organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-(4-nitro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 14 March 2011; accepted 15 March 2011; online 19 March 2011)

In the title compound, C14H12N2O5S, the conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the S=O bonds. The mol­ecule is twisted at the S atom, the C—S(O2)—NH—C(O) torsion angle being 61.8 (5)°. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 86.8 (2)° and that between the sulfonyl and the benzoyl benzene rings is 83.8 (2)°. In the crystal, mol­ecules are linked into zigzag chains along the a axis via N—H⋯O hydrogen bonds.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]), on the structures of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]) and on the structures of N-(p-substituted-benzo­yl)-p-substituted-benzene­sulfon­amides, see: Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1997.], 2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o917.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O5S

  • Mr = 320.32

  • Monoclinic, P 21

  • a = 11.088 (2) Å

  • b = 5.3490 (7) Å

  • c = 12.344 (2) Å

  • β = 104.45 (2)°

  • V = 709.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.36 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.914, Tmax = 0.980

  • 2485 measured reflections

  • 1912 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.146

  • S = 1.22

  • 1912 reflections

  • 203 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 295 Friedel pairs

  • Flack parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (3) 2.12 (4) 2.992 (6) 174 (5)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the effect of substituents on the structures of this class of compounds (Gowda et al., 2000, 2007; Suchetan et al., 2010, 2011), the structure of 2-methyl-N-(4-nitrobenzoyl)-benzenesulfonamide (I) has been determined (Fig.1). The conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the SO bonds. Further, the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond, similar to those observed in 2-methyl-N-(4-chlorobenzoyl)-benzenesulfonamide (II) (Suchetan et al., 2010) and 4-Methyl-N-(4-nitrobenzoyl)- benzenesulfonamide (III) (Suchetan et al., 2011).

The molecules are twisted at the S atoms with the C—S(O2)—NH—C(O) torsional angle of 61.8 (5)°, compared to the values of -54.2 (2)° and 63.8 (2)°, in the two independent molecules of (II) and 58.7 (3)° in (III).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 86.8 (2)°, compared to the values of 85.0 (1)° (molecule 1) & 87.0 (1)° (molecule 2) in (II) and 81.5 (2)° in (III).

The dihedral angle between the sulfonyl and the benzoyl benzene rings is 83.8 (2)°, compared to the values of 89.4 (1)° (molecule 1) and 82.1 (1)° (molecule 2) in (II) and 89.8 (1)° in (III).

The packing of molecules in the crystal linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000). For the effect of substituents on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and for the effect of substituents on the structures of N-(p-substituted-benzoyl)-p-substituted-benzenesulfonamides, see: Suchetan et al. (2010, 2011).

Experimental top

The title compound was prepared by refluxing a mixture of 4-nitrobenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Rod like colorless single crystals of the title compound used in x-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Methyl-N-(4-nitrobenzoyl)benzenesulfonamide top
Crystal data top
C14H12N2O5SF(000) = 332
Mr = 320.32Dx = 1.501 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1591 reflections
a = 11.088 (2) Åθ = 2.9–28.0°
b = 5.3490 (7) ŵ = 0.26 mm1
c = 12.344 (2) ÅT = 293 K
β = 104.45 (2)°Rod, colorless
V = 709.0 (2) Å30.36 × 0.14 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1912 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1113
Tmin = 0.914, Tmax = 0.980k = 62
2485 measured reflectionsl = 155
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.1687P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
1912 reflectionsΔρmax = 0.40 e Å3
203 parametersΔρmin = 0.49 e Å3
2 restraintsAbsolute structure: Flack (1983), 295 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C14H12N2O5SV = 709.0 (2) Å3
Mr = 320.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.088 (2) ŵ = 0.26 mm1
b = 5.3490 (7) ÅT = 293 K
c = 12.344 (2) Å0.36 × 0.14 × 0.08 mm
β = 104.45 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1912 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1701 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.980Rint = 0.031
2485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146Δρmax = 0.40 e Å3
S = 1.22Δρmin = 0.49 e Å3
1912 reflectionsAbsolute structure: Flack (1983), 295 Friedel pairs
203 parametersAbsolute structure parameter: 0.2 (2)
2 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7626 (5)0.1060 (12)0.1331 (4)0.0342 (12)
C20.6994 (5)0.3107 (13)0.0729 (5)0.0423 (14)
C30.5918 (6)0.3851 (16)0.1032 (6)0.0584 (19)
H30.54540.51710.06490.070*
C40.5522 (6)0.2708 (18)0.1870 (6)0.064 (2)
H40.48190.33120.20660.076*
C50.6146 (6)0.0673 (17)0.2430 (6)0.062 (2)
H50.58520.01500.29770.075*
C60.7216 (5)0.0105 (17)0.2157 (4)0.0472 (14)
H60.76660.14400.25400.057*
C71.0346 (5)0.2574 (12)0.2879 (4)0.0366 (13)
C81.1292 (4)0.4580 (11)0.3348 (4)0.0328 (14)
C91.1242 (5)0.5551 (15)0.4365 (4)0.0476 (18)
H91.06670.49320.47320.057*
C101.2052 (6)0.7466 (14)0.4848 (5)0.0488 (16)
H101.20130.81800.55260.059*
C111.2906 (5)0.8261 (13)0.4292 (5)0.0409 (14)
C121.2986 (5)0.7304 (14)0.3293 (5)0.0464 (16)
H121.35740.79020.29360.056*
C131.2161 (5)0.5394 (15)0.2817 (4)0.0451 (17)
H131.22050.46810.21400.054*
C140.7364 (6)0.4421 (13)0.0192 (5)0.0554 (18)
H14A0.71560.34080.08550.067*
H14B0.82450.47210.00150.067*
H14C0.69290.59860.03350.067*
N11.0112 (4)0.2138 (9)0.1743 (3)0.0319 (10)
H1N1.031 (5)0.298 (11)0.121 (4)0.038*
N21.3751 (4)1.0337 (13)0.4783 (4)0.0491 (13)
O10.9359 (4)0.2274 (9)0.1691 (3)0.0492 (11)
O20.9059 (3)0.0189 (10)0.0029 (3)0.0428 (9)
O30.9818 (4)0.1447 (10)0.3468 (3)0.0539 (13)
O41.3758 (5)1.0989 (12)0.5732 (4)0.0753 (16)
O51.4394 (4)1.1259 (11)0.4219 (4)0.0690 (15)
S10.90691 (11)0.0026 (3)0.11283 (10)0.0351 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.039 (3)0.026 (2)0.002 (3)0.0066 (19)0.006 (2)
C20.039 (3)0.043 (4)0.040 (3)0.004 (3)0.000 (2)0.005 (3)
C30.037 (3)0.062 (5)0.068 (4)0.008 (3)0.003 (3)0.009 (4)
C40.044 (3)0.082 (6)0.068 (5)0.008 (4)0.021 (3)0.025 (5)
C50.051 (3)0.081 (7)0.059 (4)0.015 (4)0.021 (3)0.003 (4)
C60.042 (3)0.054 (4)0.044 (3)0.006 (4)0.007 (2)0.001 (4)
C70.031 (3)0.041 (4)0.036 (3)0.001 (3)0.005 (2)0.005 (3)
C80.027 (2)0.039 (4)0.031 (2)0.001 (2)0.0022 (18)0.005 (2)
C90.038 (3)0.068 (6)0.036 (3)0.006 (3)0.008 (2)0.002 (3)
C100.050 (3)0.053 (4)0.041 (3)0.001 (3)0.007 (3)0.011 (3)
C110.031 (3)0.044 (4)0.041 (3)0.004 (3)0.002 (2)0.004 (3)
C120.035 (3)0.061 (5)0.043 (3)0.010 (3)0.008 (2)0.000 (3)
C130.038 (3)0.065 (5)0.031 (2)0.008 (3)0.006 (2)0.005 (3)
C140.064 (4)0.044 (5)0.052 (3)0.007 (3)0.001 (3)0.005 (3)
N10.036 (2)0.032 (3)0.026 (2)0.004 (2)0.0047 (17)0.0006 (19)
N20.036 (2)0.046 (4)0.057 (3)0.003 (3)0.002 (2)0.006 (3)
O10.052 (2)0.039 (3)0.052 (2)0.007 (2)0.0060 (19)0.006 (2)
O20.0432 (19)0.047 (3)0.0359 (17)0.002 (2)0.0052 (14)0.006 (2)
O30.054 (2)0.066 (3)0.040 (2)0.015 (2)0.0095 (18)0.003 (2)
O40.083 (4)0.079 (4)0.059 (3)0.020 (3)0.010 (2)0.027 (3)
O50.053 (3)0.070 (4)0.083 (3)0.020 (3)0.015 (2)0.002 (3)
S10.0365 (6)0.0337 (7)0.0330 (6)0.0020 (7)0.0043 (4)0.0006 (7)
Geometric parameters (Å, º) top
C1—C61.366 (8)C9—H90.9300
C1—C21.408 (9)C10—C111.369 (9)
C1—S11.769 (5)C10—H100.9300
C2—C31.395 (9)C11—C121.359 (8)
C2—C141.479 (8)C11—N21.481 (9)
C3—C41.365 (10)C12—C131.399 (9)
C3—H30.9300C12—H120.9300
C4—C51.380 (12)C13—H130.9300
C4—H40.9300C14—H14A0.9600
C5—C61.377 (8)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300N1—S11.659 (5)
C7—O31.202 (6)N1—H1N0.87 (3)
C7—N11.381 (6)N2—O51.219 (7)
C7—C81.511 (8)N2—O41.220 (6)
C8—C131.366 (7)O1—S11.410 (5)
C8—C91.371 (7)O2—S11.428 (3)
C9—C101.395 (9)
C6—C1—C2122.3 (5)C9—C10—H10121.1
C6—C1—S1116.4 (5)C12—C11—C10123.3 (6)
C2—C1—S1121.1 (4)C12—C11—N2118.4 (5)
C3—C2—C1115.2 (6)C10—C11—N2118.3 (5)
C3—C2—C14119.4 (6)C11—C12—C13118.2 (6)
C1—C2—C14125.4 (5)C11—C12—H12120.9
C4—C3—C2122.3 (7)C13—C12—H12120.9
C4—C3—H3118.9C8—C13—C12119.8 (5)
C2—C3—H3118.9C8—C13—H13120.1
C3—C4—C5121.2 (7)C12—C13—H13120.1
C3—C4—H4119.4C2—C14—H14A109.5
C5—C4—H4119.4C2—C14—H14B109.5
C6—C5—C4118.0 (7)H14A—C14—H14B109.5
C6—C5—H5121.0C2—C14—H14C109.5
C4—C5—H5121.0H14A—C14—H14C109.5
C1—C6—C5120.9 (7)H14B—C14—H14C109.5
C1—C6—H6119.6C7—N1—S1120.8 (4)
C5—C6—H6119.6C7—N1—H1N132 (4)
O3—C7—N1122.2 (5)S1—N1—H1N106 (4)
O3—C7—C8121.4 (5)O5—N2—O4124.6 (6)
N1—C7—C8116.5 (4)O5—N2—C11118.0 (5)
C13—C8—C9120.9 (5)O4—N2—C11117.3 (5)
C13—C8—C7123.2 (5)O1—S1—O2119.3 (3)
C9—C8—C7115.9 (5)O1—S1—N1108.8 (3)
C8—C9—C10120.1 (5)O2—S1—N1104.3 (2)
C8—C9—H9120.0O1—S1—C1107.9 (3)
C10—C9—H9120.0O2—S1—C1109.9 (2)
C11—C10—C9117.8 (6)N1—S1—C1105.9 (3)
C11—C10—H10121.1
C6—C1—C2—C30.3 (8)C10—C11—C12—C130.6 (10)
S1—C1—C2—C3175.1 (5)N2—C11—C12—C13178.1 (5)
C6—C1—C2—C14178.4 (6)C9—C8—C13—C122.2 (9)
S1—C1—C2—C146.7 (8)C7—C8—C13—C12178.4 (6)
C1—C2—C3—C41.4 (10)C11—C12—C13—C81.2 (9)
C14—C2—C3—C4179.6 (6)O3—C7—N1—S10.5 (8)
C2—C3—C4—C52.8 (11)C8—C7—N1—S1178.6 (4)
C3—C4—C5—C63.0 (11)C12—C11—N2—O57.1 (8)
C2—C1—C6—C50.7 (9)C10—C11—N2—O5170.5 (6)
S1—C1—C6—C5175.7 (5)C12—C11—N2—O4172.3 (6)
C4—C5—C6—C11.9 (10)C10—C11—N2—O410.1 (9)
O3—C7—C8—C13160.5 (6)C7—N1—S1—O153.9 (5)
N1—C7—C8—C1320.4 (8)C7—N1—S1—O2177.8 (4)
O3—C7—C8—C918.9 (9)C7—N1—S1—C161.8 (5)
N1—C7—C8—C9160.3 (5)C6—C1—S1—O114.8 (5)
C13—C8—C9—C102.6 (9)C2—C1—S1—O1170.0 (4)
C7—C8—C9—C10178.0 (5)C6—C1—S1—O2146.4 (5)
C8—C9—C10—C112.0 (10)C2—C1—S1—O238.4 (6)
C9—C10—C11—C121.0 (10)C6—C1—S1—N1101.5 (5)
C9—C10—C11—N2178.5 (6)C2—C1—S1—N173.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.12 (4)2.992 (6)174 (5)
Symmetry code: (i) x+2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O5S
Mr320.32
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.088 (2), 5.3490 (7), 12.344 (2)
β (°) 104.45 (2)
V3)709.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.36 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.914, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
2485, 1912, 1701
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.146, 1.22
No. of reflections1912
No. of parameters203
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.49
Absolute structureFlack (1983), 295 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (3)2.12 (4)2.992 (6)174 (5)
Symmetry code: (i) x+2, y+1/2, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1997.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds