Download citation
Download citation
link to html
The structure of rubidium dilithium digallium tris­(borate), RbLi2Ga2(BO3)3, contains two-dimensional sheets of open-branched rings of GaO4 tetrahedra and planar BO3 triangles that are joined by LiO4 tetrahedra to form a three-dimensional framework. Ten-coordinate Rb atoms lie on twofold axes and occupy channels within the framework that extend along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004078/br1279sup1.cif
Contains datablocks RbLi2Ga2(BO3)3, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004078/br1279Isup2.hkl
Contains datablock I

Computing details top

Data collection: MSC/AFC6R Diffractometer Control Software (Molecular Structure Corporation. 1999); cell refinement: MSC/AFC6R Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation. 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
RbLi2Ga2(BO3)3F(000) = 384
Mr = 415.22Dx = 3.470 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71069 Å
a = 6.297 (4) ÅCell parameters from 25 reflections
b = 4.951 (3) Åθ = 15–20°
c = 12.751 (6) ŵ = 12.89 mm1
β = 91.65 (6)°T = 296 K
V = 397.4 (4) Å3Block, colorless
Z = 20.30 × 0.15 × 0.05 mm
Data collection top
Rigaku AFC6R
diffractometer
1425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 35.1°, θmin = 3.2°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.113, Tmax = 0.565l = 2020
3632 measured reflections3 standard reflections every 200 reflections
1753 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.1503P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1753 reflectionsΔρmax = 1.72 e Å3
79 parametersΔρmin = 1.32 e Å3
Special details top

Experimental. laboratory synthesized crystal

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by using direct methods and the program SHELX97. All relections were employed with the exception of 015 and 202 which were excluded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.00000.20812 (7)0.75000.01928 (8)
Ga0.23456 (3)0.68384 (4)0.564176 (17)0.00877 (7)
O10.50000.3967 (5)0.75000.0171 (4)
O20.2421 (2)0.9123 (3)0.44989 (11)0.0106 (2)
O30.4015 (3)0.8202 (3)0.67083 (12)0.0129 (3)
O40.0423 (2)0.7005 (3)0.60593 (13)0.0128 (3)
O50.3014 (3)0.3327 (3)0.53427 (13)0.0138 (3)
B10.1945 (3)1.1837 (4)0.45842 (17)0.0089 (3)
B20.50000.6664 (6)0.75000.0098 (5)
Li0.4959 (6)0.1719 (8)0.6347 (3)0.0139 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.02288 (15)0.02040 (16)0.01442 (14)0.0000.00201 (11)0.000
Ga0.01016 (10)0.00669 (10)0.00929 (10)0.00051 (7)0.00255 (7)0.00016 (7)
O10.0314 (12)0.0072 (8)0.0125 (9)0.0000.0032 (8)0.000
O20.0146 (6)0.0071 (6)0.0101 (6)0.0008 (5)0.0006 (5)0.0001 (5)
O30.0176 (7)0.0096 (6)0.0111 (6)0.0024 (5)0.0073 (5)0.0022 (5)
O40.0111 (6)0.0152 (7)0.0119 (6)0.0032 (5)0.0019 (5)0.0027 (5)
O50.0166 (7)0.0085 (6)0.0159 (7)0.0021 (5)0.0065 (6)0.0029 (5)
B10.0101 (8)0.0086 (8)0.0081 (8)0.0004 (7)0.0007 (6)0.0004 (6)
B20.0114 (11)0.0085 (11)0.0094 (11)0.0000.0003 (9)0.000
Li0.0129 (16)0.0144 (17)0.0144 (17)0.0001 (14)0.0008 (13)0.0016 (14)
Geometric parameters (Å, º) top
Rb—O13.284 (2)O2—Liii1.997 (5)
Rb—O1i3.284 (2)O2—Rbii2.992 (2)
Rb—O2ii2.992 (2)O3—B21.395 (2)
Rb—O2iii2.992 (2)O3—Liviii1.918 (4)
Rb—O3iv3.354 (2)O3—Rbix3.354 (2)
Rb—O3v3.354 (2)O4—B1x1.369 (3)
Rb—O4vi3.059 (2)O4—Rbix3.120 (2)
Rb—O43.059 (2)O5—B1v1.377 (3)
Rb—O4v3.120 (2)O5—Livii1.951 (5)
Rb—O4iv3.120 (2)B1—O21.382 (3)
Ga—O21.8464 (16)B1—O4x1.369 (3)
Ga—O31.8245 (18)B1—O5ix1.377 (3)
Ga—O41.839 (2)B1—Rbii3.484 (3)
Ga—O51.8317 (18)B2—O11.335 (4)
O1—B21.335 (4)B2—O3xi1.395 (2)
O1—Livii1.845 (4)Li—O1i1.845 (4)
O1—Livi1.845 (4)Li—O2ii1.997 (5)
O1—Rbvii3.284 (2)Li—O3xii1.918 (4)
O2—B11.382 (3)Li—O5i1.951 (5)
O2ii—Rb—O2iii157.02 (6)O5—Ga—O2113.95 (8)
O2ii—Rb—O4vi134.72 (5)O4—Ga—O2104.31 (8)
O2iii—Rb—O4vi67.28 (5)B2—O1—Livii127.10 (14)
O2ii—Rb—O467.28 (5)B2—O1—Livi127.10 (14)
O2iii—Rb—O4134.72 (5)Livii—O1—Livi105.8 (3)
O4vi—Rb—O474.35 (7)B2—O1—Rb106.52 (4)
O2ii—Rb—O4v45.99 (4)Livii—O1—Rb82.17 (14)
O2iii—Rb—O4v111.95 (5)Livi—O1—Rb78.06 (14)
O4vi—Rb—O4v179.16 (4)B2—O1—Rbvii106.52 (4)
O4—Rb—O4v106.49 (6)Livii—O1—Rbvii78.06 (14)
O2ii—Rb—O4iv111.95 (5)Livi—O1—Rbvii82.17 (14)
O2iii—Rb—O4iv45.99 (4)Rb—O1—Rbvii146.96 (8)
O4vi—Rb—O4iv106.49 (6)B1—O2—Ga121.53 (13)
O4—Rb—O4iv179.16 (4)B1—O2—Liii115.12 (17)
O4v—Rb—O4iv72.67 (7)Ga—O2—Liii109.71 (14)
O2ii—Rb—O1121.45 (5)B1—O2—Rbii98.88 (11)
O2iii—Rb—O165.90 (6)Ga—O2—Rbii121.75 (7)
O4vi—Rb—O172.93 (6)Liii—O2—Rbii83.95 (13)
O4—Rb—O180.81 (6)B2—O3—Ga124.88 (15)
O4v—Rb—O1107.14 (5)B2—O3—Liviii121.57 (18)
O4iv—Rb—O199.41 (5)Ga—O3—Liviii110.35 (15)
O2ii—Rb—O1i65.90 (6)B2—O3—Rbix114.70 (11)
O2iii—Rb—O1i121.45 (5)Ga—O3—Rbix90.74 (7)
O4vi—Rb—O1i80.81 (6)Liviii—O3—Rbix79.31 (14)
O4—Rb—O1i72.93 (5)B1x—O4—Ga119.87 (14)
O4v—Rb—O1i99.41 (5)B1x—O4—Rb137.81 (13)
O4iv—Rb—O1i107.14 (5)Ga—O4—Rb94.09 (6)
O1—Rb—O1i146.96 (8)B1x—O4—Rbix93.54 (12)
O2ii—Rb—O3iv76.83 (6)Ga—O4—Rbix98.10 (7)
O2iii—Rb—O3iv89.98 (6)Rb—O4—Rbix106.49 (6)
O4vi—Rb—O3iv109.20 (6)B1v—O5—Ga122.96 (14)
O4—Rb—O3iv125.71 (5)B1v—O5—Livii122.68 (19)
O4v—Rb—O3iv70.34 (6)Ga—O5—Livii113.61 (15)
O4iv—Rb—O3iv54.11 (5)B1v—O5—Rb101.27 (13)
O1—Rb—O3iv153.37 (4)Ga—O5—Rb82.43 (6)
O1i—Rb—O3iv55.37 (6)Livii—O5—Rb76.58 (14)
O2ii—Rb—O3v89.98 (6)O4x—B1—O5ix121.08 (19)
O2iii—Rb—O3v76.83 (6)O4x—B1—O2120.66 (18)
O4vi—Rb—O3v125.71 (5)O5ix—B1—O2118.25 (18)
O4—Rb—O3v109.20 (6)O1—B2—O3xi123.07 (13)
O4v—Rb—O3v54.11 (5)O1—B2—O3123.07 (13)
O4iv—Rb—O3v70.34 (6)O3xi—B2—O3113.9 (3)
O1—Rb—O3v55.37 (6)O1i—Li—O3xii110.1 (2)
O1i—Rb—O3v153.37 (4)O1i—Li—O5i104.7 (2)
O3iv—Rb—O3v110.13 (7)O3xii—Li—O5i108.0 (2)
O3—Ga—O5112.05 (7)O1i—Li—O2ii125.9 (2)
O3—Ga—O4107.37 (9)O3xii—Li—O2ii102.73 (19)
O5—Ga—O4109.16 (8)O5i—Li—O2ii104.4 (2)
O3—Ga—O2109.52 (8)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z+1/2; (iv) x, y1, z+3/2; (v) x, y1, z; (vi) x, y, z+3/2; (vii) x+1, y, z; (viii) x+1, y+1, z; (ix) x, y+1, z; (x) x, y+2, z+1; (xi) x+1, y, z+3/2; (xii) x1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds