organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Methyl­benzo­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 January 2012; accepted 13 January 2012; online 18 January 2012)

In the title compound, C14H12N2O5S, the conformation between the N—H group and the ortho-nitro group in the sulfonyl benzene ring is syn and that between the C=O and meta-methyl groups in the benzoyl ring is anti. The mol­ecule is twisted at the S—N bond with a torsion angle of 64.3 (2)°. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 75.73 (7)° and that between the sulfonyl and benzoyl benzene rings is 89.5 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.

Related literature

For studies, including by our group, on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 61, 801-806.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]), on N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Suchetan et al. (2012[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o274.]), on N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O5S

  • Mr = 320.32

  • Orthorhombic, P b c a

  • a = 12.227 (1) Å

  • b = 12.854 (1) Å

  • c = 18.317 (2) Å

  • V = 2878.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.889, Tmax = 0.924

  • 7423 measured reflections

  • 2936 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.04

  • 2936 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.43 (2) 3.232 (3) 157 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999, 2003), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005); N-(substitutedbenzoyl)-arylsulfonamides (Suchetan et al., 2012); N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-methylbenzoyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig.1).

The conformation between the N—H and C=O bonds in the C—SO2—NH—C(O) segment is anti and the N—C bond in the segment has gauche torsion with respect to the SO bonds (Fig.1), similar to that observed in N-(2-chlorobenzoyl)- 2-nitrobenzenesulfonamide (II)(Suchetan et al., 2012). In (I), the conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn, similar to that observed in (II). Further, the conformation of the CO is anti to the meta-methyl group in the benzoyl ring, similar to that observed between the CO and the ortho-Cl atom in (II).

The molecule is twisted at the S—N bond with the torsional angle of 64.32 (20)°, compared to the value of -59.68 (17)° in (II).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 75.7 (1)°, compared to the value of 77.5 (1)° in (II). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 89.5 (1)°, compared to the value of 71.2 (1)° in (II).

In the crystal, the intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into dimeric chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies, including by our group, on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (1999, 2003), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005), on N-(substitutedbenzoyl)-arylsulfonamides, see: Suchetan et al. (2012), on N-chloroarylamides, see: Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of m-methylbenzoic acid (0.02 mole), 2-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(3-methylbenzoyl)-2-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(3-Methylbenzoyl)-2-nitrobenzenesulfonamide top
Crystal data top
C14H12N2O5SF(000) = 1328
Mr = 320.32Dx = 1.478 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2012 reflections
a = 12.227 (1) Åθ = 2.6–27.8°
b = 12.854 (1) ŵ = 0.25 mm1
c = 18.317 (2) ÅT = 293 K
V = 2878.8 (5) Å3Prism, colorless
Z = 80.48 × 0.44 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2936 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 158
Tmin = 0.889, Tmax = 0.924k = 816
7423 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0579P)2 + 1.5722P]
where P = (Fo2 + 2Fc2)/3
2936 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C14H12N2O5SV = 2878.8 (5) Å3
Mr = 320.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.227 (1) ŵ = 0.25 mm1
b = 12.854 (1) ÅT = 293 K
c = 18.317 (2) Å0.48 × 0.44 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2936 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2306 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.924Rint = 0.019
7423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
2936 reflectionsΔρmin = 0.33 e Å3
203 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01166 (16)0.27278 (16)0.42995 (11)0.0350 (5)
C20.08805 (18)0.29514 (18)0.48387 (12)0.0388 (5)
C30.1383 (2)0.3902 (2)0.48790 (14)0.0527 (6)
H30.18750.40440.52530.063*
C40.1152 (2)0.4641 (2)0.43633 (15)0.0570 (7)
H40.15010.52830.43810.068*
C50.0406 (2)0.4437 (2)0.38192 (15)0.0555 (7)
H50.02530.49420.34700.067*
C60.0114 (2)0.34880 (18)0.37891 (13)0.0458 (6)
H60.06240.33580.34230.055*
C70.04990 (18)0.07627 (17)0.31441 (11)0.0374 (5)
C80.12208 (17)0.00987 (17)0.29044 (11)0.0360 (5)
C90.12101 (18)0.10611 (17)0.32424 (11)0.0382 (5)
H90.07110.11830.36160.046*
C100.19217 (19)0.18475 (18)0.30397 (12)0.0410 (5)
C110.2658 (2)0.16427 (19)0.24824 (13)0.0478 (6)
H110.31600.21500.23450.057*
C120.2657 (2)0.0692 (2)0.21280 (13)0.0508 (6)
H120.31440.05750.17470.061*
C130.19427 (19)0.00806 (19)0.23328 (12)0.0439 (5)
H130.19430.07170.20910.053*
C140.1881 (2)0.2872 (2)0.34183 (15)0.0585 (7)
H14A0.13840.28320.38230.070*
H14B0.16360.33970.30830.070*
H14C0.25980.30480.35930.070*
N10.01587 (16)0.06904 (15)0.38733 (10)0.0396 (4)
H1N0.0492 (18)0.0295 (18)0.4169 (12)0.048*
N20.11943 (17)0.21727 (18)0.53943 (12)0.0520 (5)
O10.15719 (13)0.17155 (13)0.38424 (9)0.0509 (4)
O20.07425 (14)0.11701 (13)0.50054 (9)0.0467 (4)
O30.02247 (15)0.14867 (13)0.27686 (9)0.0522 (4)
O40.1626 (2)0.13838 (17)0.51818 (12)0.0779 (6)
O50.10064 (18)0.23912 (19)0.60303 (10)0.0743 (6)
S10.06292 (4)0.15463 (4)0.42754 (3)0.03641 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (10)0.0356 (11)0.0379 (10)0.0050 (9)0.0016 (8)0.0003 (9)
C20.0348 (11)0.0432 (12)0.0383 (11)0.0042 (10)0.0017 (9)0.0074 (10)
C30.0457 (14)0.0565 (15)0.0558 (14)0.0051 (12)0.0116 (11)0.0021 (12)
C40.0618 (17)0.0420 (14)0.0672 (16)0.0094 (13)0.0066 (13)0.0048 (12)
C50.0707 (17)0.0399 (13)0.0559 (14)0.0009 (13)0.0121 (13)0.0125 (12)
C60.0521 (14)0.0427 (13)0.0427 (12)0.0032 (11)0.0105 (10)0.0024 (10)
C70.0424 (12)0.0369 (11)0.0328 (10)0.0049 (10)0.0020 (9)0.0024 (9)
C80.0386 (11)0.0380 (11)0.0315 (10)0.0037 (10)0.0018 (8)0.0051 (9)
C90.0399 (12)0.0415 (12)0.0331 (10)0.0026 (10)0.0059 (9)0.0043 (9)
C100.0441 (12)0.0414 (12)0.0374 (11)0.0008 (10)0.0012 (9)0.0078 (10)
C110.0454 (13)0.0486 (13)0.0492 (13)0.0030 (11)0.0073 (10)0.0171 (11)
C120.0526 (15)0.0542 (15)0.0457 (12)0.0088 (12)0.0184 (11)0.0125 (12)
C130.0545 (14)0.0402 (12)0.0371 (11)0.0100 (11)0.0077 (10)0.0051 (10)
C140.0701 (17)0.0478 (14)0.0577 (15)0.0141 (13)0.0055 (13)0.0004 (13)
N10.0475 (11)0.0375 (10)0.0337 (9)0.0093 (9)0.0039 (8)0.0002 (8)
N20.0445 (12)0.0611 (14)0.0505 (12)0.0044 (11)0.0119 (9)0.0157 (11)
O10.0370 (9)0.0558 (10)0.0600 (10)0.0012 (8)0.0064 (8)0.0048 (8)
O20.0538 (10)0.0472 (9)0.0392 (8)0.0012 (8)0.0141 (7)0.0009 (7)
O30.0684 (11)0.0454 (9)0.0428 (9)0.0089 (9)0.0063 (8)0.0099 (8)
O40.0936 (16)0.0595 (13)0.0806 (14)0.0224 (12)0.0100 (12)0.0177 (11)
O50.0813 (14)0.0986 (17)0.0429 (10)0.0126 (13)0.0139 (10)0.0159 (11)
S10.0352 (3)0.0378 (3)0.0362 (3)0.0018 (2)0.0033 (2)0.0015 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C9—H90.9300
C1—C21.389 (3)C10—C111.386 (3)
C1—S11.772 (2)C10—C141.489 (4)
C2—C31.369 (3)C11—C121.384 (4)
C2—N21.478 (3)C11—H110.9300
C3—C41.369 (4)C12—C131.374 (3)
C3—H30.9300C12—H120.9300
C4—C51.376 (4)C13—H130.9300
C4—H40.9300C14—H14A0.9600
C5—C61.376 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300N1—S11.6374 (19)
C7—O31.205 (3)N1—H1N0.847 (16)
C7—N11.402 (3)N2—O41.208 (3)
C7—C81.482 (3)N2—O51.220 (3)
C8—C91.383 (3)O1—S11.4159 (17)
C8—C131.389 (3)O2—S11.4288 (16)
C9—C101.384 (3)
C6—C1—C2118.2 (2)C11—C10—C14122.2 (2)
C6—C1—S1118.96 (17)C12—C11—C10120.8 (2)
C2—C1—S1122.75 (16)C12—C11—H11119.6
C3—C2—C1121.6 (2)C10—C11—H11119.6
C3—C2—N2116.8 (2)C13—C12—C11120.7 (2)
C1—C2—N2121.6 (2)C13—C12—H12119.6
C4—C3—C2119.3 (2)C11—C12—H12119.6
C4—C3—H3120.3C12—C13—C8119.3 (2)
C2—C3—H3120.3C12—C13—H13120.3
C3—C4—C5120.3 (2)C8—C13—H13120.3
C3—C4—H4119.9C10—C14—H14A109.5
C5—C4—H4119.9C10—C14—H14B109.5
C4—C5—C6120.3 (2)H14A—C14—H14B109.5
C4—C5—H5119.9C10—C14—H14C109.5
C6—C5—H5119.9H14A—C14—H14C109.5
C5—C6—C1120.3 (2)H14B—C14—H14C109.5
C5—C6—H6119.8C7—N1—S1123.95 (16)
C1—C6—H6119.8C7—N1—H1N120.4 (17)
O3—C7—N1120.8 (2)S1—N1—H1N113.5 (17)
O3—C7—C8125.01 (19)O4—N2—O5125.7 (2)
N1—C7—C8114.15 (19)O4—N2—C2117.4 (2)
C9—C8—C13119.5 (2)O5—N2—C2116.9 (2)
C9—C8—C7121.99 (18)O1—S1—O2119.82 (11)
C13—C8—C7118.5 (2)O1—S1—N1109.29 (10)
C8—C9—C10121.8 (2)O2—S1—N1104.51 (10)
C8—C9—H9119.1O1—S1—C1107.53 (10)
C10—C9—H9119.1O2—S1—C1108.46 (10)
C9—C10—C11117.8 (2)N1—S1—C1106.52 (10)
C9—C10—C14120.0 (2)
C6—C1—C2—C31.2 (3)C14—C10—C11—C12178.3 (2)
S1—C1—C2—C3174.72 (19)C10—C11—C12—C131.7 (4)
C6—C1—C2—N2178.5 (2)C11—C12—C13—C80.3 (4)
S1—C1—C2—N25.6 (3)C9—C8—C13—C122.0 (3)
C1—C2—C3—C42.0 (4)C7—C8—C13—C12176.7 (2)
N2—C2—C3—C4177.7 (2)O3—C7—N1—S10.6 (3)
C2—C3—C4—C51.4 (4)C8—C7—N1—S1179.30 (15)
C3—C4—C5—C60.0 (4)C3—C2—N2—O4117.3 (3)
C4—C5—C6—C10.7 (4)C1—C2—N2—O462.4 (3)
C2—C1—C6—C50.1 (3)C3—C2—N2—O561.8 (3)
S1—C1—C6—C5176.2 (2)C1—C2—N2—O5118.5 (3)
O3—C7—C8—C9157.0 (2)C7—N1—S1—O151.6 (2)
N1—C7—C8—C924.3 (3)C7—N1—S1—O2179.02 (18)
O3—C7—C8—C1324.3 (3)C7—N1—S1—C164.3 (2)
N1—C7—C8—C13154.3 (2)C6—C1—S1—O116.5 (2)
C13—C8—C9—C101.7 (3)C2—C1—S1—O1159.39 (18)
C7—C8—C9—C10176.87 (19)C6—C1—S1—O2147.47 (18)
C8—C9—C10—C110.2 (3)C2—C1—S1—O228.4 (2)
C8—C9—C10—C14180.0 (2)C6—C1—S1—N1100.53 (19)
C9—C10—C11—C121.9 (3)C2—C1—S1—N183.54 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.43 (2)3.232 (3)157 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N2O5S
Mr320.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.227 (1), 12.854 (1), 18.317 (2)
V3)2878.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.44 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.889, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
7423, 2936, 2306
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.04
No. of reflections2936
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.847 (16)2.434 (19)3.232 (3)157 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 61, 801–806.  Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds