organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­methyl­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 April 2010; accepted 5 April 2010; online 14 April 2010)

In the crystal structure of the title compound, C16H19NO2S, the mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 66.5 (2)°. The dihedral angle between the sulfonyl and aniline benzene rings in the mol­ecule is 41.0 (1)°. The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.]); Nirmala et al. (2010[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2S

  • Mr = 289.38

  • Triclinic, [P \overline 1]

  • a = 8.225 (1) Å

  • b = 8.423 (1) Å

  • c = 10.992 (2) Å

  • α = 85.58 (2)°

  • β = 88.97 (2)°

  • γ = 84.43 (1)°

  • V = 755.62 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.91 mm−1

  • T = 299 K

  • 0.40 × 0.38 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.516, Tmax = 0.647

  • 2899 measured reflections

  • 2689 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.282

  • S = 1.36

  • 2689 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (2) 2.19 (2) 3.024 (4) 161 (3)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010), the structure of 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule in (I) is bent at the S atom with the C—SO2—NH—C torsion angle of 66.5 (2)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II) (Nirmala et al., 2010), 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV)(Gowda et al., 2009a).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 41.0 (1)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 82.1 (1)° in (III) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (IV),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of m-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like brown single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010), the structure of 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule in (I) is bent at the S atom with the C—SO2—NH—C torsion angle of 66.5 (2)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II) (Nirmala et al., 2010), 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV)(Gowda et al., 2009a).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 41.0 (1)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 82.1 (1)° in (III) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (IV),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I), with hydrogen bonding shown as dashed lines.
N-(2,4-Dimethylphenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C16H19NO2SZ = 2
Mr = 289.38F(000) = 308
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.225 (1) ÅCell parameters from 25 reflections
b = 8.423 (1) Åθ = 7.8–18.8°
c = 10.992 (2) ŵ = 1.91 mm1
α = 85.58 (2)°T = 299 K
β = 88.97 (2)°Prism, brown
γ = 84.43 (1)°0.40 × 0.38 × 0.25 mm
V = 755.62 (19) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2419 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 67.1°, θmin = 4.0°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.516, Tmax = 0.647l = 131
2899 measured reflections3 standard reflections every 120 min
2689 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.282H atoms treated by a mixture of independent and constrained refinement
S = 1.36 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.002
188 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
C16H19NO2Sγ = 84.43 (1)°
Mr = 289.38V = 755.62 (19) Å3
Triclinic, P1Z = 2
a = 8.225 (1) ÅCu Kα radiation
b = 8.423 (1) ŵ = 1.91 mm1
c = 10.992 (2) ÅT = 299 K
α = 85.58 (2)°0.40 × 0.38 × 0.25 mm
β = 88.97 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2419 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.516, Tmax = 0.6473 standard reflections every 120 min
2899 measured reflections intensity decay: 1.5%
2689 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.282H atoms treated by a mixture of independent and constrained refinement
S = 1.36Δρmax = 0.48 e Å3
2689 reflectionsΔρmin = 0.50 e Å3
188 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4299 (4)0.5647 (3)0.7203 (3)0.0402 (7)
C20.3552 (4)0.6498 (4)0.6195 (3)0.0452 (8)
C30.4587 (5)0.7247 (5)0.5349 (3)0.0558 (9)
H30.41250.78090.46580.067*
C40.6233 (5)0.7190 (5)0.5491 (3)0.0544 (9)
C50.6937 (5)0.6310 (5)0.6489 (3)0.0555 (9)
H50.80640.62300.65860.067*
C60.5975 (4)0.5549 (4)0.7343 (3)0.0482 (8)
H60.64550.49650.80190.058*
C70.1553 (3)0.7468 (3)0.9002 (2)0.0349 (7)
C80.2064 (4)0.8968 (3)0.8660 (3)0.0376 (7)
C90.0873 (4)1.0200 (4)0.8323 (3)0.0440 (7)
H90.11861.12170.81090.053*
C100.0762 (4)0.9960 (4)0.8295 (3)0.0466 (8)
C110.1231 (4)0.8477 (4)0.8650 (3)0.0507 (8)
H110.23320.83100.86490.061*
C120.0100 (4)0.7242 (4)0.9006 (3)0.0462 (8)
H120.04360.62430.92530.055*
C130.1763 (5)0.6667 (6)0.5928 (4)0.0643 (10)
H13A0.11630.70440.66230.077*
H13B0.14300.56480.57550.077*
H13C0.15490.74190.52350.077*
C140.7272 (7)0.8078 (6)0.4575 (4)0.0820 (14)
H14A0.65870.86460.39560.098*
H14B0.80480.73290.42060.098*
H14C0.78430.88230.49810.098*
C150.3816 (4)0.9290 (4)0.8660 (3)0.0517 (9)
H15A0.43330.89780.79130.062*
H15B0.43560.86890.93390.062*
H15C0.38871.04110.87250.062*
C160.1989 (5)1.1362 (5)0.7893 (4)0.0717 (12)
H16A0.14201.22190.75190.086*
H16B0.25951.17230.85910.086*
H16C0.27261.10290.73170.086*
N10.2700 (3)0.6121 (3)0.9369 (2)0.0397 (7)
H1N0.363 (3)0.632 (4)0.966 (3)0.048*
O10.4329 (3)0.3611 (3)0.9106 (2)0.0548 (7)
O20.1751 (3)0.4227 (3)0.7989 (2)0.0556 (7)
S10.32074 (8)0.47490 (7)0.84308 (6)0.0403 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (16)0.0342 (15)0.0406 (15)0.0018 (12)0.0016 (12)0.0038 (12)
C20.0482 (17)0.0451 (17)0.0413 (16)0.0014 (13)0.0062 (13)0.0042 (13)
C30.068 (2)0.059 (2)0.0377 (16)0.0034 (17)0.0005 (15)0.0034 (14)
C40.059 (2)0.059 (2)0.0459 (17)0.0082 (16)0.0117 (15)0.0051 (15)
C50.0485 (18)0.063 (2)0.055 (2)0.0048 (16)0.0004 (15)0.0073 (17)
C60.0426 (16)0.054 (2)0.0461 (17)0.0023 (13)0.0020 (13)0.0024 (14)
C70.0395 (14)0.0278 (13)0.0361 (14)0.0007 (10)0.0008 (11)0.0006 (10)
C80.0445 (16)0.0305 (14)0.0379 (14)0.0048 (11)0.0019 (11)0.0021 (11)
C90.0565 (18)0.0344 (15)0.0394 (15)0.0006 (13)0.0021 (13)0.0030 (12)
C100.0490 (17)0.0496 (18)0.0382 (15)0.0114 (14)0.0028 (13)0.0039 (13)
C110.0373 (15)0.060 (2)0.0546 (19)0.0009 (14)0.0004 (13)0.0073 (15)
C120.0450 (17)0.0396 (16)0.0548 (18)0.0091 (13)0.0068 (14)0.0035 (13)
C130.051 (2)0.083 (3)0.057 (2)0.0006 (18)0.0143 (16)0.0042 (19)
C140.093 (3)0.085 (3)0.068 (3)0.021 (3)0.028 (2)0.003 (2)
C150.0484 (18)0.0418 (18)0.066 (2)0.0129 (14)0.0079 (15)0.0005 (15)
C160.066 (2)0.071 (3)0.069 (2)0.027 (2)0.0035 (19)0.011 (2)
N10.0447 (14)0.0315 (13)0.0412 (13)0.0011 (11)0.0033 (10)0.0035 (10)
O10.0646 (15)0.0334 (12)0.0617 (15)0.0110 (11)0.0033 (12)0.0080 (10)
O20.0544 (14)0.0451 (13)0.0700 (16)0.0142 (11)0.0020 (11)0.0086 (11)
S10.0460 (6)0.0271 (6)0.0469 (6)0.0010 (3)0.0018 (4)0.0014 (3)
Geometric parameters (Å, º) top
C1—C61.384 (4)C10—C161.520 (4)
C1—C21.391 (4)C11—C121.365 (5)
C1—S11.769 (3)C11—H110.9300
C2—C31.404 (5)C12—H120.9300
C2—C131.497 (5)C13—H13A0.9600
C3—C41.362 (6)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.380 (5)C14—H14A0.9600
C4—C141.510 (5)C14—H14B0.9600
C5—C61.378 (5)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C121.390 (4)C15—H15C0.9600
C7—C81.392 (4)C16—H16A0.9600
C7—N11.441 (3)C16—H16B0.9600
C8—C91.389 (4)C16—H16C0.9600
C8—C151.492 (4)N1—S11.627 (3)
C9—C101.380 (5)N1—H1N0.869 (19)
C9—H90.9300O1—S11.436 (2)
C10—C111.369 (5)O2—S11.421 (3)
C6—C1—C2121.0 (3)C7—C12—H12119.8
C6—C1—S1115.3 (2)C2—C13—H13A109.5
C2—C1—S1123.6 (2)C2—C13—H13B109.5
C1—C2—C3116.4 (3)H13A—C13—H13B109.5
C1—C2—C13126.0 (3)C2—C13—H13C109.5
C3—C2—C13117.6 (3)H13A—C13—H13C109.5
C4—C3—C2123.2 (3)H13B—C13—H13C109.5
C4—C3—H3118.4C4—C14—H14A109.5
C2—C3—H3118.4C4—C14—H14B109.5
C3—C4—C5118.8 (3)H14A—C14—H14B109.5
C3—C4—C14120.7 (4)C4—C14—H14C109.5
C5—C4—C14120.5 (4)H14A—C14—H14C109.5
C6—C5—C4120.2 (3)H14B—C14—H14C109.5
C6—C5—H5119.9C8—C15—H15A109.5
C4—C5—H5119.9C8—C15—H15B109.5
C5—C6—C1120.4 (3)H15A—C15—H15B109.5
C5—C6—H6119.8C8—C15—H15C109.5
C1—C6—H6119.8H15A—C15—H15C109.5
C12—C7—C8120.2 (3)H15B—C15—H15C109.5
C12—C7—N1118.3 (3)C10—C16—H16A109.5
C8—C7—N1121.5 (3)C10—C16—H16B109.5
C9—C8—C7117.7 (3)H16A—C16—H16B109.5
C9—C8—C15119.7 (3)C10—C16—H16C109.5
C7—C8—C15122.6 (3)H16A—C16—H16C109.5
C10—C9—C8122.0 (3)H16B—C16—H16C109.5
C10—C9—H9119.0C7—N1—S1120.14 (19)
C8—C9—H9119.0C7—N1—H1N118 (3)
C11—C10—C9119.0 (3)S1—N1—H1N103 (2)
C11—C10—C16122.1 (3)O2—S1—O1118.85 (15)
C9—C10—C16118.9 (3)O2—S1—N1108.21 (14)
C12—C11—C10120.7 (3)O1—S1—N1104.49 (13)
C12—C11—H11119.6O2—S1—C1109.49 (15)
C10—C11—H11119.6O1—S1—C1107.90 (14)
C11—C12—C7120.4 (3)N1—S1—C1107.29 (13)
C11—C12—H12119.8
C6—C1—C2—C30.4 (5)C8—C9—C10—C112.3 (5)
S1—C1—C2—C3174.9 (2)C8—C9—C10—C16178.9 (3)
C6—C1—C2—C13178.8 (3)C9—C10—C11—C121.2 (5)
S1—C1—C2—C135.9 (5)C16—C10—C11—C12180.0 (3)
C1—C2—C3—C41.1 (5)C10—C11—C12—C70.6 (5)
C13—C2—C3—C4179.6 (4)C8—C7—C12—C111.5 (5)
C2—C3—C4—C52.4 (6)N1—C7—C12—C11179.1 (3)
C2—C3—C4—C14177.4 (3)C12—C7—N1—S177.6 (3)
C3—C4—C5—C62.1 (6)C8—C7—N1—S1103.0 (3)
C14—C4—C5—C6177.7 (4)C7—N1—S1—O251.5 (3)
C4—C5—C6—C10.6 (5)C7—N1—S1—O1179.1 (2)
C2—C1—C6—C50.7 (5)C7—N1—S1—C166.5 (2)
S1—C1—C6—C5175.0 (2)C6—C1—S1—O2151.7 (3)
C12—C7—C8—C90.4 (4)C2—C1—S1—O232.7 (3)
N1—C7—C8—C9179.8 (2)C6—C1—S1—O121.0 (3)
C12—C7—C8—C15178.9 (3)C2—C1—S1—O1163.4 (3)
N1—C7—C8—C150.6 (4)C6—C1—S1—N191.0 (3)
C7—C8—C9—C101.5 (4)C2—C1—S1—N184.5 (3)
C15—C8—C9—C10179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.19 (2)3.024 (4)161 (3)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H19NO2S
Mr289.38
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.225 (1), 8.423 (1), 10.992 (2)
α, β, γ (°)85.58 (2), 88.97 (2), 84.43 (1)
V3)755.62 (19)
Z2
Radiation typeCu Kα
µ (mm1)1.91
Crystal size (mm)0.40 × 0.38 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.516, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
2899, 2689, 2419
Rint0.026
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.282, 1.36
No. of reflections2689
No. of parameters188
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.50

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.869 (19)2.19 (2)3.024 (4)161 (3)
Symmetry code: (i) x+1, y+1, z+2.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds