Download citation
Download citation
link to html
Tetra­ammonium disodium decavanadate decahydrate crystallizes in the triclinic system in space group P\overline 1. The structure contains typical centrosymmetric OV6 double octahedra and centrosymmetric pairs of edge-shared NaO6 double octahedra forming a layered structure. In contrast to other monovalent cationic decavanadates, the NaO6 double octahedra are integrated in the layer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005448/br1283sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005448/br1283Isup2.hkl
Contains datablock I

Comment top

Vanadium compounds, particularly vanadium phosphates, are of great interest as potential catalysts for heterogeneous oxidation and ammoxidation reactions (Centi, 1993). In connection with the investigation of the system NH3–VV, we found the decavanadate (NH4)4Na2(V10O28).10H2O, (I), and determined its crystal structure. (I) crystallizes during very slow evaporation of an appropriate solution. There exist several structures of monovalent cation decavanadates of the type Mx(V10O28).yH2O. Thus, crystal structures are known from Na6(V10O28).18H2O (Durif et al., 1982), Na6(V10O28).12H2O (Xu et al., 1996), Cs4H2(V10O28).4H2O (Rigotti et al., 1987) and (NH4)6(V10O28).6H2O (Eglmeier et al., 1993). The structure of (I) consists of layers of decavanadate anions and pairs of edge-shared NaO6 double octahedra (Fig. 1). The layered structure is similar to those found for the other decavanadates of monovalent cations, but in (I), the layers are connected only via hydrogen bonds. This is unusual because in the other decavanadates mentioned above, the layers are connected via cation polyhedra. However, in the present structure all NaO6 octahedra are integrated in the layer.

The [V10O28]6− decavanadate anions appear as common edge-shared OV6 double octahedra. The axial V—O bond distances are in the normal ranges, with values of 1.60–1.69 Å for the VO group and of 2.10–2.35 Å for the second axial O atom, as are the four equatorial V—O bonds with distances ranging from 1.70 to 2.09 Å. Sodium occurs as a pair of edge-shared NaO6 octahedra. In the octahedron, sodium is surrounded by six water molecules, the only water in the structure. The Na—O bond distances are in the narrow range 2.34–2.44 Å. In the above-mentioned sodium decavanadates, longer Na—O distances were found (up to 2.7 Å). The H atoms of the coordinated water are involved in hydrogen bridges, forming the linkage between the decavanadate anions in the layer as well as forming bridges to neighbouring layers.

The N1 and N2 ammonium ions are fixed via hydrogen bonds to the decavanadate anion. Additionally, they form hydrogen bonds to the sodium–oxygen octahedron and to one decavanadate anion of a neighbouring layer. Compound (I) is a new decavanadate with some interesting structural features, especially with regard to the arrangement of the layers, which is quite different from what is found in other decavanadates of monovalent cations.

Experimental top

(NH4)4Na2(V10O28).10H2O was prepared by evaporation of a solution consisting of H2O (50 ml), NH4VO3 (250 mg) and NaH2PO4 (50 mg) at room temperature.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Schollmeyer, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View along the a axis showing the edge-shared NaO6 double octahedra (light grey).
[Figure 2] Fig. 2. A plot with displacement ellipsoids of the [V10O28]6− anion drawn at the 50% probability level; V atoms are shaded.
Tetraammonium dinatrium decavanadate 10-hydrate top
Crystal data top
(NH4)4[Na2(H2O)10][V10O28]Z = 1
Mr = 1255.71F(000) = 620
Triclinic, P1Dx = 2.448 Mg m3
a = 8.501 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.426 (2) ÅCell parameters from 25 reflections
c = 11.282 (2) Åθ = 10–18°
α = 68.46 (3)°µ = 2.77 mm1
β = 87.30 (3)°T = 293 K
γ = 67.14 (3)°Plate, red
V = 851.7 (3) Å30.2 × 0.2 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
4474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.007
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
θ/2θ scansh = 011
Absorption correction: ψ scan
(CORINC; Schollmeyer, 1992)
k = 1314
Tmin = 0.632, Tmax = 0.758l = 1515
5282 measured reflections3 standard reflections every 100 reflections
4933 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102All H-atom parameters refined
S = 1.06Calculated w = 1/[σ2(Fo2) + (0.0727P)2 + 0.331P]
where P = (Fo2 + 2Fc2)/3
4933 reflections(Δ/σ)max = 0.005
316 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
(NH4)4[Na2(H2O)10][V10O28]γ = 67.14 (3)°
Mr = 1255.71V = 851.7 (3) Å3
Triclinic, P1Z = 1
a = 8.501 (2) ÅMo Kα radiation
b = 10.426 (2) ŵ = 2.77 mm1
c = 11.282 (2) ÅT = 293 K
α = 68.46 (3)°0.2 × 0.2 × 0.1 mm
β = 87.30 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4474 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Schollmeyer, 1992)
Rint = 0.007
Tmin = 0.632, Tmax = 0.7583 standard reflections every 100 reflections
5282 measured reflections intensity decay: none
4933 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102All H-atom parameters refined
S = 1.06Δρmax = 1.31 e Å3
4933 reflectionsΔρmin = 1.17 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.03006 (4)0.29101 (4)0.23781 (3)0.01885 (9)
V20.19030 (4)0.00256 (3)0.48069 (3)0.01351 (8)
V30.02605 (4)0.00443 (3)0.26033 (3)0.01707 (9)
V40.12336 (4)0.28293 (3)0.50328 (3)0.01748 (9)
V50.32808 (4)0.28412 (4)0.72318 (3)0.01970 (9)
Na0.56828 (12)0.16738 (10)0.12645 (9)0.0318 (2)
O10.23957 (17)0.13239 (15)0.35981 (13)0.0186 (3)
O20.06686 (15)0.12408 (14)0.39460 (12)0.0153 (2)
O30.06164 (18)0.14112 (15)0.17219 (13)0.0194 (3)
O40.01624 (18)0.36875 (15)0.36709 (13)0.0198 (3)
O50.1116 (2)0.39637 (18)0.13910 (15)0.0287 (3)
O60.20098 (18)0.38051 (15)0.82265 (13)0.0212 (3)
O70.37517 (17)0.12154 (15)0.57503 (13)0.0194 (3)
O80.10344 (16)0.12031 (14)0.58412 (12)0.0159 (2)
O90.18432 (16)0.11584 (14)0.38562 (12)0.0162 (2)
O100.0084 (2)0.09796 (17)0.17518 (14)0.0253 (3)
O110.24871 (17)0.13473 (15)0.79406 (13)0.0196 (3)
O120.1573 (2)0.38177 (16)0.41571 (15)0.0260 (3)
O130.32924 (17)0.36407 (15)0.59950 (13)0.0208 (3)
O140.52129 (19)0.38231 (18)0.79143 (16)0.0293 (3)
O150.2915 (2)0.0139 (2)0.01415 (18)0.0338 (4)
O160.5203 (3)0.0084 (3)0.2382 (2)0.0457 (5)
O170.4685 (3)0.3182 (3)0.2952 (2)0.0464 (5)
O180.1556 (3)0.6827 (2)0.2455 (2)0.0461 (5)
O190.4306 (3)0.3289 (2)0.02683 (19)0.0427 (5)
N10.3218 (3)0.7085 (3)0.5108 (2)0.0299 (4)
N20.2163 (4)0.3213 (3)0.0696 (2)0.0407 (5)
H10.116 (5)0.592 (5)0.284 (4)0.064 (11)*
H20.089 (5)0.700 (5)0.263 (4)0.056 (12)*
H30.336 (5)0.428 (5)0.078 (4)0.062 (11)*
H40.165 (5)0.274 (4)0.110 (3)0.045 (9)*
H50.413 (7)0.290 (6)0.039 (5)0.094 (18)*
H60.438 (5)0.030 (4)0.269 (3)0.038 (8)*
H70.378 (5)0.277 (4)0.315 (3)0.047 (10)*
H80.582 (6)0.015 (5)0.238 (4)0.068 (14)*
H90.261 (9)0.752 (8)0.552 (6)0.14 (3)*
H100.497 (6)0.401 (5)0.323 (4)0.071 (14)*
H110.310 (9)0.298 (7)0.051 (6)0.13 (2)*
H120.397 (6)0.748 (5)0.485 (4)0.063 (12)*
H130.235 (6)0.031 (5)0.070 (5)0.077 (14)*
H140.227 (8)0.404 (7)0.106 (6)0.11 (2)*
H150.270 (7)0.635 (7)0.483 (5)0.091 (18)*
H160.393 (10)0.692 (9)0.559 (7)0.16 (3)*
H170.229 (6)0.018 (5)0.028 (5)0.076 (15)*
H180.159 (7)0.293 (6)0.009 (5)0.090 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01847 (16)0.01622 (15)0.02018 (15)0.00716 (12)0.00159 (11)0.00478 (11)
V20.01055 (14)0.01234 (14)0.01739 (15)0.00355 (11)0.00123 (10)0.00643 (11)
V30.01947 (16)0.01553 (15)0.01686 (15)0.00556 (12)0.00084 (11)0.00822 (11)
V40.01895 (16)0.01236 (14)0.02031 (16)0.00352 (11)0.00098 (11)0.00810 (11)
V50.01465 (15)0.01667 (15)0.02257 (16)0.00286 (11)0.00286 (11)0.00488 (12)
Na0.0331 (5)0.0277 (4)0.0359 (5)0.0124 (4)0.0030 (4)0.0129 (4)
O10.0162 (6)0.0183 (6)0.0216 (6)0.0077 (5)0.0028 (5)0.0070 (5)
O20.0139 (6)0.0136 (5)0.0180 (5)0.0046 (4)0.0008 (4)0.0064 (4)
O30.0215 (6)0.0190 (6)0.0188 (6)0.0082 (5)0.0041 (5)0.0084 (5)
O40.0218 (6)0.0150 (6)0.0228 (6)0.0074 (5)0.0016 (5)0.0073 (5)
O50.0317 (8)0.0260 (7)0.0282 (7)0.0158 (6)0.0062 (6)0.0057 (6)
O60.0203 (6)0.0171 (6)0.0219 (6)0.0056 (5)0.0015 (5)0.0045 (5)
O70.0135 (6)0.0186 (6)0.0242 (6)0.0042 (5)0.0006 (5)0.0085 (5)
O80.0148 (5)0.0144 (5)0.0191 (6)0.0048 (4)0.0004 (4)0.0080 (5)
O90.0147 (6)0.0155 (6)0.0194 (6)0.0044 (5)0.0033 (4)0.0095 (5)
O100.0305 (7)0.0269 (7)0.0246 (7)0.0113 (6)0.0047 (6)0.0165 (6)
O110.0182 (6)0.0189 (6)0.0205 (6)0.0054 (5)0.0024 (5)0.0077 (5)
O120.0290 (7)0.0203 (7)0.0315 (7)0.0064 (6)0.0029 (6)0.0165 (6)
O130.0165 (6)0.0154 (6)0.0262 (6)0.0008 (5)0.0002 (5)0.0089 (5)
O140.0182 (6)0.0253 (7)0.0355 (8)0.0010 (6)0.0081 (6)0.0088 (6)
O150.0278 (8)0.0423 (10)0.0300 (8)0.0112 (7)0.0039 (7)0.0153 (7)
O160.0365 (10)0.0589 (13)0.0742 (15)0.0281 (10)0.0260 (10)0.0526 (12)
O170.0448 (11)0.0332 (10)0.0573 (13)0.0147 (9)0.0267 (10)0.0164 (9)
O180.0410 (11)0.0226 (8)0.0674 (14)0.0096 (8)0.0162 (10)0.0100 (9)
O190.0513 (12)0.0353 (10)0.0308 (9)0.0049 (8)0.0034 (8)0.0132 (7)
N10.0264 (9)0.0267 (9)0.0403 (11)0.0083 (8)0.0054 (8)0.0193 (8)
N20.0484 (14)0.0296 (11)0.0324 (11)0.0003 (10)0.0031 (10)0.0152 (9)
Geometric parameters (Å, º) top
V1—O51.5963 (16)Na—O162.338 (2)
V1—O6i1.8516 (16)Na—O19ii2.340 (2)
V1—O41.8722 (15)Na—O172.346 (2)
V1—O31.8887 (14)Na—O18iii2.379 (3)
V1—O12.0181 (18)Na—O152.404 (3)
V1—O22.3564 (15)Na—O15ii2.436 (2)
V1—V5i3.0803 (9)Na—Naii3.394 (3)
V1—V23.0864 (17)Na—H82.67 (4)
V2—O71.6862 (16)O2—V2i2.0971 (15)
V2—O11.7025 (15)O2—V4i2.2432 (13)
V2—O81.9184 (14)O2—V5i2.2917 (18)
V2—O91.9243 (14)O4—V4i1.8208 (15)
V2—O2i2.0971 (15)O6—V1i1.8516 (16)
V2—O22.1147 (16)O8—V4i1.9939 (17)
V2—V53.0607 (16)O8—V3i2.0209 (15)
V3—O101.6223 (15)O11—V3i1.8178 (16)
V3—O31.8139 (15)O15—Naii2.436 (2)
V3—O11i1.8178 (16)O15—H130.80 (5)
V3—O91.9908 (17)O15—H170.71 (5)
V3—O8i2.0209 (15)O16—H60.80 (4)
V3—O22.2301 (13)O16—H80.66 (4)
V3—V43.0730 (17)O17—H70.79 (4)
V3—V5i3.1091 (13)O17—H100.74 (5)
V4—O121.6158 (15)O18—Naiv2.379 (3)
V4—O131.8199 (16)O18—H10.82 (4)
V4—O4i1.8208 (15)O18—H20.71 (4)
V4—O8i1.9939 (17)O19—Naii2.340 (2)
V4—O92.0010 (15)O19—H31.01 (4)
V4—O2i2.2432 (13)O19—H50.74 (5)
V4—V53.0905 (10)N1—H90.83 (7)
V5—O141.6039 (16)N1—H120.73 (5)
V5—O61.8271 (16)N1—H150.67 (6)
V5—O131.8677 (15)N1—H160.93 (8)
V5—O111.8889 (15)N2—H40.79 (4)
V5—O72.0521 (16)N2—H110.92 (7)
V5—O2i2.2917 (18)N2—H140.78 (6)
V5—V1i3.0803 (9)N2—H180.75 (6)
V5—V3i3.1091 (13)
O5—V1—O6i104.49 (8)O14—V5—O2i172.35 (7)
O5—V1—O4102.20 (8)O6—V5—O2i82.78 (6)
O6i—V1—O490.86 (7)O13—V5—O2i78.36 (6)
O5—V1—O3103.63 (8)O11—V5—O2i77.43 (6)
O6i—V1—O389.89 (7)O7—V5—O2i74.50 (6)
O4—V1—O3153.10 (6)O14—V5—V2129.13 (7)
O5—V1—O1101.05 (8)O6—V5—V2126.01 (5)
O6i—V1—O1154.46 (6)O13—V5—V279.04 (5)
O4—V1—O183.92 (7)O11—V5—V278.81 (5)
O3—V1—O183.90 (7)O7—V5—V231.28 (4)
O5—V1—O2174.98 (7)O2i—V5—V243.23 (4)
O6i—V1—O280.48 (7)O14—V5—V1i138.24 (7)
O4—V1—O276.83 (5)O6—V5—V1i33.39 (5)
O3—V1—O276.79 (5)O13—V5—V1i84.98 (5)
O1—V1—O273.98 (6)O11—V5—V1i84.35 (5)
O5—V1—V5i137.36 (7)O7—V5—V1i123.91 (5)
O6i—V1—V5i32.89 (5)O2i—V5—V1i49.40 (4)
O4—V1—V5i82.93 (5)V2—V5—V1i92.63 (4)
O3—V1—V5i83.20 (5)O14—V5—V4133.32 (7)
O1—V1—V5i121.58 (5)O6—V5—V482.75 (5)
O2—V1—V5i47.60 (4)O13—V5—V432.58 (4)
O5—V1—V2131.84 (6)O11—V5—V4123.81 (5)
O6i—V1—V2123.67 (6)O7—V5—V482.16 (5)
O4—V1—V278.43 (5)O2i—V5—V446.38 (4)
O3—V1—V278.84 (5)V2—V5—V461.85 (3)
O1—V1—V230.80 (4)V1i—V5—V460.92 (2)
O2—V1—V243.18 (4)O14—V5—V3i134.60 (7)
V5i—V1—V290.78 (4)O6—V5—V3i81.71 (5)
O7—V2—O1106.84 (8)O13—V5—V3i124.10 (5)
O7—V2—O897.30 (7)O11—V5—V3i32.28 (4)
O1—V2—O896.89 (7)O7—V5—V3i81.90 (5)
O7—V2—O997.21 (7)O2i—V5—V3i45.74 (4)
O1—V2—O996.84 (6)V2—V5—V3i61.77 (3)
O8—V2—O9156.19 (6)V1i—V5—V3i60.62 (2)
O7—V2—O2i87.64 (7)V4—V5—V3i91.86 (4)
O1—V2—O2i165.51 (6)O16—Na—O19ii169.63 (9)
O8—V2—O2i80.90 (6)O16—Na—O1788.05 (9)
O9—V2—O2i80.94 (6)O19ii—Na—O1784.07 (9)
O7—V2—O2166.09 (6)O16—Na—O18iii88.84 (9)
O1—V2—O287.06 (7)O19ii—Na—O18iii97.29 (9)
O8—V2—O280.80 (6)O17—Na—O18iii85.95 (10)
O9—V2—O280.58 (6)O16—Na—O1583.16 (9)
O2i—V2—O278.45 (7)O19ii—Na—O1591.11 (8)
O7—V2—V539.19 (5)O17—Na—O1596.94 (9)
O1—V2—V5146.03 (5)O18iii—Na—O15171.37 (8)
O8—V2—V590.04 (5)O16—Na—O15ii84.40 (8)
O9—V2—V589.37 (4)O19ii—Na—O15ii104.39 (8)
O2i—V2—V548.46 (4)O17—Na—O15ii168.36 (9)
O2—V2—V5126.90 (5)O18iii—Na—O15ii85.05 (8)
O7—V2—V1144.22 (5)O15—Na—O15ii90.95 (8)
O1—V2—V137.37 (5)O16—Na—Naii81.12 (8)
O8—V2—V189.40 (5)O19ii—Na—Naii101.08 (7)
O9—V2—V189.78 (4)O17—Na—Naii142.06 (8)
O2i—V2—V1128.14 (4)O18iii—Na—Naii129.67 (8)
O2—V2—V149.69 (5)O15—Na—Naii45.86 (6)
V5—V2—V1176.591 (12)O15ii—Na—Naii45.09 (5)
O10—V3—O3102.87 (7)O16—Na—H813.0 (10)
O10—V3—O11i102.47 (8)O19ii—Na—H8177.4 (10)
O3—V3—O11i94.69 (7)O17—Na—H897.6 (10)
O10—V3—O999.87 (7)O18iii—Na—H880.8 (10)
O3—V3—O991.10 (7)O15—Na—H890.7 (10)
O11i—V3—O9155.02 (6)O15ii—Na—H873.7 (10)
O10—V3—O8i99.48 (7)Naii—Na—H878.9 (10)
O3—V3—O8i155.82 (6)V2—O1—V1111.82 (8)
O11i—V3—O8i89.35 (7)V2i—O2—V2101.55 (7)
O9—V3—O8i76.00 (6)V2i—O2—V394.05 (5)
O10—V3—O2174.29 (7)V2—O2—V392.95 (5)
O3—V3—O281.63 (6)V2i—O2—V4i93.44 (5)
O11i—V3—O280.47 (6)V2—O2—V4i92.84 (5)
O9—V3—O276.36 (6)V3—O2—V4i169.44 (7)
O8i—V3—O275.54 (5)V2i—O2—V5i88.32 (6)
O10—V3—V489.63 (6)V2—O2—V5i170.12 (7)
O3—V3—V4130.88 (5)V3—O2—V5i86.87 (5)
O11i—V3—V4129.08 (6)V4i—O2—V5i85.91 (5)
O9—V3—V439.78 (5)V2i—O2—V1171.31 (6)
O8i—V3—V439.73 (4)V2—O2—V187.13 (6)
O2—V3—V484.74 (4)V3—O2—V185.81 (5)
O10—V3—V5i136.02 (6)V4i—O2—V185.67 (5)
O3—V3—V5i83.49 (5)V5i—O2—V183.00 (6)
O11i—V3—V5i33.71 (5)V3—O3—V1115.04 (7)
O9—V3—V5i123.72 (5)V4i—O4—V1115.78 (7)
O8i—V3—V5i86.83 (5)V5—O6—V1i113.72 (8)
O2—V3—V5i47.39 (4)V2—O7—V5109.53 (8)
V4—V3—V5i119.13 (3)V2—O8—V4i107.64 (7)
O12—V4—O13103.01 (8)V2—O8—V3i106.99 (6)
O12—V4—O4i103.52 (7)V4i—O8—V3i99.89 (7)
O13—V4—O4i95.11 (7)V2—O9—V3107.19 (7)
O12—V4—O8i99.52 (7)V2—O9—V4107.28 (6)
O13—V4—O8i155.07 (6)V3—O9—V4100.68 (7)
O4i—V4—O8i89.83 (7)V3i—O11—V5114.01 (7)
O12—V4—O999.23 (7)V4—O13—V5113.87 (7)
O13—V4—O989.53 (7)Na—O15—Naii89.05 (8)
O4i—V4—O9155.08 (6)Na—O15—H13104 (3)
O8i—V4—O976.38 (6)Naii—O15—H13126 (3)
O12—V4—O2i173.92 (7)Na—O15—H17137 (4)
O13—V4—O2i80.62 (6)Naii—O15—H17104 (4)
O4i—V4—O2i80.84 (6)H13—O15—H17101 (5)
O8i—V4—O2i76.07 (6)Na—O16—H6131 (2)
O9—V4—O2i75.77 (5)Na—O16—H8114 (4)
O12—V4—V389.19 (6)H6—O16—H8114 (5)
O13—V4—V3129.06 (6)Na—O17—H7116 (3)
O4i—V4—V3130.21 (5)Na—O17—H10130 (3)
O8i—V4—V340.38 (5)H7—O17—H10112 (4)
O9—V4—V339.54 (4)Naiv—O18—H1126 (3)
O2i—V4—V384.75 (4)Naiv—O18—H2133 (3)
O12—V4—V5136.39 (6)H1—O18—H2101 (4)
O13—V4—V533.55 (5)Naii—O19—H3105 (2)
O4i—V4—V583.41 (5)Naii—O19—H5101 (4)
O8i—V4—V5123.76 (5)H3—O19—H5115 (4)
O9—V4—V587.15 (5)H9—N1—H12121 (5)
O2i—V4—V547.70 (4)H9—N1—H15107 (6)
V3—V4—V5119.30 (3)H12—N1—H15125 (5)
O14—V5—O6104.86 (8)H9—N1—H16116 (6)
O14—V5—O13100.76 (8)H12—N1—H1689 (5)
O6—V5—O1392.52 (7)H15—N1—H1694 (6)
O14—V5—O11102.34 (8)H4—N2—H11105 (4)
O6—V5—O1190.98 (7)H4—N2—H14108 (5)
O13—V5—O11154.88 (6)H11—N2—H14121 (6)
O14—V5—O797.85 (8)H4—N2—H18107 (5)
O6—V5—O7157.28 (6)H11—N2—H18110 (5)
O13—V5—O783.77 (6)H14—N2—H18106 (5)
O11—V5—O783.46 (6)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y1, z; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O7v0.73 (5)2.14 (5)2.862 (3)175 (4)
N1—H15···O120.67 (6)2.26 (6)2.910 (3)164 (6)
N1—H9···O8vi0.83 (7)2.17 (7)2.944 (3)156 (6)
N2—H14···O14vii0.77 (6)2.35 (6)2.899 (3)129 (5)
N2—H4···O10viii0.79 (4)2.17 (4)2.933 (3)165 (3)
N2—H11···O19ix0.92 (7)2.12 (7)2.993 (4)159 (6)
O15—H17···O10viii0.71 (5)2.35 (5)3.039 (3)165 (5)
O15—H13···O30.80 (5)2.08 (5)2.855 (2)163 (5)
O16—H8···O11x0.66 (4)2.18 (4)2.833 (3)168 (5)
O16—H6···O10.80 (3)2.06 (4)2.860 (3)174 (3)
O17—H10···O13v0.74 (5)2.17 (5)2.867 (3)159 (5)
O17—H7···O90.79 (4)2.21 (4)2.952 (3)157 (4)
O18—H2···O10xi0.71 (4)2.42 (4)2.974 (3)136 (4)
O18—H1···O40.82 (4)1.99 (4)2.801 (3)176 (4)
O19—H5···O14x0.74 (5)2.61 (5)2.982 (3)113 (5)
O19—H3···O6xii1.01 (4)1.80 (4)2.795 (3)168 (3)
Symmetry codes: (v) x+1, y1, z+1; (vi) x, y1, z; (vii) x1, y+1, z1; (viii) x, y, z; (ix) x1, y, z; (x) x+1, y, z+1; (xi) x, y+1, z; (xii) x, y+1, z1.

Experimental details

Crystal data
Chemical formula(NH4)4[Na2(H2O)10][V10O28]
Mr1255.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.501 (2), 10.426 (2), 11.282 (2)
α, β, γ (°)68.46 (3), 87.30 (3), 67.14 (3)
V3)851.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Schollmeyer, 1992)
Tmin, Tmax0.632, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
5282, 4933, 4474
Rint0.007
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.06
No. of reflections4933
No. of parameters316
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.31, 1.17

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, CORINC (Schollmeyer, 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O7i0.73 (5)2.14 (5)2.862 (3)175 (4)
N1—H15···O120.67 (6)2.26 (6)2.910 (3)164 (6)
N1—H9···O8ii0.83 (7)2.17 (7)2.944 (3)156 (6)
N2—H14···O14iii0.77 (6)2.35 (6)2.899 (3)129 (5)
N2—H4···O10iv0.79 (4)2.17 (4)2.933 (3)165 (3)
N2—H11···O19v0.92 (7)2.12 (7)2.993 (4)159 (6)
O15—H17···O10iv0.71 (5)2.35 (5)3.039 (3)165 (5)
O15—H13···O30.80 (5)2.08 (5)2.855 (2)163 (5)
O16—H8···O11vi0.66 (4)2.18 (4)2.833 (3)168 (5)
O16—H6···O10.80 (3)2.06 (4)2.860 (3)174 (3)
O17—H10···O13i0.74 (5)2.17 (5)2.867 (3)159 (5)
O17—H7···O90.79 (4)2.21 (4)2.952 (3)157 (4)
O18—H2···O10vii0.71 (4)2.42 (4)2.974 (3)136 (4)
O18—H1···O40.82 (4)1.99 (4)2.801 (3)176 (4)
O19—H5···O14vi0.74 (5)2.61 (5)2.982 (3)113 (5)
O19—H3···O6viii1.01 (4)1.80 (4)2.795 (3)168 (3)
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y1, z; (iii) x1, y+1, z1; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x, y+1, z; (viii) x, y+1, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds