Download citation
Download citation
link to html
Hydro­thermally prepared Ba3V2(HPO4)6 contains a three-dimensional network of VIIIO6 octahedra [dav(V-O) = 2.014 (2) Å] and HPO4 [dav(P-O) = 1.537 (3) Å] tetrahedra, sharing vertices. 12-coordinate Ba2+ cations [dav(Ba-O) = 2.944 (4) Å] complete the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015735/br1277sup1.cif
Contains datablocks bavpo, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015735/br1277Isup2.hkl
Contains datablock I

Comment top

Barium vanadium phosphates (BaVPOs) show considerable structural variety with at least 15 well characterized BaVPO phases reported so far (Bircsak & Harrison, 1998). Here we report the hydrothermal synthesis of a new barium vanadium(III) hydrogen phosphate, Ba3V2(HPO4)6 (Figs. 1 and 2), which is built up from barium cations and a vertex-sharing network of VO6 octahedra and tetrahedral HPO4 units, fused together via V—O—P bonds.

The barium cation (site symmetry. 2) adopts 12-fold coordination, assuming a cut-off of 3.2 Å for the maximum Ba—O distance [dav(Ba—O) = 2.944 (4) Å]. The bond valence sum (BVS), calculated by the Brown formalism (1997), of 2.14 for Ba (expected value = 2.00) shows that its valence requirement is satisfied by this coordination.

The two distinct vanadium(III) cations in Ba3V2(HPO4)6 adopt typical, essentially regular octahedral geometries (Dvoncova et al., 1993), although the point symmetries of V1 (3) and V2 (32) are distinct. BVS values of 2.78 for V1 and 3.00 for V2 are unexceptional (expected: 3.00). The phosphorus atom shows its normal tetrahedral coordination [dav(P—O) = 1.537 (3) Å, BVS(P1) = 4.97, expected 5.00] and participates in P1—O1—V1, P1—O2—V2, and two terminal P—O bonds. The P1—O3 bond is assumed to be protonated, based on its length, whilst the P1—O4 bond is short, indicating some degree of multiple bond character. Based on geometrical placement of the H atom [d(O3—H) = 0.95 Å], an O3—H···O4 [d(H···O) = 1.62 Å, d(O···O) = 2.575 (6) Å] hydrogen bond is present.

The polyhedral connectivity in Ba3V2(HPO4)6 results in a three-dimensional network of VO6 and HPO4 polyhedra. The smallest identifiable polyhedral loop is a four ring (two VO6 and two HPO4 groups) with the proposed O—H···O hydrogen bond occurring across this loop. Every V1O6 octahedron bonds to six different V2O6 octahedra via six V1—O1—P1—O2—V2 links. The [V2(HPO4)6]6- framework encloses channels propagating along [100], [010], and [110], which are occupied by the barium cations.

Like the other vanadium(III)-containing BaVPOs (Bircsak & Harrison, 1998) this phase is three-dimensional in its V/P/O connectivity, and the VO6 moieties are close to being regular octahedra. Vanadium(IV) and vanadium(V)-containing BaVPOs have quite different, distorted vanadium coordinations (Wadewitz & Müller-Buschbaum, 1996; Kang et al., 1992) and tend to form structures with lower dimensionality. The A3B2(XO4)6 stoichiometry of Ba3V2(HPO4)6 appears to be a novel one for phosphates and no similar stoichiometries could be found in the Inorganic Crystal Structure Database (1999).

Experimental top

Small, lime green crystals of Ba3V2(HPO4)6 were prepared from a mixture of BaCO3 (1.365 g, 6.92 mmol), VCl3 (1.106 g, 7.03 mmol), H3PO4 (3.562 g of an 85% soln, 42.76 mmol), guanidinium carbonate (1.245 g, 6.91 mmol), and water (10.0 ml, 555 mmol), corresponding to a 1:1:6 Ba:V:P starting ratio. These components were heated to 453 K in a sealed teflon-lined hydrothermal bomb for 24 h and the solid products were recovered by vacuum filtration. Reactions omitting guanidine carbonate or starting from the stoichiometric 3:2:6 Ba:V:P atomic ratio led to other, as yet unidentified phases.

Refinement top

The highest difference peak is 0.85 Å from Ba1; the deepest difference hole is 0.82 Å from Ba1. The H atoms were assumed to be rifing on O3.

Computing details top

Data collection: SMART (Bruker, 1997b); cell refinement: SMART; data reduction: SMART; program(s) used to refine structure: CRYSTALS (Watkin et al., 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Fragment of the Ba3V2(HPO4)6 structure showing the V/O/P connectivity (50% displacement ellipsoids). Symmetry codes: (a) x-y, x, -z; (b) -y, x-y, z; (c) -x,-y,-z; (d) y-x,-x, z; (e) y, y-x, -z; (f) -1/3 + y, 1/3 + x, -1/6 - z; (g) y-x, 1 - x, z; (h) 2/3 + x-y, 4/3 - y, -1/6 - z; (i) 1 - y, 1 + x-y, z; (j) 2/3 - x, 1/3 - x + y, -1/6 - z.
[Figure 2] Fig. 2. View down [110] of the Ba3V2(HPO4)6 structure in polyhedral representation (VO6 octahedra, PO4 tetrahedra, Ba spheres).
(I) top
Crystal data top
Ba3V2(HPO4)6Melting point: decomposes before melting K
Mr = 1089.75Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 3121 reflections
a = 9.423 (1) Åθ = 4–25°
c = 36.945 (8) ŵ = 7.69 mm1
V = 2840.8 Å3T = 298 K
Z = 6Block, yellow-green
F(000) = 3008.660.04 × 0.04 × 0.04 mm
Dx = 3.82 Mg m3
Data collection top
Bruker SMART area detector
diffractometer
753 reflections with I > 1.00σ(I)
Peak integration from area detector frames with the program SAINT (Bruker, 1997) scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Bruker, 1997a)
θmax = 29.0°, θmin = 2.0°
Tmin = 0.52, Tmax = 0.70h = 1010
11318 measured reflectionsk = 1212
830 independent reflectionsl = 4848
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047Only H-atom displacement parameters refined
wR(F2) = 0.049 Chebychev polynomial (Carruthers & Watkin, 1979) with 3 parameters 0.560 0.493 0.317
S = 1.06(Δ/σ)max = 0.0002
753 reflectionsΔρmax = 1.71 e Å3
57 parametersΔρmin = 1.20 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
Ba3V2(HPO4)6Z = 6
Mr = 1089.75Mo Kα radiation
Trigonal, R3cµ = 7.69 mm1
a = 9.423 (1) ÅT = 298 K
c = 36.945 (8) Å0.04 × 0.04 × 0.04 mm
V = 2840.8 Å3
Data collection top
Bruker SMART area detector
diffractometer
830 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997a)
753 reflections with I > 1.00σ(I)
Tmin = 0.52, Tmax = 0.70Rint = 0.064
11318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04757 parameters
wR(F2) = 0.049Only H-atom displacement parameters refined
S = 1.06Δρmax = 1.71 e Å3
753 reflectionsΔρmin = 1.20 e Å3
Special details top

Experimental. Crystal decay was monitored by collecting duplicate frames at the end of the experiment, and was found to be negligible.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.40831 (4)0.00000.25000.0203
V10.00000.00000.00000.0136
V20.33330.66670.08330.0137
P10.28500 (16)0.36482 (15)0.03241 (4)0.0178
O10.1476 (4)0.1846 (4)0.0340 (1)0.0206
O20.2246 (4)0.4662 (4)0.05233 (9)0.0184
O30.3122 (4)0.4163 (5)0.00849 (11)0.0244
O40.4439 (5)0.3845 (4)0.04806 (11)0.0218
H10.40230.48980.023080.0200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0156 (2)0.0245 (3)0.0238 (3)0.01224 (13)0.00040 (7)0.00081 (14)
V10.0095 (5)0.0095 (5)0.0220 (9)0.0047 (2)0.00000.0000
V20.0091 (5)0.0091 (5)0.0227 (9)0.0046 (2)0.00000.0000
P10.0125 (5)0.0122 (5)0.0279 (7)0.0056 (4)0.0027 (5)0.0021 (4)
O10.0154 (15)0.0131 (15)0.0314 (19)0.0057 (13)0.0022 (13)0.0029 (13)
O20.0164 (15)0.0145 (15)0.0276 (16)0.0102 (13)0.0001 (13)0.0036 (12)
O30.0161 (16)0.0208 (18)0.031 (2)0.0052 (14)0.0035 (13)0.0020 (15)
O40.0136 (15)0.0171 (16)0.034 (2)0.0071 (14)0.0012 (13)0.0001 (14)
Geometric parameters (Å, º) top
Ba1—O1i3.108 (3)V1—O1xi2.030 (4)
Ba1—O1ii3.043 (4)V1—O1xii2.030 (4)
Ba1—O1iii3.108 (3)V1—O1xiii2.030 (4)
Ba1—O1iv3.043 (4)V2—O21.999 (3)
Ba1—O2i2.755 (3)V2—O2xiv1.999 (3)
Ba1—O2iii2.755 (3)V2—O2xv1.999 (3)
Ba1—O3v2.849 (4)V2—O2xvi1.999 (3)
Ba1—O3vi2.849 (4)V2—O2xvii1.999 (3)
Ba1—O4vii3.030 (4)V2—O2xviii1.999 (3)
Ba1—O4ii2.872 (4)P1—O11.537 (4)
Ba1—O4viii3.030 (4)P1—O21.524 (3)
Ba1—O4iv2.872 (4)P1—O31.569 (4)
V1—O12.030 (4)P1—O41.527 (4)
V1—O1ix2.030 (4)O3—H10.950
V1—O1x2.030 (4)
O1i—Ba1—O1ii53.34 (13)O3vi—Ba1—O4ii123.30 (11)
O1i—Ba1—O1iii153.92 (13)O4vii—Ba1—O4ii88.43 (16)
O1ii—Ba1—O1iii151.66 (3)O2iii—Ba1—O4viii66.7 (1)
O1i—Ba1—O1iv151.66 (3)O3v—Ba1—O4viii125.32 (11)
O1ii—Ba1—O1iv102.32 (13)O3vi—Ba1—O4viii51.8 (1)
O1iii—Ba1—O1iv53.34 (13)O4vii—Ba1—O4viii121.69 (15)
O1i—Ba1—O2i49.38 (9)O4ii—Ba1—O4viii147.15 (6)
O1ii—Ba1—O2i99.20 (9)O2iii—Ba1—O4iv128.35 (11)
O1iii—Ba1—O2i105.03 (9)O3v—Ba1—O4iv123.30 (11)
O1iv—Ba1—O2i158.2 (1)O3vi—Ba1—O4iv61.26 (11)
O1i—Ba1—O2iii105.03 (9)O4vii—Ba1—O4iv147.15 (6)
O1ii—Ba1—O2iii158.2 (1)O4ii—Ba1—O4iv66.98 (16)
O1iii—Ba1—O2iii49.38 (9)O4viii—Ba1—O4iv88.43 (16)
O1iv—Ba1—O2iii99.20 (9)O1—V1—O1ix180
O2i—Ba1—O2iii59.57 (13)O1—V1—O1x85.72 (16)
O1i—Ba1—O3v66.84 (11)O1ix—V1—O1x94.28 (16)
O1ii—Ba1—O3v64.1 (1)O1—V1—O1xi94.28 (16)
O1iii—Ba1—O3v112.0 (1)O1ix—V1—O1xi85.72 (16)
O1iv—Ba1—O3v119.2 (1)O1x—V1—O1xi180
O2i—Ba1—O3v68.01 (11)O1—V1—O1xii85.72 (16)
O1i—Ba1—O3vi112.0 (1)O1ix—V1—O1xii94.28 (16)
O1ii—Ba1—O3vi119.2 (1)O1x—V1—O1xii85.72 (16)
O1iii—Ba1—O3vi66.84 (11)O1xi—V1—O1xii94.28 (16)
O1iv—Ba1—O3vi64.1 (1)O1—V1—O1xiii94.28 (16)
O2i—Ba1—O3vi107.7 (1)O1ix—V1—O1xiii85.72 (16)
O1i—Ba1—O4vii103.2 (1)O1x—V1—O1xiii94.28 (16)
O1ii—Ba1—O4vii115.2 (1)O1xi—V1—O1xiii85.72 (16)
O1iii—Ba1—O4vii63.3 (1)O1xii—V1—O1xiii180
O1iv—Ba1—O4vii100.6 (1)O2—V2—O2xiv90.41 (14)
O2i—Ba1—O4vii66.7 (1)O2—V2—O2xv90.41 (14)
O1i—Ba1—O4ii99.6 (1)O2xiv—V2—O2xv90.41 (14)
O1ii—Ba1—O4ii50.3 (1)O2—V2—O2xvi175.4 (2)
O1iii—Ba1—O4ii102.1 (1)O2xiv—V2—O2xvi92.9 (2)
O1iv—Ba1—O4ii65.9 (1)O2xv—V2—O2xvi86.4 (2)
O2i—Ba1—O4ii128.35 (11)O2—V2—O2xvii92.9 (2)
O1i—Ba1—O4viii63.3 (1)O2xiv—V2—O2xvii86.4 (2)
O1ii—Ba1—O4viii100.6 (1)O2xv—V2—O2xvii175.4 (2)
O1iii—Ba1—O4viii103.2 (1)O2xvi—V2—O2xvii90.41 (14)
O1iv—Ba1—O4viii115.2 (1)O2—V2—O2xviii86.4 (2)
O2i—Ba1—O4viii63.22 (11)O2xiv—V2—O2xviii175.4 (2)
O1i—Ba1—O4iv102.1 (1)O2xv—V2—O2xviii92.9 (2)
O1ii—Ba1—O4iv65.9 (1)O2xvi—V2—O2xviii90.41 (14)
O1iii—Ba1—O4iv99.6 (1)O2xvii—V2—O2xviii90.41 (14)
O1iv—Ba1—O4iv50.3 (1)O1—P1—O2107.57 (19)
O2i—Ba1—O4iv145.8 (1)O1—P1—O3107.2 (2)
O2iii—Ba1—O3v107.7 (1)O2—P1—O3109.0 (2)
O2iii—Ba1—O3vi68.01 (11)O1—P1—O4110.6 (2)
O3v—Ba1—O3vi175.32 (15)O2—P1—O4113.1 (2)
O2iii—Ba1—O4vii63.22 (11)O3—P1—O4109.2 (2)
O3v—Ba1—O4vii51.8 (1)V1—O1—P1139.5 (2)
O3vi—Ba1—O4vii125.32 (11)V2—O2—P1133.9 (2)
O2iii—Ba1—O4ii145.8 (1)P1—O3—H1136.10 (14)
O3v—Ba1—O4ii61.26 (11)
Symmetry codes: (i) y+2/3, xy+1/3, z+1/3; (ii) x+y+2/3, x+1/3, z+1/3; (iii) x+1/3, x+y1/3, z+1/6; (iv) y+1/3, x1/3, z+1/6; (v) x+2/3, y+1/3, z+1/3; (vi) x+y+1/3, y1/3, z+1/6; (vii) x1/3, y2/3, z+1/3; (viii) xy+1/3, y+2/3, z+1/6; (ix) x, y, z; (x) y, xy, z; (xi) y, x+y, z; (xii) x+y, x, z; (xiii) xy, x, z; (xiv) y+1, xy+1, z; (xv) x+y, x+1, z; (xvi) xy+2/3, y+4/3, z1/6; (xvii) x+2/3, x+y+1/3, z1/6; (xviii) y1/3, x+1/3, z1/6.

Experimental details

Crystal data
Chemical formulaBa3V2(HPO4)6
Mr1089.75
Crystal system, space groupTrigonal, R3c
Temperature (K)298
a, c (Å)9.423 (1), 36.945 (8)
V3)2840.8
Z6
Radiation typeMo Kα
µ (mm1)7.69
Crystal size (mm)0.04 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997a)
Tmin, Tmax0.52, 0.70
No. of measured, independent and
observed [I > 1.00σ(I)] reflections
11318, 830, 753
Rint0.064
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.049, 1.06
No. of reflections753
No. of parameters57
No. of restraints?
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)1.71, 1.20

Computer programs: SMART (Bruker, 1997b), SMART, CRYSTALS (Watkin et al., 1997), ORTEP-3 (Farrugia, 1997), CRYSTALS.

Selected geometric parameters (Å, º) top
Ba1—O1i3.108 (3)V1—O12.030 (4)
Ba1—O1ii3.043 (4)V2—O21.999 (3)
Ba1—O2i2.755 (3)P1—O11.537 (4)
Ba1—O3iii2.849 (4)P1—O21.524 (3)
Ba1—O4iv3.030 (4)P1—O31.569 (4)
Ba1—O4ii2.872 (4)P1—O41.527 (4)
V1—O1—P1139.5 (2)V2—O2—P1133.9 (2)
Symmetry codes: (i) y+2/3, xy+1/3, z+1/3; (ii) x+y+2/3, x+1/3, z+1/3; (iii) x+2/3, y+1/3, z+1/3; (iv) x1/3, y2/3, z+1/3.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds