organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-phenyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 April 2009; accepted 30 April 2009; online 7 May 2009)

In the title compound, C13H13NO2S, the dihedral angle between the aromatic rings is 68.4 (1)°. In the crystal, the molecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds. The unit cell of this compound was reported previously [Oh et al. (1985[Oh, I.-K., Kim, C.-J., Suh, I.-H. & Cho, S.-I. (1985). Chung. Kwa. Yong. (Chung. J. Sci.), 12, 67.]). Chung. Kwa. Yong. (Chung. J. Sci.), 12, 67] but no atomic coordinates were established in the earlier study.

Related literature

For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.]a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.]); Gowda, Foro, Nirmala, Terao & Fuess (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2S

  • Mr = 247.30

  • Monoclinic, P 21 /c

  • a = 8.770 (2) Å

  • b = 9.768 (2) Å

  • c = 16.234 (5) Å

  • β = 113.200 (2)°

  • V = 1278.2 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.17 mm−1

  • T = 299 K

  • 0.55 × 0.50 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.336, Tmax = 0.420

  • 3091 measured reflections

  • 2278 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.096

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.217

  • S = 1.10

  • 2278 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.77 (4) 2.17 (5) 2.932 (4) 172 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of substituent on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009a, b, c), in the present work, the structure of 4-methyl-N-(phenyl)- benzenesulfonamide (I) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment of the structure are "trans" and "gauche" with respect to the SO bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -51.6 (3)°. The two benzene rings in (I) are tilted relative to each other by 68.4 (1)°. The other bond parameters in (I) are similar to those observed in 2,4-dimethyl-N-(phenyl)-benzenesulfonamide (Gowda et al., 2009 a), 4-chloro-2-methyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2009 b), 4-methyl-N-(3,4-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009 c)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into column like chains in the direction of a- axis (Fig. 2).

Related literature top

For background literature, see: Gelbrich et al. (2007); Gowda et al. (2005, 2009a,b); Gowda et al. (2009); Perlovich et al. (2006).

Experimental top

The purity of the commercial sample was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The N-bound H atom was located in difference map and its positional parameters were refined freely [N—H = 0.77 (4) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å] with Uiso(H) = 1.2 Ueq(N)

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Methyl-N-phenylbenzenesulfonamide top
Crystal data top
C13H13NO2SF(000) = 520
Mr = 247.30Dx = 1.285 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.770 (2) Åθ = 5.4–20.7°
b = 9.768 (2) ŵ = 2.17 mm1
c = 16.234 (5) ÅT = 299 K
β = 113.200 (2)°Prism, colourless
V = 1278.2 (6) Å30.55 × 0.50 × 0.40 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
Graphite monochromatorθmax = 66.9°, θmin = 5.4°
ω/2θ scansh = 310
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.336, Tmax = 0.420l = 1919
3091 measured reflections3 standard reflections every 120 min
2278 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.1256P)2 + 0.4489P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.023
2278 reflectionsΔρmax = 0.47 e Å3
159 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (5)
Crystal data top
C13H13NO2SV = 1278.2 (6) Å3
Mr = 247.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.770 (2) ŵ = 2.17 mm1
b = 9.768 (2) ÅT = 299 K
c = 16.234 (5) Å0.55 × 0.50 × 0.40 mm
β = 113.200 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2041 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.096
Tmin = 0.336, Tmax = 0.4203 standard reflections every 120 min
3091 measured reflections intensity decay: 2.0%
2278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.47 e Å3
2278 reflectionsΔρmin = 0.50 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3623 (4)0.2024 (3)0.4713 (2)0.0641 (7)
C20.2930 (5)0.0780 (4)0.4369 (2)0.0810 (9)
H20.27680.05350.37870.097*
C30.2480 (5)0.0098 (4)0.4897 (3)0.0929 (11)
H30.20370.09490.46700.112*
C40.2669 (4)0.0254 (4)0.5752 (3)0.0866 (11)
C50.3360 (5)0.1527 (5)0.6073 (3)0.0881 (11)
H50.34950.17900.66480.106*
C60.3838 (4)0.2390 (4)0.5571 (2)0.0799 (9)
H60.43130.32300.58040.096*
C70.1172 (4)0.4284 (3)0.3472 (2)0.0708 (8)
C80.0374 (5)0.3408 (4)0.2771 (3)0.0855 (10)
H80.09720.28920.25190.103*
C90.1321 (5)0.3311 (5)0.2450 (3)0.0982 (13)
H90.18670.27120.19810.118*
C100.2223 (5)0.4065 (6)0.2800 (4)0.1095 (16)
H100.33720.39870.25700.131*
C110.1428 (6)0.4932 (6)0.3488 (4)0.1133 (16)
H110.20420.54570.37250.136*
C120.0292 (5)0.5048 (4)0.3844 (3)0.0899 (11)
H120.08330.56310.43240.108*
C130.2197 (7)0.0689 (6)0.6336 (4)0.1236 (18)
H13A0.18240.15440.60320.148*
H13B0.13220.02830.64680.148*
H13C0.31420.08450.68840.148*
N10.2939 (3)0.4457 (3)0.3838 (2)0.0762 (8)
H1N0.318 (5)0.497 (5)0.423 (3)0.091*
O10.5798 (3)0.3739 (3)0.45932 (19)0.0863 (8)
O20.4014 (3)0.2496 (3)0.32444 (16)0.0858 (8)
S10.42133 (9)0.31592 (8)0.40573 (5)0.0689 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0670 (15)0.0712 (17)0.0583 (16)0.0062 (12)0.0292 (13)0.0007 (13)
C20.104 (2)0.077 (2)0.071 (2)0.0127 (17)0.0435 (18)0.0128 (16)
C30.111 (3)0.077 (2)0.103 (3)0.0077 (19)0.055 (2)0.001 (2)
C40.091 (2)0.095 (2)0.091 (2)0.029 (2)0.054 (2)0.029 (2)
C50.103 (2)0.106 (3)0.066 (2)0.017 (2)0.0442 (18)0.0030 (19)
C60.095 (2)0.086 (2)0.0664 (19)0.0000 (17)0.0399 (17)0.0132 (16)
C70.0718 (17)0.0718 (18)0.0711 (18)0.0004 (13)0.0305 (14)0.0198 (14)
C80.089 (2)0.091 (2)0.076 (2)0.0102 (18)0.0330 (18)0.0057 (18)
C90.084 (2)0.106 (3)0.090 (3)0.013 (2)0.019 (2)0.019 (2)
C100.079 (2)0.121 (4)0.114 (4)0.003 (2)0.023 (2)0.038 (3)
C110.094 (3)0.127 (4)0.128 (4)0.030 (3)0.054 (3)0.028 (3)
C120.090 (2)0.088 (2)0.095 (3)0.0093 (18)0.0404 (19)0.008 (2)
C130.143 (4)0.120 (4)0.140 (4)0.033 (3)0.090 (3)0.052 (3)
N10.0754 (16)0.0734 (17)0.0824 (19)0.0075 (12)0.0341 (14)0.0006 (13)
O10.0727 (13)0.0901 (16)0.1026 (18)0.0101 (11)0.0414 (12)0.0152 (14)
O20.1054 (17)0.0989 (18)0.0709 (14)0.0013 (14)0.0541 (13)0.0068 (12)
S10.0721 (6)0.0749 (6)0.0691 (6)0.0036 (3)0.0379 (4)0.0048 (3)
Geometric parameters (Å, º) top
C1—C21.374 (5)C8—H80.9300
C1—C61.378 (4)C9—C101.358 (7)
C1—S11.750 (3)C9—H90.9300
C2—C31.375 (5)C10—C111.355 (8)
C2—H20.9300C10—H100.9300
C3—C41.375 (6)C11—C121.391 (6)
C3—H30.9300C11—H110.9300
C4—C51.392 (6)C12—H120.9300
C4—C131.492 (5)C13—H13A0.9600
C5—C61.349 (5)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.633 (3)
C7—C121.373 (5)N1—H1N0.77 (4)
C7—C81.375 (5)O1—S11.434 (2)
C7—N11.434 (4)O2—S11.418 (2)
C8—C91.371 (5)
C2—C1—C6120.1 (3)C8—C9—H9119.1
C2—C1—S1120.2 (2)C11—C10—C9119.2 (4)
C6—C1—S1119.7 (3)C11—C10—H10120.4
C1—C2—C3119.2 (3)C9—C10—H10120.4
C1—C2—H2120.4C10—C11—C12121.0 (5)
C3—C2—H2120.4C10—C11—H11119.5
C2—C3—C4121.5 (4)C12—C11—H11119.5
C2—C3—H3119.2C7—C12—C11118.6 (4)
C4—C3—H3119.2C7—C12—H12120.7
C3—C4—C5117.6 (3)C11—C12—H12120.7
C3—C4—C13122.3 (5)C4—C13—H13A109.5
C5—C4—C13120.1 (4)C4—C13—H13B109.5
C6—C5—C4121.7 (3)H13A—C13—H13B109.5
C6—C5—H5119.2C4—C13—H13C109.5
C4—C5—H5119.2H13A—C13—H13C109.5
C5—C6—C1119.9 (4)H13B—C13—H13C109.5
C5—C6—H6120.1C7—N1—S1122.3 (2)
C1—C6—H6120.1C7—N1—H1N109 (3)
C12—C7—C8120.7 (3)S1—N1—H1N113 (3)
C12—C7—N1117.2 (3)O2—S1—O1118.69 (15)
C8—C7—N1122.0 (3)O2—S1—N1109.20 (17)
C9—C8—C7118.7 (4)O1—S1—N1104.00 (16)
C9—C8—H8120.7O2—S1—C1108.57 (15)
C7—C8—H8120.7O1—S1—C1109.23 (16)
C10—C9—C8121.8 (5)N1—S1—C1106.47 (14)
C10—C9—H9119.1
C6—C1—C2—C30.9 (5)C8—C7—C12—C110.9 (6)
S1—C1—C2—C3179.8 (3)N1—C7—C12—C11178.3 (4)
C1—C2—C3—C41.6 (6)C10—C11—C12—C71.3 (7)
C2—C3—C4—C51.0 (6)C12—C7—N1—S1135.5 (3)
C2—C3—C4—C13179.6 (4)C8—C7—N1—S145.3 (4)
C3—C4—C5—C60.3 (5)C7—N1—S1—O265.5 (3)
C13—C4—C5—C6178.3 (4)C7—N1—S1—O1166.9 (3)
C4—C5—C6—C11.0 (6)C7—N1—S1—C151.6 (3)
C2—C1—C6—C50.3 (5)C2—C1—S1—O26.3 (3)
S1—C1—C6—C5178.9 (3)C6—C1—S1—O2174.5 (2)
C12—C7—C8—C90.1 (5)C2—C1—S1—O1137.1 (3)
N1—C7—C8—C9179.2 (3)C6—C1—S1—O143.7 (3)
C7—C8—C9—C100.7 (6)C2—C1—S1—N1111.2 (3)
C8—C9—C10—C110.4 (7)C6—C1—S1—N168.0 (3)
C9—C10—C11—C120.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.77 (4)2.17 (5)2.932 (4)172 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO2S
Mr247.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.770 (2), 9.768 (2), 16.234 (5)
β (°) 113.200 (2)
V3)1278.2 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.17
Crystal size (mm)0.55 × 0.50 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.336, 0.420
No. of measured, independent and
observed [I > 2σ(I)] reflections
3091, 2278, 2041
Rint0.096
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.217, 1.10
No. of reflections2278
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.50

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.77 (4)2.17 (5)2.932 (4)172 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOh, I.-K., Kim, C.-J., Suh, I.-H. & Cho, S.-I. (1985). Chung. Kwa. Yong. (Chung. J. Sci.), 12, 67.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds