Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new ternary metal telluride, tetra­rubidium tri­zircon­ium hexa­deca­telluride, Rb4Zr3Te16, has been synthesized through reactions at 698 K using elemental Zr and an Rb2Te/Te melt as a reactive flux, and characterized by single-crystal X-ray diffraction. Although the structure of this compound is very similar to its Cs4Zr3Te16 analogue, the compounds crystallize in different space groups, the former in C2h6 –C2/c and the latter in C2h5 –P21/n. Both compounds consist of infinite one-dimensional chains of [Zr3Te16]n4n− separated from each other by Rb+ or Cs+ cations. Within the chain, each Zr atom is surrounded by eight Te atoms to give a distorted bicapped trigonal prism polyhedron. There are two unambiguous Te—Te single bonds of 2.758 (2) and 2.765 (2) Å, and four longer Te...Te interatomic distances in the range of 2.9277 (14)–3.0445 (18) Å that indicate weak interactions between the adjacent Te atoms. Because of the wide range of Te...Te interactions, simple formalisms cannot be used to describe the bonding within the chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199011956/br1265sup1.cif
Contains datablocks default, (I)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199011956/br1265Isup2.hkl
Contains datablock I

Comment top

The reactive flux technique has proven to be an effective method of preparing new ternary polychalcogenides. A series of compounds with the general formula AxMyQz (A = alkali metal, M = Ti, Zr or Hf, and Q = S, Se or Te) have been reported, such as K4Ti3S14 (Sunshine et al., 1987), Na2Ti2Se8 (Kang & Ibers, 1988), K4M3Te17 (M = Zr or Hf) (Keane & Ibers, 1991) and Cs4Zr3Te16 (Cody & Ibers, 1994). A survey of the reactions of alkali-metal polychalcogenide molten salts to yield new materials with Ti, Cu, Au, Hg and Sn is given by Kanatzidis (1990). Although in general substitutions of elements in the same group lead to isostructural compounds, it is found that substitutions in ternary or quaternary chalcogenides containing group IV metals do not just involve simple replacement of one atom for another. For example, substitution of Na for K in the quaternary A/Cu/Zr/Q (A = alkali metal and Q = S, Se or Te) system (Mansuetto et al., 1992, 1993) results in subtle differences in structures, while substitution of Cs for K in the ternary system A/M/Te (A = alkali metal and M = Zr or Hf) even leads to a change in composition from K4M3Te17 (M = Zr or Hf; Keane & Ibers, 1991) to Cs4Zr3Te16 (Cody & Ibers, 1994). In the present work, the substitution of Rb for Cs in the above-mentioned ternary system gives the title new compound, Rb4Zr3Te16, with the same composition but a different space group, C62 h-C2/c.

As shown in Fig. 1, the crystal structure of the title compound is very similar to that of Cs4Zr3Te16 (space group C52 h-P21/n). Both crystals have similar cell parameters and contain one-dimensional Zr/Te chains extended along the a direction and separated by alkali metal cations. The M/Te chains of K4Hf3Te17 (Keane & Ibers, 1991), Cs4Zr3Te16 (Cody & Ibers, 1994) and Rb4Zr3Te16 are compared in Fig. 2. With the higher symmetry, there are only two crystallographically unique Zr atoms in Rb4Zr3Te16. One of them, Zr2, is located on a twofold axis (Wyckoff position 4 e) and the other, Zr1, on a general position. Each Zr atom is eight-coordinate and at the center of a bicapped trigonal prism of Te atoms. The Zr—Te bond lengths are in the range 2.890 (2) to 3.079 (2) Å (Table 1), which are comparable with those found in Cs4Zr3Te16 (Cody & Ibers, 1994). Each coordination polyhedron of a Zr atom shares opposite triangular faces with the adjacent Zr polyhedron to form a one-dimensional chain. Zr1 is bridged to Zr2 through atoms Te1, Te3i and Te5, while Zr1 is bridged to Zr1ii through atoms Te7, Te7ii and Te8ii [symmetry codes: (i) −x, y, 3/2 − z; (ii) −1 − x, y, 3/2 − z]. A Zr atom coordinated by eight Te atoms in a bicapped trigonal prism has been found not only in A/Zr/Te (A = alkali metal) ternary systems but also in Zr/Te binary compounds, such as ZrTe3 (Furuseth & Fjellveg, 1991) and ZrTe5 (Furuseth et al., 1973).

As is well known, the tellurides have a greater propensity than do the selenides or sulfides to exhibit Q—Q interactions of intermediate-strength between a Q—Q single bond and a Q2−···Q2− van der Waals type interaction (about 2.76 and 4.10 Å for Te, respectively; Shannon, 1976). While an arbitrary maximum for a Te—Te single bond of 2.94 Å gives [Hf3(Te3)(Te2)74−] for the Hf/Te chain in K4Hf3Te17, where each Hf is in the +4 oxidation state, it is somewhat difficult to describe the Te—Te interactions in the Zr/Te chains of A4Zr3Te16 (A = Cs and Rb) and to arrive at a reasonable formal oxidation state assignment for the elements. For Rb4Zr3Te16, there are two unambiguous Te—Te single bonds with bond lengths of 2.758 (2) and 2.765 (2) Å and four somewhat longer Te···Te distances in the range of 2.928–3.045 Å, which indicates some weak interaction between adjacent Te atoms. The Te—Te single bonds are shown in Fig. 2 as solid lines and other longer Te···Te interactions of 3.2 Å or less are shown as broken lines.

The obvious differences between the structures of Rb4Zr3Te16 and Cs4Zr3Te16 (Cody & Ibers, 1994) are the coordination environments of the cations. Two unique Rb+ cations in the former exhibit coordination numbers 12 (Rb1) and 11 (Rb2), with Rb···Te distances from 3.614 (2) to 4.316 (3) Å, while the four Cs cations in the latter exhibit coordination numbers 12, 11, 11 and 9, with Cs···Te distances ranging from 3.629 to 4.456 Å (Cody & Ibers, 1994).

Experimental top

Rb2Te was prepared by reactions of rubidium metal (99.5%; Aldrich Chemical Company) and elemental tellurium (99.8%; Strem Chemicals, Inc.) in a 2:1 ratio in liquid ammonia. Rb2Te (0.0746 g, 0.25 mmol), Zr (98%; Aldrich Chemical Company; 0.0228 g, 0.25 mmol) and Te (0.1595 g, 1.25 mmol) were weighed in an inert argon-filled glove box. After thorough mixing the reactants were transferred to a thin-walled Pyrex reaction tube (9 mm outside diameter). The sample was immediately sealed under a vacuum of approximately 10−3 torr (1 torr = 133.32 Pa). The reaction vessel was then placed in a furnace and brought up to 698 K within 8 h. After heating at 698 K for 3 d, the container was slowly cooled to 423 K (2 K/h) followed by naturally cooling to room temperature. Upon removal from the furnace, the sample was treated by an isolation procedure. The reaction mixture consisted of the final products embedded in the excess alkali-metal polychalcogenide melt. The remaining flux was removed after several washes with N,N-dimethylformamide in a nitrogen atmosphere. The sample was then washed twice with 95% ethanol and dried with diethyl ether. Black prism-like crystals were isolated after this procedure. Microprobe analysis was performed on selected single crystals using a Jeol JXA-8600 Superprobe and gave an approximate elemental ratio of Rb, Zr and Te in agreement with the crystal data.

Refinement top

The largest residual electronic density peaks were located around Te and Zr atoms.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELX97; molecular graphics: SCHAKAL92 (Keller, 1992); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. The crystal structure of Rb4Zr3Te16 along the a direction, with double shaded circles for Rb, single shaded circle for Zr and open circles for Te atoms. The atoms are of arbitrary size.
[Figure 2] Fig. 2. Comparison of the one-dimensional M/Te chains of K4Hf3Te17 (top, A), Cs4Zr3Te16 (middle, B) and Rb4Zr3Te16 (bottom, C) with shaded circles for Zr and open circles for Te atoms, black lines for Te—Te single bonds and broken lines for longer Te···Te interactions of less than 3.2 Å. The atom-numbering scheme for Rb4Zr3Te16 is given; symmetry codes as in Table 1.
tetrarubidiumtrizirconiumhexadecatelluride top
Crystal data top
Rb4Zr3Te16F(000) = 4400
Mr = 2657.14Dx = 5.382 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.982 (2) ÅCell parameters from 25 reflections
b = 18.613 (4) Åθ = 7.6–12.5°
c = 15.078 (3) ŵ = 20.78 mm1
β = 102.79 (3)°T = 293 K
V = 3279.3 (11) Å3Prism, black
Z = 40.12 × 0.10 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2335 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–scanh = 1413
Absorption correction: ψ-scan
(North et al, 1968)
k = 022
Tmin = 0.094, Tmax = 0.126l = 017
2991 measured reflections3 standard reflections every 120 min
2874 independent reflections intensity decay: 2.2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Calculated w = 1/[σ2(Fo2) + (0.001P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.94Δρmax = 3.10 e Å3
2874 reflectionsΔρmin = 2.36 e Å3
106 parametersExtinction correction: SHELX97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000302 (10)
Crystal data top
Rb4Zr3Te16V = 3279.3 (11) Å3
Mr = 2657.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.982 (2) ŵ = 20.78 mm1
b = 18.613 (4) ÅT = 293 K
c = 15.078 (3) Å0.12 × 0.10 × 0.10 mm
β = 102.79 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2335 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al, 1968)
Rint = 0.023
Tmin = 0.094, Tmax = 0.1263 standard reflections every 120 min
2991 measured reflections intensity decay: 2.2
2874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041106 parameters
wR(F2) = 0.0860 restraints
S = 1.94Δρmax = 3.10 e Å3
2874 reflectionsΔρmin = 2.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Direct phase determination yielded the positions of Rb, Zr and Te atoms, and all were subjected to anisotropic refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.40048 (18)0.14862 (10)0.57067 (12)0.0442 (5)
Rb20.10476 (16)0.13712 (10)0.62803 (13)0.0416 (5)
Zr10.32009 (12)0.10990 (7)0.77140 (10)0.0168 (3)
Zr200.10788 (10)3/40.0165 (4)
Te10.20199 (9)0.04683 (5)0.62703 (7)0.0212 (2)
Te20.05604 (9)0.14819 (6)0.55653 (7)0.0257 (3)
Te30.11822 (9)0.03246 (5)0.62426 (7)0.0241 (3)
Te40.30706 (10)0.04849 (5)0.75427 (8)0.0291 (3)
Te50.14936 (8)0.22857 (5)0.78553 (7)0.0206 (3)
Te60.35565 (9)0.23840 (5)0.66121 (7)0.0251 (3)
Te70.51610 (9)0.06054 (5)0.62236 (7)0.0218 (3)
Te80.65174 (9)0.17768 (6)0.55771 (7)0.0284 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0630 (13)0.0384 (11)0.0366 (10)0.0011 (9)0.0226 (9)0.0047 (8)
Rb20.0465 (12)0.0348 (10)0.0454 (11)0.0140 (9)0.0141 (9)0.0056 (8)
Zr10.0179 (8)0.0125 (7)0.0228 (8)0.0001 (6)0.0107 (6)0.0003 (6)
Zr20.0207 (11)0.0125 (10)0.0190 (11)00.0102 (9)0
Te10.0205 (5)0.0196 (5)0.0263 (6)0.0000 (4)0.0110 (4)0.0040 (4)
Te20.0330 (6)0.0251 (6)0.0205 (6)0.0056 (5)0.0089 (5)0.0037 (5)
Te30.0250 (6)0.0231 (6)0.0287 (6)0.0069 (4)0.0158 (5)0.0102 (5)
Te40.0350 (7)0.0139 (5)0.0462 (7)0.0026 (5)0.0254 (6)0.0003 (5)
Te50.0226 (6)0.0139 (5)0.0284 (6)0.0006 (4)0.0118 (5)0.0022 (4)
Te60.0305 (6)0.0180 (5)0.0270 (6)0.0052 (5)0.0067 (5)0.0035 (5)
Te70.0229 (6)0.0203 (5)0.0257 (6)0.0015 (4)0.0129 (5)0.0033 (4)
Te80.0311 (7)0.0279 (6)0.0281 (6)0.0021 (5)0.0107 (5)0.0054 (5)
Geometric parameters (Å, º) top
Zr1—Te62.8895 (18)Te6—Rb1iii3.805 (2)
Zr1—Te3i2.9528 (19)Te6—Rb2vii4.045 (2)
Zr1—Te7ii2.9420 (17)Te6—Rb1iv4.190 (2)
Zr1—Te8ii2.9547 (18)Te7—Te82.7648 (15)
Zr1—Te4i2.9819 (18)Te7—Zr1ii2.9420 (17)
Zr1—Te52.9861 (17)Te7—Rb1iii3.855 (2)
Zr1—Te73.012 (2)Te7—Rb1viii4.052 (2)
Zr1—Te13.0794 (17)Te8—Zr1ii2.9547 (18)
Zr2—Te12.9326 (15)Te8—Rb2iv3.614 (2)
Zr2—Te1i2.9326 (15)Te8—Rb2ix3.648 (3)
Zr2—Te2i2.9422 (13)Te8—Rb1iii3.960 (2)
Zr2—Te22.9422 (13)Rb1—Te43.710 (2)
Zr2—Te32.9599 (14)Rb1—Te7x4.052 (2)
Zr2—Te3i2.9599 (14)Rb1—Te6iii3.805 (2)
Zr2—Te5i2.9936 (18)Rb1—Te2xi3.830 (2)
Zr2—Te52.9936 (18)Rb1—Te7iii3.855 (2)
Te1—Te22.9277 (14)Rb1—Te1iii3.872 (2)
Te1—Te4i2.9889 (15)Rb1—Te8iii3.960 (2)
Te1—Rb1iii3.872 (2)Rb1—Te5xii3.994 (2)
Te2—Te33.0165 (16)Rb1—Te5xi4.115 (2)
Te2—Rb2iii3.725 (2)Rb1—Te2iii4.148 (3)
Te2—Rb1iv3.830 (2)Rb1—Te6xi4.190 (2)
Te2—Rb1iii4.148 (3)Rb1—Te4v4.316 (3)
Te3—Zr1i2.9528 (19)Rb2—Te8xi3.614 (2)
Te3—Te43.0445 (18)Rb2—Te13.616 (2)
Te3—Rb2iii4.245 (2)Rb2—Te8ix3.648 (3)
Te4—Zr1i2.9819 (18)Rb2—Te4i3.695 (2)
Te4—Te1i2.9889 (15)Rb2—Te6xi3.724 (2)
Te4—Rb2i3.695 (2)Rb2—Te2iii3.725 (2)
Te4—Rb1v4.316 (3)Rb2—Rb2i3.968 (4)
Te5—Te62.7578 (17)Rb2—Te6xiii4.045 (2)
Te5—Rb1vi3.994 (2)Rb2—Te34.144 (2)
Te5—Rb1iv4.115 (2)Rb2—Te3iii4.245 (2)
Te5—Rb2vii4.281 (2)Rb2—Te5xiii4.281 (2)
Te6—Rb2iv3.724 (2)
Te4—Rb1—Te6iii154.41 (7)Te3i—Zr1—Te174.94 (4)
Te4—Rb1—Te2xi127.22 (5)Te8ii—Zr1—Te1159.77 (6)
Te6iii—Rb1—Te2xi60.55 (4)Te4i—Zr1—Te159.06 (4)
Te4—Rb1—Te7iii124.60 (6)Te5—Zr1—Te185.28 (4)
Te6iii—Rb1—Te7iii59.62 (4)Te7—Zr1—Te176.16 (4)
Te2xi—Rb1—Te7iii107.57 (5)Te1—Zr2—Te1i134.40 (8)
Te4—Rb1—Te1iii95.35 (5)Te1—Zr2—Te2i134.50 (4)
Te6iii—Rb1—Te1iii64.52 (4)Te1i—Zr2—Te2i59.78 (3)
Te2xi—Rb1—Te1iii120.55 (5)Te1—Zr2—Te259.78 (3)
Te7iii—Rb1—Te1iii58.19 (4)Te1i—Zr2—Te2134.50 (4)
Te4—Rb1—Te8iii145.18 (6)Te2i—Zr2—Te2150.45 (8)
Te6iii—Rb1—Te8iii57.23 (4)Te1—Zr2—Te381.73 (4)
Te2xi—Rb1—Te8iii73.17 (4)Te1i—Zr2—Te377.07 (4)
Te7iii—Rb1—Te8iii41.41 (3)Te2i—Zr2—Te3136.02 (4)
Te1iii—Rb1—Te8iii95.41 (5)Te2—Zr2—Te361.47 (3)
Te4—Rb1—Te5xii101.23 (5)Te1—Zr2—Te3i77.07 (4)
Te6iii—Rb1—Te5xii100.61 (5)Te1i—Zr2—Te3i81.73 (4)
Te2xi—Rb1—Te5xii51.01 (3)Te2i—Zr2—Te3i61.47 (3)
Te7iii—Rb1—Te5xii107.65 (5)Te2—Zr2—Te3i136.02 (4)
Te1iii—Rb1—Te5xii162.82 (5)Te3—Zr2—Te3i123.38 (8)
Te8iii—Rb1—Te5xii68.30 (4)Te1—Zr2—Te5i128.32 (4)
Te4—Rb1—Te7x58.41 (3)Te1i—Zr2—Te5i87.80 (3)
Te6iii—Rb1—Te7x125.27 (5)Te2i—Zr2—Te5i88.38 (5)
Te2xi—Rb1—Te7x158.23 (6)Te2—Zr2—Te5i69.23 (4)
Te7iii—Rb1—Te7x67.79 (4)Te3—Zr2—Te5i81.46 (3)
Te1iii—Rb1—Te7x76.19 (4)Te3i—Zr2—Te5i149.36 (5)
Te8iii—Rb1—Te7x92.49 (4)Te1—Zr2—Te587.80 (3)
Te5xii—Rb1—Te7x108.83 (5)Te1i—Zr2—Te5128.32 (4)
Te4—Rb1—Te5xi64.61 (4)Te2i—Zr2—Te569.23 (4)
Te6iii—Rb1—Te5xi117.64 (5)Te2—Zr2—Te588.38 (5)
Te2xi—Rb1—Te5xi62.65 (4)Te3—Zr2—Te5149.36 (5)
Te7iii—Rb1—Te5xi165.84 (6)Te3i—Zr2—Te581.46 (3)
Te1iii—Rb1—Te5xi134.94 (6)Te5i—Zr2—Te582.74 (6)
Te8iii—Rb1—Te5xi124.58 (6)Te2—Te1—Zr260.27 (4)
Te5xii—Rb1—Te5xi58.39 (4)Te2—Te1—Te4i164.71 (5)
Te7x—Rb1—Te5xi117.06 (5)Zr2—Te1—Te4i104.45 (5)
Te4—Rb1—Te2iii84.86 (5)Te2—Te1—Zr1114.57 (5)
Te6iii—Rb1—Te2iii69.65 (5)Zr2—Te1—Zr181.34 (4)
Te2xi—Rb1—Te2iii96.31 (5)Te4i—Te1—Zr158.84 (4)
Te7iii—Rb1—Te2iii97.88 (5)Te2—Te1—Rb2113.20 (5)
Te1iii—Rb1—Te2iii42.65 (3)Zr2—Te1—Rb298.29 (5)
Te8iii—Rb1—Te2iii124.09 (5)Te4i—Te1—Rb267.26 (4)
Te5xii—Rb1—Te2iii143.02 (6)Zr1—Te1—Rb2123.79 (5)
Te7x—Rb1—Te2iii105.36 (5)Te2—Te1—Rb1iii73.72 (4)
Te5xi—Rb1—Te2iii93.56 (5)Zr2—Te1—Rb1iii125.27 (6)
Te4—Rb1—Te6xi69.22 (4)Te4i—Te1—Rb1iii118.89 (5)
Te6iii—Rb1—Te6xi96.57 (5)Zr1—Te1—Rb1iii93.30 (5)
Te2xi—Rb1—Te6xi68.97 (4)Rb2—Te1—Rb1iii127.52 (5)
Te7iii—Rb1—Te6xi150.56 (6)Te1—Te2—Zr259.95 (4)
Te1iii—Rb1—Te6xi97.30 (5)Te1—Te2—Te380.86 (4)
Te8iii—Rb1—Te6xi141.40 (5)Zr2—Te2—Te359.55 (4)
Te5xii—Rb1—Te6xi92.79 (4)Te1—Te2—Rb2iii133.23 (5)
Te7x—Rb1—Te6xi125.93 (5)Zr2—Te2—Rb2iii133.19 (5)
Te5xi—Rb1—Te6xi38.77 (3)Te3—Te2—Rb2iii77.27 (4)
Te2iii—Rb1—Te6xi54.98 (3)Te1—Te2—Rb1iv121.10 (5)
Te4—Rb1—Te4v70.42 (4)Zr2—Te2—Rb1iv101.57 (5)
Te6iii—Rb1—Te4v133.01 (6)Te3—Te2—Rb1iv141.15 (5)
Te2xi—Rb1—Te4v111.01 (5)Rb2iii—Te2—Rb1iv101.27 (4)
Te7iii—Rb1—Te4v84.22 (5)Te1—Te2—Rb1iii63.64 (4)
Te1iii—Rb1—Te4v122.46 (5)Zr2—Te2—Rb1iii116.37 (5)
Te8iii—Rb1—Te4v75.86 (4)Te3—Te2—Rb1iii134.52 (5)
Te5xii—Rb1—Te4v60.50 (4)Rb2iii—Te2—Rb1iii106.32 (5)
Te7x—Rb1—Te4v48.33 (3)Rb1iv—Te2—Rb1iii83.69 (5)
Te5xi—Rb1—Te4v89.89 (5)Zr1i—Te3—Zr283.04 (4)
Te2iii—Rb1—Te4v150.69 (5)Zr1i—Te3—Te2104.82 (5)
Te6xi—Rb1—Te4v124.86 (5)Zr2—Te3—Te258.97 (4)
Te8xi—Rb2—Te1150.80 (6)Zr1i—Te3—Te459.61 (4)
Te8xi—Rb2—Te8ix62.04 (4)Zr2—Te3—Te4102.42 (4)
Te1—Rb2—Te8ix89.46 (5)Te2—Te3—Te4158.67 (5)
Te8xi—Rb2—Te4i119.38 (6)Zr1i—Te3—Rb2145.00 (5)
Te1—Rb2—Te4i48.25 (3)Zr2—Te3—Rb287.19 (5)
Te8ix—Rb2—Te4i87.87 (5)Te2—Te3—Rb298.54 (4)
Te8xi—Rb2—Te6xi60.93 (4)Te4—Te3—Rb290.22 (4)
Te1—Rb2—Te6xi146.90 (6)Zr1i—Te3—Rb2iii96.75 (5)
Te8ix—Rb2—Te6xi117.09 (5)Zr2—Te3—Rb2iii115.32 (5)
Te4i—Rb2—Te6xi143.59 (6)Te2—Te3—Rb2iii58.85 (4)
Te8xi—Rb2—Te2iii78.51 (4)Te4—Te3—Rb2iii132.80 (4)
Te1—Rb2—Te2iii105.59 (5)Rb2—Te3—Rb2iii117.72 (4)
Te8ix—Rb2—Te2iii82.71 (5)Zr1i—Te4—Te1i62.09 (4)
Te4i—Rb2—Te2iii152.43 (6)Zr1i—Te4—Te358.67 (4)
Te6xi—Rb2—Te2iii62.23 (4)Te1i—Te4—Te374.95 (4)
Te8xi—Rb2—Rb2i107.31 (4)Zr1i—Te4—Rb2i124.23 (5)
Te1—Rb2—Rb2i98.11 (4)Te1i—Te4—Rb2i64.49 (4)
Te8ix—Rb2—Rb2i161.09 (7)Te3—Te4—Rb2i93.27 (5)
Te4i—Rb2—Rb2i84.40 (6)Zr1i—Te4—Rb1111.52 (5)
Te6xi—Rb2—Rb2i63.36 (5)Te1i—Te4—Rb1169.04 (6)
Te2iii—Rb2—Rb2i111.52 (7)Te3—Te4—Rb194.14 (5)
Te8xi—Rb2—Te6xiii69.29 (4)Rb2i—Te4—Rb1118.20 (5)
Te1—Rb2—Te6xiii116.87 (5)Zr1i—Te4—Rb1v116.59 (5)
Te8ix—Rb2—Te6xiii105.76 (5)Te1i—Te4—Rb1v106.42 (5)
Te4i—Rb2—Te6xiii71.02 (4)Te3—Te4—Rb1v174.07 (4)
Te6xi—Rb2—Te6xiii76.58 (5)Rb2i—Te4—Rb1v92.50 (5)
Te2iii—Rb2—Te6xiii136.50 (5)Rb1—Te4—Rb1v84.33 (5)
Rb2i—Rb2—Te6xiii55.38 (4)Te6—Te5—Zr160.25 (4)
Te8xi—Rb2—Te3141.40 (5)Te6—Te5—Zr2114.17 (4)
Te1—Rb2—Te359.12 (4)Zr1—Te5—Zr281.91 (4)
Te8ix—Rb2—Te3123.75 (5)Te6—Te5—Rb1vi141.27 (5)
Te4i—Rb2—Te399.21 (5)Zr1—Te5—Rb1vi151.57 (5)
Te6xi—Rb2—Te388.61 (5)Zr2—Te5—Rb1vi97.04 (4)
Te2iii—Rb2—Te365.81 (4)Te6—Te5—Rb1iv72.09 (5)
Rb2i—Rb2—Te374.64 (4)Zr1—Te5—Rb1iv124.84 (5)
Te6xiii—Rb2—Te3129.44 (6)Zr2—Te5—Rb1iv94.55 (4)
Te8xi—Rb2—Te3iii101.67 (5)Rb1vi—Te5—Rb1iv83.59 (5)
Te1—Rb2—Te3iii67.26 (4)Te6—Te5—Rb2vii66.08 (4)
Te8ix—Rb2—Te3iii62.73 (4)Zr1—Te5—Rb2vii86.96 (4)
Te4i—Rb2—Te3iii109.07 (5)Zr2—Te5—Rb2vii166.33 (4)
Te6xi—Rb2—Te3iii106.04 (5)Rb1vi—Te5—Rb2vii88.97 (4)
Te2iii—Rb2—Te3iii43.88 (3)Rb1iv—Te5—Rb2vii98.33 (4)
Rb2i—Rb2—Te3iii136.17 (6)Te5—Te6—Zr163.79 (4)
Te6xiii—Rb2—Te3iii168.28 (6)Te5—Te6—Rb2iv134.73 (5)
Te3—Rb2—Te3iii62.28 (4)Zr1—Te6—Rb2iv127.16 (5)
Te8xi—Rb2—Te5xiii57.27 (4)Te5—Te6—Rb1iii121.23 (5)
Te1—Rb2—Te5xiii108.14 (5)Zr1—Te6—Rb1iii97.91 (5)
Te8ix—Rb2—Te5xiii68.01 (4)Rb2iv—Te6—Rb1iii101.76 (5)
Te4i—Rb2—Te5xiii62.97 (4)Te5—Te6—Rb2vii75.36 (4)
Te6xi—Rb2—Te5xiii100.42 (5)Zr1—Te6—Rb2vii92.89 (5)
Te2iii—Rb2—Te5xiii134.41 (5)Rb2iv—Te6—Rb2vii61.26 (6)
Rb2i—Rb2—Te5xiii93.13 (5)Rb1iii—Te6—Rb2vii163.02 (5)
Te6xiii—Rb2—Te5xiii38.56 (3)Te5—Te6—Rb1iv69.14 (4)
Te3—Rb2—Te5xiii159.75 (5)Zr1—Te6—Rb1iv125.26 (5)
Te3iii—Rb2—Te5xiii130.44 (5)Rb2iv—Te6—Rb1iv105.49 (5)
Te6—Zr1—Te7ii122.71 (6)Rb1iii—Te6—Rb1iv83.43 (5)
Te6—Zr1—Te3i135.20 (6)Rb2vii—Te6—Rb1iv100.97 (5)
Te7ii—Zr1—Te3i97.12 (5)Te8—Te7—Zr1ii62.27 (4)
Te6—Zr1—Te8ii96.73 (5)Te8—Te7—Zr1108.84 (5)
Te7ii—Zr1—Te8ii55.92 (4)Zr1ii—Te7—Zr190.14 (5)
Te3i—Zr1—Te8ii88.97 (5)Te8—Te7—Rb1iii71.33 (4)
Te6—Zr1—Te4i138.51 (6)Zr1ii—Te7—Rb1iii132.29 (5)
Te7ii—Zr1—Te4i79.77 (4)Zr1—Te7—Rb1iii94.73 (5)
Te3i—Zr1—Te4i61.72 (4)Te8—Te7—Rb1viii126.10 (5)
Te8ii—Zr1—Te4i123.69 (6)Zr1ii—Te7—Rb1viii103.82 (5)
Te6—Zr1—Te555.96 (4)Zr1—Te7—Rb1viii123.71 (5)
Te7ii—Zr1—Te5136.16 (6)Rb1iii—Te7—Rb1viii112.21 (4)
Te3i—Zr1—Te581.70 (5)Te7—Te8—Zr1ii61.81 (4)
Te8ii—Zr1—Te580.25 (5)Te7—Te8—Rb2iv127.42 (5)
Te4i—Zr1—Te5133.31 (6)Zr1ii—Te8—Rb2iv101.06 (5)
Te6—Zr1—Te780.34 (5)Te7—Te8—Rb2ix114.54 (5)
Te7ii—Zr1—Te778.87 (5)Zr1ii—Te8—Rb2ix110.78 (5)
Te3i—Zr1—Te7131.30 (6)Rb2iv—Te8—Rb2ix117.96 (4)
Te8ii—Zr1—Te7124.06 (6)Te7—Te8—Rb1iii67.26 (4)
Te4i—Zr1—Te769.89 (4)Zr1ii—Te8—Rb1iii127.87 (5)
Te5—Zr1—Te7133.44 (6)Rb2iv—Te8—Rb1iii100.82 (5)
Te6—Zr1—Te186.65 (5)Rb2ix—Te8—Rb1iii99.31 (5)
Te7ii—Zr1—Te1137.07 (6)
Symmetry codes: (i) x, y, z+3/2; (ii) x1, y, z+3/2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x+1, y, z+3/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z+3/2; (viii) x1, y, z; (ix) x1, y, z+1; (x) x+1, y, z; (xi) x+1/2, y1/2, z; (xii) x+1/2, y1/2, z+3/2; (xiii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaRb4Zr3Te16
Mr2657.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.982 (2), 18.613 (4), 15.078 (3)
β (°) 102.79 (3)
V3)3279.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)20.78
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al, 1968)
Tmin, Tmax0.094, 0.126
No. of measured, independent and
observed [I > 2σ(I)] reflections
2991, 2874, 2335
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.086, 1.94
No. of reflections2874
No. of parameters106
Δρmax, Δρmin (e Å3)3.10, 2.36

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC Software, XCAD4/PC (Harms, 1997), SHELX97 (Sheldrick, 1997), SHELX97, SCHAKAL92 (Keller, 1992).

Selected bond lengths (Å) top
Zr1—Te62.8895 (18)Rb1—Te2v3.830 (2)
Zr1—Te3i2.9528 (19)Rb1—Te7iv3.855 (2)
Zr1—Te7ii2.9420 (17)Rb1—Te1iv3.872 (2)
Zr1—Te8ii2.9547 (18)Rb1—Te8iv3.960 (2)
Zr1—Te4i2.9819 (18)Rb1—Te5vi3.994 (2)
Zr1—Te52.9861 (17)Rb1—Te5v4.115 (2)
Zr1—Te73.012 (2)Rb1—Te2iv4.148 (3)
Zr1—Te13.0794 (17)Rb1—Te6v4.190 (2)
Zr2—Te12.9326 (15)Rb1—Te4vii4.316 (3)
Zr2—Te22.9422 (13)Rb2—Te8v3.614 (2)
Zr2—Te32.9599 (14)Rb2—Te13.616 (2)
Zr2—Te52.9936 (18)Rb2—Te8viii3.648 (3)
Te1—Te22.9277 (14)Rb2—Te4i3.695 (2)
Te1—Te4i2.9889 (15)Rb2—Te6v3.724 (2)
Te2—Te33.0165 (16)Rb2—Te2iv3.725 (2)
Te3—Te43.0445 (18)Rb2—Rb2i3.968 (4)
Te5—Te62.7578 (17)Rb2—Te6ix4.045 (2)
Te7—Te82.7648 (15)Rb2—Te34.144 (2)
Rb1—Te43.710 (2)Rb2—Te3iv4.245 (2)
Rb1—Te7iii4.052 (2)Rb2—Te5ix4.281 (2)
Rb1—Te6iv3.805 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x1, y, z+3/2; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z+3/2; (vii) x+1, y, z+3/2; (viii) x1, y, z+1; (ix) x1/2, y1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds