organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1389-o1390

Tetra­hydro­alstonine

aLaboratoire de Pharmacognosie, UMR CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France, and bLaboratoire de Cristallographie et RMN biologiques, UMR CNRS 8015, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France
*Correspondence e-mail: francois-hugues.poree@parisdescartes.fr

(Received 1 July 2013; accepted 29 July 2013; online 7 August 2013)

In the title compound, C21H24N2O3 [systematic name: methyl (20α)-16,17-dide­hydro-19α-methyl-18-oxayohimban-16-carb­oxy­l­ate], the mol­ecule adopts an L-type conformation. The crystal packing is governed by one N—H⋯π and one C—H⋯π inter­actions. The crystal cohesion is ensured by inter­molecular van der Waals contacts [shortest O⋯O contact = 3.199 (2) Å].

Related literature

For the extraction of tetra­hydro­alstonine (THA) from natural sources, see: Zenk & Juenger (2007[Zenk, M. H. & Juenger, M. (2007). Phytochemistry, 68, 2757-2772.]); Mandal et al. (1983[Mandal, S., Srivastava, V. K. & Maheshwari, M. L. (1983). Indian J. Pharm. Sci. pp. 23-26.]); Langlois et al. (1979[Langlois, N., Diatta, L. & Andriamialisoa, R. Z. (1979). Phytochemistry, 18, 467-471.]). For stereochemistry studies, see: Wenkert et al. (1961[Wenkert, E., Wickberg, B. & Leicht, C. L. (1961). J. Am. Chem. Soc. 83, 5037-5038.]); Wenkert & Roychaudhuri (1957[Wenkert, E. & Roychaudhuri, D. K. (1957). J. Am. Chem. Soc. 79, 1519-1520.]); Shamma & Richey (1963[Shamma, M. & Richey, J. M. (1963). J. Am. Chem. Soc. 85, 2507-2512.]); Lounasmaa & Kan (1980[Lounasmaa, M. & Kan, S.-K. (1980). Tetrahedron, 36, 1607-1611.]); Höfle et al. (1980[Höfle, G., Heinstein, P., Stöckigt, J. & Zenk, M. H. (1980). Planta Med. 40, 120-126.]). For the semisynthesis, see: Poirot (2007[Poirot, R. (2007). PhD thesis, p. 129. Institut National Polytechnique de Toulouse, France.]); Beziat & Hatinguais (1977[Beziat, D. & Hatinguais, P. (1977). Patent FR2397415.]); Zsadon et al. (1979[Zsadon, B., Barta, M., Dezseri, E. & Dancsi, L. (1979). Patent FR7929088.]); Guéritte et al. (1983[Guéritte, F., Langlois, N. & Pétiard, V. (1983). J. Nat. Prod. 46, 144-148.]); Hemscheidt & Zenk (1985[Hemscheidt, T. & Zenk, M. H. (1985). Plant Cell Rep. 4, 216-219.]) and for synthetic studies, see: Gutzwiller et al. (1971[Gutzwiller, J., Pizzolato, G. & Uskolović, M. (1971). J. Am. Chem. Soc. 93, 5907-5908.]); Wenkert et al. (1976[Wenkert, E., Chang, C.-J., Chawla, H. P. S., Cochran, D. W., Hagaman, E. W., King, J. C. & Orito, K. (1976). J. Am. Chem. Soc. 98, 3645-3655.]); Zou et al. (2010[Zou, H.-B., Zhu, H.-J., Zhang, L., Yang, L.-Q., Yu, Y.-P. & Stöckigt, J. (2010). Chem. Asian J. 5, 2400-2404.]). For the biological activity of TMA, see Zou et al. (2010[Zou, H.-B., Zhu, H.-J., Zhang, L., Yang, L.-Q., Yu, Y.-P. & Stöckigt, J. (2010). Chem. Asian J. 5, 2400-2404.]); Sharma et al. (1988[Sharma, P., Shirataki, Y. & Cordell, G. A. (1988). Phytochemistry, 27, 3649-3652.]). For a related structure, see: Laus & Wurst (2008[Laus, G. & Wurst, K. (2008). Helv. Chim. Acta, 91, 831-837.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O3

  • Mr = 352.42

  • Orthorhombic, P 21 21 21

  • a = 6.719 (1) Å

  • b = 8.169 (2) Å

  • c = 34.120 (5) Å

  • V = 1872.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (COLLECT; Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]) Tmin = 0.982, Tmax = 0.992

  • 3300 measured reflections

  • 3300 independent reflections

  • 2537 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.01

  • 3300 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure parameter: −0.3 (17)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C2/C7/C8/C13/N1 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.86 2.85 3.550 (2) 139
C6—H6ACg2ii 0.97 2.8 3.429 (3) 121
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Tetrahydroalstonine (THA) is an indolomonoterpenoid alkaloid possessing a 5-fused ring corynanthean type skeleton (Höfle et al. 1980; Zenk & Juenger 2007). Depending on the stereochemistry at the positions C3, C15, C19 and C20, several subgroups of corynanthe alkaloids have been distinguished (Lounasmaa & Kan, 1980). THA belongs to the alloheteroyohimbine subgroup together with rauniticine (Shamma & Richey 1963). Its distribution is restricted to plants belonging to the sole plants of the Apocynaceae, Rubiaceae and Loganiaceae families. THA constitutes the main by-product of the marketed drug raubasine (ajmalicine) industrial production (Poirot 2007; Beziat & Hatinguais 1977; Zsadon et al. 1979). Indeed, this molecule is readily available in a large amount by the reduction with NaBH4 of serpentine present in the underground parts of Catharanthus roseus (Mandal et al. 1983). This reaction directly carried out on a total alkaloid extract also affords THA resulting from alstonine reduction. Furthermore, this method followed by the isolation of THA and raubasine has been employed for a convenient determination of the alstonine and serpentine respective content in the aerial parts of Catharanthus ovalis (Langlois et al. 1979). The structure of THA has been elucidated after extensive NMR studies during the period 1950–1960 (Wenkert & Roychaudhuri 1957; Wenkert et al. 1961). In the corynanthe series, only the crystal structure of akuammigine (as picrate hydrate) has been previously reported (Laus & Wurst 2008). There have been only a few reports of the THA biological activities (Zou et al. 2010; Sharma et al. 1988). The X-ray data of THA confirmed the relative allo configuration of the C3, C15, C19 and C20 stereocenters. With reference of the known (15S)- configuration due to the biosynthesis, the absolute configuration of the other stereocenters is thus given by (3S, 19S, 20S). The aromatic rings A (C8-C13) and B (C2/C7/C8/C13/N1) are planar. Ring C (C2/C3/N4/C5-C7) adopts a half-chair conformation with N4 above the medium A/B plane by 0.437 (4) Å and C5 below the medium A/B plane by 0.334 (4) Å, respectively. The C/D ring is a trans-fused quinolizidine. Ring D (C3/C14/C15/C20/C21/N4) is a regular chair with H—C3 α axial. The D/E rings are cis-fused; H—C15 and H—C20 are α, the first one being in axial position and the second in equatorial. Ring E (C15-C20) is a half-chair with C19 above the median plan (C15—C16—C17—O18) by -0.273 (5) Å and C20 below the same plan by 0.497 (4) Å. The α Me—C19 group adopts a pseudoequatorial position (Figure 1.). The crystal packing of the compound is governed by one N—H···Cg (π ring, Cg centroid of ring A) interaction and one C—H···Cg (π ring, Cg centroid of ring B) interaction. The crystal cohesion is ensured by intermolecular van der Waals contacts, the shortest is equal to 3.199 (2) Å for O18 and O24.

Related literature top

For the extraction of tetrahydroalstonine (THA) from natural sources, see: Zenk & Juenger (2007); Mandal et al. (1983); Langlois et al. (1979). For stereochemistry studies, see: Wenkert et al. (1961); Wenkert & Roychaudhuri (1957); Shamma & Richey (1963); Lounasmaa & Kan (1980); Höfle et al. (1980). For the semisynthesis, see: Poirot (2007); Beziat & Hatinguais (1977); Zsadon et al. (1979); Guéritte et al. (1983); Hemscheidt & Zenk (1985) and for synthetic studies, see: Gutzwiller et al. (1971); Wenkert et al. (1976); Zou et al. (2010). For the biological activity of TMA, see Zou et al. (2010); Sharma et al. (1988). For a related structure, see: Laus & Wurst (2008).

Experimental top

The typical conditions used for the semi-synthesis were followed. The pulverized dried roots of Catharanthus roseus (20.0 g) were extracted overnight with a (1:1) mixture of CH2Cl2/MeOH. After filtration and solvent removal, the alkaloid extract was dissolved in MeOH and NaBH4 (500 mg) was slowly added at 0°C. After completion of the reduction (TLC control), water was added and the solution was extracted with CH2Cl2 (alkaloids were monitored with the Dragendorff reagent). The combined organic layers were dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel (Eluent CH2Cl2/MeOH 99/1) to give THA and raubasine as white powders. The former was crystallized from MeOH to give THA as colorless plates suitable for X-ray diffraction.

Refinement top

H3, H15 and H20 atoms bonded to C3, C15 and C20 atoms respectively were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular view of the compound showing atomic numbering. Displacements ellipsoids at the 50% probability level.
Methyl (20α)-16,17-didehydro-19α-methyl-18-oxayohimban-16-carboxylate top
Crystal data top
C21H24N2O3F(000) = 752
Mr = 352.42Dx = 1.250 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 1924 reflections
a = 6.719 (1) Åθ = 0.4–25.4°
b = 8.169 (2) ŵ = 0.08 mm1
c = 34.120 (5) ÅT = 293 K
V = 1872.8 (6) Å3Parallelepiped, colourless
Z = 40.50 × 0.30 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3300 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 3.5°
CCD scansh = 88
Absorption correction: multi-scan
(COLLECT; Nonius, 2004)
k = 99
Tmin = 0.982, Tmax = 0.992l = 4040
3300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.175P]
where P = (Fo2 + 2Fc2)/3
3300 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C21H24N2O3V = 1872.8 (6) Å3
Mr = 352.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.719 (1) ŵ = 0.08 mm1
b = 8.169 (2) ÅT = 293 K
c = 34.120 (5) Å0.50 × 0.30 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3300 independent reflections
Absorption correction: multi-scan
(COLLECT; Nonius, 2004)
2537 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.992Rint = 0.000
3300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.11 e Å3
3300 reflectionsΔρmin = 0.12 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0941 (2)1.03273 (19)0.22093 (5)0.0543 (4)
H10.01061.09290.20840.065*
C20.2643 (3)0.9635 (2)0.20539 (6)0.0498 (4)
C30.3268 (3)0.9745 (3)0.16349 (6)0.0554 (5)
H30.388 (3)1.082 (3)0.1594 (6)0.072 (6)*
N40.4687 (2)0.8412 (2)0.15597 (6)0.0661 (5)
C50.6291 (3)0.8379 (3)0.18547 (8)0.0769 (7)
H5A0.68870.94570.18740.092*
H5B0.73150.76160.17720.092*
C60.5502 (3)0.7872 (3)0.22502 (8)0.0703 (6)
H6A0.52480.67040.22520.084*
H6B0.64830.81110.24510.084*
C70.3616 (3)0.8781 (2)0.23357 (6)0.0560 (5)
C80.2480 (3)0.8919 (2)0.26876 (6)0.0561 (5)
C90.2699 (4)0.8333 (3)0.30708 (7)0.0713 (6)
H90.38060.77130.31390.086*
C100.1262 (5)0.8682 (3)0.33441 (8)0.0834 (8)
H100.13960.82840.35980.100*
C110.0392 (5)0.9624 (3)0.32467 (7)0.0834 (7)
H110.13570.98280.34360.100*
C120.0628 (4)1.0259 (3)0.28766 (6)0.0701 (6)
H120.17171.09120.28150.084*
C130.0803 (3)0.9893 (2)0.25995 (6)0.0542 (5)
C140.1540 (3)0.9621 (3)0.13484 (5)0.0536 (5)
H14A0.06201.05150.13950.064*
H14B0.08340.86020.13920.064*
C150.2267 (4)0.9687 (3)0.09227 (6)0.0640 (6)
H150.281 (4)1.076 (3)0.0888 (7)0.073 (7)*
C160.0636 (4)0.9412 (3)0.06288 (6)0.0662 (6)
C170.0518 (5)0.8003 (3)0.04332 (7)0.0847 (8)
H170.04690.79240.02430.102*
O180.1678 (3)0.6694 (2)0.04839 (6)0.1032 (7)
C190.3020 (5)0.6744 (3)0.08207 (8)0.0872 (8)
H190.22540.65180.10590.105*
C200.3918 (4)0.8443 (3)0.08520 (8)0.0797 (7)
H200.465 (4)0.871 (3)0.0595 (7)0.088 (7)*
C210.5520 (4)0.8600 (4)0.11650 (8)0.0887 (8)
H21A0.65300.77700.11220.106*
H21B0.61510.96640.11430.106*
C220.4475 (7)0.5356 (4)0.07534 (11)0.1426 (15)
H22A0.54210.56700.05560.214*
H22B0.37650.44010.06680.214*
H22C0.51620.51170.09930.214*
C230.0746 (4)1.0739 (3)0.05479 (6)0.0695 (6)
O240.2128 (3)1.0354 (2)0.02800 (5)0.0910 (6)
O250.0672 (3)1.2070 (2)0.06996 (5)0.0945 (6)
C260.3520 (5)1.1602 (4)0.01729 (10)0.1060 (10)
H26A0.28151.25280.00690.159*
H26B0.42641.19300.04000.159*
H26C0.44141.11840.00230.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0552 (9)0.0540 (8)0.0537 (9)0.0087 (8)0.0107 (8)0.0008 (8)
C20.0463 (10)0.0450 (9)0.0581 (11)0.0012 (9)0.0105 (9)0.0051 (8)
C30.0481 (11)0.0531 (11)0.0651 (13)0.0025 (10)0.0025 (9)0.0021 (10)
N40.0456 (9)0.0757 (12)0.0770 (13)0.0066 (9)0.0038 (9)0.0051 (9)
C50.0452 (12)0.0821 (16)0.103 (2)0.0048 (12)0.0055 (13)0.0034 (15)
C60.0513 (12)0.0617 (12)0.0980 (18)0.0078 (11)0.0201 (13)0.0022 (12)
C70.0530 (11)0.0462 (10)0.0687 (14)0.0017 (9)0.0153 (10)0.0056 (9)
C80.0641 (12)0.0417 (9)0.0625 (13)0.0021 (10)0.0205 (11)0.0017 (9)
C90.0917 (17)0.0530 (12)0.0691 (15)0.0038 (13)0.0249 (14)0.0064 (11)
C100.125 (2)0.0657 (14)0.0599 (15)0.0183 (17)0.0172 (16)0.0068 (11)
C110.115 (2)0.0756 (14)0.0595 (14)0.0120 (18)0.0064 (14)0.0098 (12)
C120.0783 (15)0.0660 (12)0.0661 (14)0.0020 (13)0.0016 (12)0.0122 (11)
C130.0597 (11)0.0488 (10)0.0540 (11)0.0013 (9)0.0095 (9)0.0051 (8)
C140.0508 (11)0.0587 (11)0.0512 (11)0.0008 (10)0.0007 (9)0.0045 (9)
C150.0718 (15)0.0622 (12)0.0579 (12)0.0037 (13)0.0122 (11)0.0005 (10)
C160.0851 (16)0.0686 (14)0.0451 (11)0.0008 (13)0.0087 (11)0.0000 (10)
C170.116 (2)0.0844 (17)0.0538 (14)0.0096 (18)0.0026 (14)0.0102 (12)
O180.1444 (18)0.0837 (12)0.0815 (13)0.0226 (13)0.0117 (13)0.0251 (10)
C190.116 (2)0.0745 (16)0.0709 (16)0.0229 (16)0.0094 (16)0.0093 (12)
C200.0769 (16)0.0944 (18)0.0676 (15)0.0116 (15)0.0276 (14)0.0005 (13)
C210.0621 (15)0.111 (2)0.0934 (19)0.0084 (16)0.0258 (15)0.0032 (16)
C220.191 (4)0.117 (2)0.120 (3)0.072 (3)0.003 (3)0.029 (2)
C230.0886 (17)0.0782 (16)0.0418 (11)0.0033 (14)0.0077 (12)0.0046 (10)
O240.1015 (13)0.1035 (13)0.0679 (10)0.0172 (12)0.0157 (9)0.0089 (9)
O250.1331 (17)0.0745 (10)0.0759 (12)0.0125 (12)0.0110 (11)0.0040 (9)
C260.102 (2)0.122 (2)0.094 (2)0.027 (2)0.0055 (17)0.0224 (17)
Geometric parameters (Å, º) top
N1—C21.382 (3)C14—H14A0.9700
N1—C131.381 (2)C14—H14B0.9700
N1—H10.8600C15—C161.502 (3)
C2—C71.356 (3)C15—C201.524 (3)
C2—C31.492 (3)C15—H150.96 (2)
C3—N41.470 (3)C16—C171.333 (3)
C3—C141.521 (3)C16—C231.454 (3)
C3—H30.98 (2)C17—O181.334 (3)
N4—C211.466 (3)C17—H170.9300
N4—C51.475 (3)O18—C191.461 (3)
C5—C61.508 (3)O18—O24i3.199 (2)
C5—H5A0.9700C19—C221.515 (4)
C5—H5B0.9700C19—C201.517 (4)
C6—C71.497 (3)C19—H190.9800
C6—H6A0.9700C20—C211.522 (4)
C6—H6B0.9700C20—H201.03 (3)
C7—C81.427 (3)C21—H21A0.9700
C8—C91.400 (3)C21—H21B0.9700
C8—C131.412 (3)C22—H22A0.9600
C9—C101.372 (4)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—C111.392 (4)C23—O251.205 (3)
C10—H100.9300C23—O241.340 (3)
C11—C121.374 (3)O24—C261.430 (3)
C11—H110.9300C26—H26A0.9600
C12—C131.381 (3)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C14—C151.533 (3)
C2—N1—C13108.68 (16)C15—C14—H14B109.4
C2—N1—H1125.7H14A—C14—H14B108.0
C13—N1—H1125.7C16—C15—C20109.01 (19)
C7—C2—N1109.74 (19)C16—C15—C14113.25 (19)
C7—C2—C3125.07 (18)C20—C15—C14111.00 (19)
N1—C2—C3125.14 (17)C16—C15—H15109.3 (14)
N4—C3—C2107.76 (17)C20—C15—H15108.5 (14)
N4—C3—C14109.48 (16)C14—C15—H15105.7 (14)
C2—C3—C14113.41 (16)C17—C16—C23120.7 (2)
N4—C3—H3111.4 (13)C17—C16—C15120.5 (2)
C2—C3—H3107.9 (13)C23—C16—C15118.75 (19)
C14—C3—H3106.9 (13)C16—C17—O18126.3 (3)
C21—N4—C3109.28 (18)C16—C17—H17116.8
C21—N4—C5110.49 (19)O18—C17—H17116.8
C3—N4—C5111.60 (17)C17—O18—C19116.12 (18)
N4—C5—C6111.05 (18)C17—O18—O24i117.37 (15)
N4—C5—H5A109.4C19—O18—O24i120.05 (15)
C6—C5—H5A109.4O18—C19—C22105.0 (2)
N4—C5—H5B109.4O18—C19—C20109.0 (2)
C6—C5—H5B109.4C22—C19—C20116.0 (3)
H5A—C5—H5B108.0O18—C19—H19108.9
C7—C6—C5109.63 (18)C22—C19—H19108.9
C7—C6—H6A109.7C20—C19—H19108.9
C5—C6—H6A109.7C19—C20—C21114.0 (2)
C7—C6—H6B109.7C19—C20—C15109.4 (2)
C5—C6—H6B109.7C21—C20—C15110.4 (2)
H6A—C6—H6B108.2C19—C20—H20108.9 (14)
C2—C7—C8107.32 (17)C21—C20—H20104.1 (14)
C2—C7—C6121.7 (2)C15—C20—H20109.9 (14)
C8—C7—C6130.99 (19)N4—C21—C20111.5 (2)
C9—C8—C13118.4 (2)N4—C21—H21A109.3
C9—C8—C7134.6 (2)C20—C21—H21A109.3
C13—C8—C7107.01 (17)N4—C21—H21B109.3
C10—C9—C8119.3 (2)C20—C21—H21B109.3
C10—C9—H9120.3H21A—C21—H21B108.0
C8—C9—H9120.3C19—C22—H22A109.5
C9—C10—C11120.9 (2)C19—C22—H22B109.5
C9—C10—H10119.5H22A—C22—H22B109.5
C11—C10—H10119.5C19—C22—H22C109.5
C12—C11—C10121.3 (2)H22A—C22—H22C109.5
C12—C11—H11119.3H22B—C22—H22C109.5
C10—C11—H11119.3O25—C23—O24122.2 (2)
C11—C12—C13117.8 (2)O25—C23—C16124.4 (2)
C11—C12—H12121.1O24—C23—C16113.4 (2)
C13—C12—H12121.1C23—O24—C26117.4 (2)
C12—C13—N1130.62 (19)O24—C26—H26A109.5
C12—C13—C8122.13 (19)O24—C26—H26B109.5
N1—C13—C8107.25 (18)H26A—C26—H26B109.5
C3—C14—C15111.33 (17)O24—C26—H26C109.5
C3—C14—H14A109.4H26A—C26—H26C109.5
C15—C14—H14A109.4H26B—C26—H26C109.5
C3—C14—H14B109.4
C13—N1—C2—C70.7 (2)C7—C8—C13—N10.3 (2)
C13—N1—C2—C3176.71 (18)N4—C3—C14—C1557.9 (2)
C7—C2—C3—N417.0 (3)C2—C3—C14—C15178.22 (18)
N1—C2—C3—N4159.97 (17)C3—C14—C15—C16174.62 (19)
C7—C2—C3—C14138.4 (2)C3—C14—C15—C2051.6 (3)
N1—C2—C3—C1438.6 (3)C20—C15—C16—C1717.6 (3)
C2—C3—N4—C21173.13 (18)C14—C15—C16—C17106.5 (3)
C14—C3—N4—C2163.1 (2)C20—C15—C16—C23159.33 (19)
C2—C3—N4—C550.6 (2)C14—C15—C16—C2376.6 (3)
C14—C3—N4—C5174.38 (18)C23—C16—C17—O18179.2 (2)
C21—N4—C5—C6169.4 (2)C15—C16—C17—O184.0 (4)
C3—N4—C5—C668.8 (2)C16—C17—O18—C198.7 (4)
N4—C5—C6—C745.6 (2)C16—C17—O18—O24i143.1 (2)
N1—C2—C7—C80.5 (2)C17—O18—C19—C22166.5 (3)
C3—C2—C7—C8176.90 (18)O24i—O18—C19—C2215.5 (3)
N1—C2—C7—C6178.97 (16)C17—O18—C19—C2041.6 (3)
C3—C2—C7—C61.6 (3)O24i—O18—C19—C20109.46 (19)
C5—C6—C7—C212.5 (3)O18—C19—C20—C21173.59 (19)
C5—C6—C7—C8169.4 (2)C22—C19—C20—C2155.4 (3)
C2—C7—C8—C9179.6 (2)O18—C19—C20—C1562.3 (3)
C6—C7—C8—C92.1 (4)C22—C19—C20—C15179.5 (2)
C2—C7—C8—C130.1 (2)C16—C15—C20—C1949.3 (3)
C6—C7—C8—C13178.41 (19)C14—C15—C20—C1976.1 (3)
C13—C8—C9—C101.8 (3)C16—C15—C20—C21175.5 (2)
C7—C8—C9—C10178.8 (2)C14—C15—C20—C2150.1 (3)
C8—C9—C10—C110.7 (3)C3—N4—C21—C2063.3 (3)
C9—C10—C11—C121.1 (4)C5—N4—C21—C20173.5 (2)
C10—C11—C12—C131.8 (3)C19—C20—C21—N467.0 (3)
C11—C12—C13—N1178.8 (2)C15—C20—C21—N456.6 (3)
C11—C12—C13—C80.7 (3)C17—C16—C23—O25176.4 (3)
C2—N1—C13—C12179.0 (2)C15—C16—C23—O250.5 (3)
C2—N1—C13—C80.6 (2)C17—C16—C23—O242.8 (3)
C9—C8—C13—C121.0 (3)C15—C16—C23—O24179.7 (2)
C7—C8—C13—C12179.33 (19)O25—C23—O24—C261.0 (4)
C9—C8—C13—N1179.34 (18)C16—C23—O24—C26178.2 (2)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C2/C7/C8/C13/N1 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1ii0.862.853.550 (2)139
C6—H6A···Cg2iii0.972.83.429 (3)121
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C2/C7/C8/C13/N1 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.862.853.550 (2)139
C6—H6A···Cg2ii0.972.83.429 (3)121
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Université Paris Descartes and the CNRS for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeziat, D. & Hatinguais, P. (1977). Patent FR2397415.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuéritte, F., Langlois, N. & Pétiard, V. (1983). J. Nat. Prod. 46, 144–148.  Google Scholar
First citationGutzwiller, J., Pizzolato, G. & Uskolović, M. (1971). J. Am. Chem. Soc. 93, 5907–5908.  CrossRef CAS Web of Science Google Scholar
First citationHemscheidt, T. & Zenk, M. H. (1985). Plant Cell Rep. 4, 216–219.  CrossRef CAS PubMed Google Scholar
First citationHöfle, G., Heinstein, P., Stöckigt, J. & Zenk, M. H. (1980). Planta Med. 40, 120–126.  Google Scholar
First citationLanglois, N., Diatta, L. & Andriamialisoa, R. Z. (1979). Phytochemistry, 18, 467–471.  CrossRef CAS Web of Science Google Scholar
First citationLaus, G. & Wurst, K. (2008). Helv. Chim. Acta, 91, 831–837.  Web of Science CSD CrossRef CAS Google Scholar
First citationLounasmaa, M. & Kan, S.-K. (1980). Tetrahedron, 36, 1607–1611.  CrossRef CAS Web of Science Google Scholar
First citationMandal, S., Srivastava, V. K. & Maheshwari, M. L. (1983). Indian J. Pharm. Sci. pp. 23–26.  Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoirot, R. (2007). PhD thesis, p. 129. Institut National Polytechnique de Toulouse, France.  Google Scholar
First citationShamma, M. & Richey, J. M. (1963). J. Am. Chem. Soc. 85, 2507–2512.  CrossRef CAS Web of Science Google Scholar
First citationSharma, P., Shirataki, Y. & Cordell, G. A. (1988). Phytochemistry, 27, 3649–3652.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWenkert, E., Chang, C.-J., Chawla, H. P. S., Cochran, D. W., Hagaman, E. W., King, J. C. & Orito, K. (1976). J. Am. Chem. Soc. 98, 3645–3655.  CrossRef CAS Web of Science Google Scholar
First citationWenkert, E. & Roychaudhuri, D. K. (1957). J. Am. Chem. Soc. 79, 1519–1520.  CrossRef CAS Web of Science Google Scholar
First citationWenkert, E., Wickberg, B. & Leicht, C. L. (1961). J. Am. Chem. Soc. 83, 5037–5038.  CrossRef CAS Web of Science Google Scholar
First citationZenk, M. H. & Juenger, M. (2007). Phytochemistry, 68, 2757–2772.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZou, H.-B., Zhu, H.-J., Zhang, L., Yang, L.-Q., Yu, Y.-P. & Stöckigt, J. (2010). Chem. Asian J. 5, 2400–2404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZsadon, B., Barta, M., Dezseri, E. & Dancsi, L. (1979). Patent FR7929088.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1389-o1390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds