21.998 (1)
Cs—N1ii3.794 (3)Mn—C31.988 (2)
Cs—N2iii3.1855 (17)Mn—C1vii1.9910 (12)
Cs—N2i3.4898 (18)Mn—C2vii1.9980 (12)
Cs—N3iv3.2039 (14)Mn—C3vii1.9883 (17)
Cs—N33.3230 (16)Mn—Csvii4.4658 (13)
Cs—C1i3.5335 (18)C1—N11.164 (2)
Cs—C13.6762 (18)C1—Csxi3.5335 (18)
Cs—C2i3.6442 (19)N1—Kxii2.7932 (13)
Cs—C33.4833 (15)N1—Csxi3.3040 (17)
Cs—C3iv3.5914 (14)N1—Csxiii3.794 (3)
K—N1v2.7932 (13)C2—N21.162 (2)
K—N1vi2.7932 (13)C2—Csxi3.6442 (19)
K—N2vii2.8170 (14)C2—Csxiv3.9126 (17)
K—N2viii2.8170 (14)N2—Kxv2.8170 (14)
K—N3ix2.775 (2)N2—Csxiv3.1855 (17)
K—N3iv2.775 (2)N2—Csxi3.4898 (18)
K—Csix4.4241 (13)C3—N31.165 (2)
K—Csiv4.4241 (13)C3—Csxvi3.5914 (14)
K—Csv4.5694 (19)N3—Kxvi2.775 (2)
K—Csvi4.5694 (19)N3—Csxvi3.2039 (14)
K—Csx4.9713 (19)
N2iii—Cs—N3iv97.09 (4)Csix—K—Csv72.73 (3)
N2iii—Cs—N1i78.56 (5)Csiv—K—Csv107.27 (3)
N3iv—Cs—N1i97.37 (4)N3ix—K—Csvi104.75 (5)
N2iii—Cs—N3143.13 (4)N3iv—K—Csvi75.25 (5)
N3iv—Cs—N387.80 (2)N1v—K—Csvi126.98 (3)
N1i—Cs—N3137.22 (4)N1vi—K—Csvi53.02 (3)
N2iii—Cs—C3123.68 (4)N2vii—K—Csvi136.48 (3)
N3iv—Cs—C392.85 (4)N2viii—K—Csvi43.52 (3)
N1i—Cs—C3154.19 (3)Csix—K—Csvi107.27 (3)
N3—Cs—C319.53 (3)Csiv—K—Csvi72.73 (3)
N2iii—Cs—N2i119.01 (2)Csv—K—Csvi180.000 (2)
N3iv—Cs—N2i142.61 (4)N3ix—K—Cs143.40 (4)
N1i—Cs—N2i81.77 (4)N3iv—K—Cs36.60 (4)
N3—Cs—N2i69.58 (3)N1v—K—Cs83.46 (3)
C3—Cs—N2i75.81 (4)N1vi—K—Cs96.54 (3)
N2iii—Cs—C1i82.30 (5)N2vii—K—Cs55.65 (4)
N3iv—Cs—C1i115.85 (4)N2viii—K—Cs124.35 (4)
N1i—Cs—C1i19.22 (3)Csix—K—Cs102.56 (3)
N3—Cs—C1i128.06 (3)Csiv—K—Cs77.44 (3)
C3—Cs—C1i139.66 (3)Csv—K—Cs74.20 (3)
N2i—Cs—C1i64.14 (4)Csvi—K—Cs105.80 (3)
N2iii—Cs—C3iv111.83 (4)N3ix—K—Csx36.60 (4)
N3iv—Cs—C3iv18.65 (3)N3iv—K—Csx143.40 (4)
N1i—Cs—C3iv89.04 (4)N1v—K—Csx96.54 (3)
N3—Cs—C3iv82.61 (3)N1vi—K—Csx83.46 (3)
C3—Cs—C3iv93.37 (2)N2vii—K—Csx124.35 (4)
N2i—Cs—C3iv124.94 (4)N2viii—K—Csx55.65 (4)
C1i—Cs—C3iv105.26 (4)Csix—K—Csx77.44 (3)
N2iii—Cs—C2i106.11 (4)Csiv—K—Csx102.56 (3)
N3iv—Cs—C2i146.35 (4)Csv—K—Csx105.80 (3)
N1i—Cs—C2i64.76 (4)Csvi—K—Csx74.20 (3)
N3—Cs—C2i87.93 (3)Cs—K—Csx180.000 (2)
C3—Cs—C2i94.12 (3)C1—Mn—C290.15 (5)
N2i—Cs—C2i18.58 (3)C2—Mn—C389.91 (6)
C1i—Cs—C2i46.31 (3)C3—Mn—C189.94 (6)
C3iv—Cs—C2i127.89 (4)C3—Mn—C3vii180.00 (8)
N2iii—Cs—N172.24 (4)C3vii—Mn—C190.06 (6)
N3iv—Cs—N1135.66 (4)C3—Mn—C1vii90.06 (6)
N1i—Cs—N1121.01 (3)C3vii—Mn—C1vii89.94 (6)
N3—Cs—N178.83 (3)C1—Mn—C1vii180.00 (6)
C3—Cs—N162.68 (3)C3vii—Mn—C290.09 (6)
N2i—Cs—N170.24 (5)C1vii—Mn—C289.85 (5)
C1i—Cs—N1105.40 (4)C3—Mn—C2vii90.09 (6)
C3iv—Cs—N1149.33 (3)C3vii—Mn—C2vii89.91 (6)
C2i—Cs—N175.77 (4)C1—Mn—C2vii89.85 (5)
N2iii—Cs—C182.55 (5)C1vii—Mn—C2vii90.15 (5)
N3iv—Cs—C1120.84 (4)C2—Mn—C2vii180.00 (7)
N1i—Cs—C1139.12 (3)C3—Mn—Cs48.52 (4)
N3—Cs—C164.05 (4)C3vii—Mn—Cs131.48 (4)
C3—Cs—C146.16 (3)C1—Mn—Cs54.24 (4)
N2i—Cs—C176.30 (5)C1vii—Mn—Cs125.76 (4)
C1i—Cs—C1122.57 (2)C2—Mn—Cs118.04 (5)
C3iv—Cs—C1131.76 (3)C2vii—Mn—Cs61.96 (5)
C2i—Cs—C186.64 (4)C3—Mn—Csvii131.48 (4)
N1—Cs—C118.27 (3)C3vii—Mn—Csvii48.52 (4)
N2iii—Cs—N1ii152.67 (3)C1—Mn—Csvii125.76 (4)
N3iv—Cs—N1ii79.24 (4)C1vii—Mn—Csvii54.24 (4)
N1i—Cs—N1ii75.13 (5)C2—Mn—Csvii61.96 (5)
N3—Cs—N1ii64.15 (3)C2vii—Mn—Csvii118.04 (5)
C3—Cs—N1ii83.64 (4)Cs—Mn—Csvii180.000 (1)
N2i—Cs—N1ii64.32 (4)N1—C1—Mn178.6 (1)
C1i—Cs—N1ii75.31 (5)N1—C1—Csxi69.18 (9)
C3iv—Cs—N1ii60.85 (4)Mn—C1—Csxi109.77 (5)
C2i—Cs—N1ii68.91 (4)N1—C1—Cs79.61 (10)
N1—Cs—N1ii128.64 (3)Mn—C1—Cs99.69 (5)
C1—Cs—N1ii122.78 (4)Csxi—C1—Cs95.41 (5)
N3ix—K—N3iv180.0C1—N1—Kxii140.17 (11)
N3ix—K—N1v93.93 (5)C1—N1—Csxi91.60 (10)
N3iv—K—N1v86.07 (5)Kxii—N1—Csxi128.22 (4)
N3ix—K—N1vi86.07 (5)C1—N1—Cs82.12 (10)
N3iv—K—N1vi93.93 (5)Kxii—N1—Cs89.30 (4)
N1v—K—N1vi180.0Csxi—N1—Cs100.05 (5)
N3ix—K—N2vii88.14 (5)C1—N1—Csxiii87.62 (10)
N3iv—K—N2vii91.86 (5)Kxii—N1—Csxiii82.90 (4)
N1v—K—N2vii92.33 (4)Csxi—N1—Csxiii104.87 (5)
N1vi—K—N2vii87.67 (4)Cs—N1—Csxiii153.27 (4)
N3ix—K—N2viii91.86 (5)N2—C2—Mn178.8 (1)
N3iv—K—N2viii88.14 (5)N2—C2—Csxi73.18 (9)
N1v—K—N2viii87.67 (4)Mn—C2—Csxi105.69 (5)
N1vi—K—N2viii92.33 (4)N2—C2—Csxiv44.26 (9)
N2vii—K—N2viii180.0Mn—C2—Csxiv135.80 (5)
N3ix—K—Csix48.62 (3)Csxi—C2—Csxiv89.72 (4)
N3iv—K—Csix131.38 (3)C2—N2—Kxv139.18 (11)
N1v—K—Csix121.69 (4)C2—N2—Csxiv121.00 (10)
N1vi—K—Csix58.31 (4)Kxv—N2—Csxiv98.97 (4)
N2vii—K—Csix52.05 (3)C2—N2—Csxi88.24 (10)
N2viii—K—Csix127.95 (3)Kxv—N2—Csxi88.42 (4)
N3ix—K—Csiv131.38 (3)Csxiv—N2—Csxi105.99 (5)
N3iv—K—Csiv48.62 (3)N3—C3—Mn178.2 (1)
N1v—K—Csiv58.31 (4)N3—C3—Cs72.44 (9)
N1vi—K—Csiv121.69 (4)Mn—C3—Cs106.17 (5)
N2vii—K—Csiv127.95 (3)N3—C3—Csxvi61.52 (9)
N2viii—K—Csiv52.05 (3)Mn—C3—Csxvi118.40 (6)
Csix—K—Csiv180.0Cs—C3—Csxvi112.78 (4)
N3ix—K—Csv75.25 (5)C3—N3—Kxvi137.26 (12)
N3iv—K—Csv104.75 (5)C3—N3—Csxvi99.83 (10)
N1v—K—Csv53.02 (3)Kxvi—N3—Csxvi112.30 (5)
N1vi—K—Csv126.98 (3)C3—N3—Cs88.02 (10)
N2vii—K—Csv43.52 (3)Kxvi—N3—Cs92.58 (4)
N2viii—K—Csv136.48 (3)Csxvi—N3—Cs129.04 (5)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z; (vi) x, y, z+1; (vii) x, y, z; (viii) x, y+1, z+1; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1, z+1; (xi) x+1/2, y1/2, z1/2; (xii) x, y, z1; (xiii) x1/2, y+1/2, z1/2; (xiv) x, y1, z; (xv) x, y1, z1; (xvi) x+1/2, y1/2, z+1/2.

Experimental details

(I293K)(I85K)(I10K)
Crystal data
Chemical formulaCs2K[Mn(CN)6]Cs2K[Mn(CN)6]Cs2K[Mn(CN)6]
Mr515.98515.98515.98
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)2938510
a, b, c (Å)11.207 (2), 8.210 (1), 7.696 (1)11.084 (2), 8.213 (1), 7.617 (1)11.074 (7), 8.227 (2), 7.6135 (5)
β (°) 90.25 (1) 90.77 (1) 90.95 (4)
V3)708.1 (2)693.3 (2)693.5 (5)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)6.286.416.41
Crystal size (mm)0.36 × 0.23 × 0.230.41 × 0.27 × 0.230.36 × 0.23 × 0.23
Data collection
DiffractometerHuber 512 goniometer
diffractometer
Syntex P21
diffractometer
Huber 512 goniometer
diffractometer
Absorption correctionGaussian
(Xtal3.4; Hall et al., 1994)
Gaussian
(Xtal3.4; Hall et al., 1994)
Gaussian
(PROFIT; Streltsov & Zavodnik, 1989)
Tmin, Tmax0.197, 0.2680.192, 0.3230.192, 0.291
No. of measured, independent and
observed [I > 2σ(I)] reflections
4814, 1254, 1217 39456, 7328, 6386 28154, 7317, 7143
Rint0.0250.0320.039
(sin θ/λ)max1)0.5961.0811.080
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.12 0.031, 0.079, 1.09 0.031, 0.077, 1.22
No. of reflections125473287317
No. of parameters777777
Δρmax, Δρmin (e Å3)0.48, 1.022.95, 1.632.18, 3.75

Computer programs: local software, P3/P4-PC Software (Siemens, 1991), P3/P4-PC Software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1983), SHELXTL.

Selected bond lengths (Å) and angles (°) for the [Mn(CN)6]3− ion at 293, 85 and 10 K top
293 K85 K10 K
Mn-C11.999 (3)1.989 (1)1.991 (1)
Mn-C21.999 (3)1.996 (1)1.998 (1)
Mn-C31.991 (3)1.982 (1)1.988 (2)
C1-N11.142 (5)1.160 (2)1.164 (2)
C2-N21.146 (5)1.158 (2)1.162 (2)
C3-N31.149 (5)1.159 (2)1.165 (2)
C1-Mn-C290.1 (1)90.29 (5)90.15 (5)
C2-Mn-C389.9 (1)90.00 (5)89.91 (6)
C3-Mn-C190.1 (1)89.86 (5)89.94 (6)
N1-C1-Mn178.8 (3)178.7 (1)178.6 (1)
N2-C2-Mn178.9 (3)178.9 (1)178.8 (1)
N3-C3-Mn178.0 (3)178.2 (1)178.2 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds