organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-5,6-Di­phenyl­perhydro­pyran-2,4-dione

aInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil
*Correspondence e-mail: cas@qui.ufal.br

(Received 21 November 2008; accepted 2 January 2009; online 8 January 2009)

In the title compound, C17H14O3, the pyran ring adopts a boat conformation and the dihedral angle between the aromatic ring planes is 59.1 (1)°. In the crystal structure inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules.

Related literature

For general background, see: Yen & Chen (1995[Yen, G. C. & Chen, H. Y. J. (1995). Agric. Food Chem. 43, 27-32.]); Soler-Rivas et al. (2000[Soler-Rivas, C., Espin, J. C. & Withhers, H. J. (2000). Phytochem. Anal. 11, 330-338.]). For related structures and biological activity, see: Brand-William et al. (1995[Brand-William, W., Cuvelier, M. E. & Berset, C. (1995). Food Sci. Technol. 28, 25-30.]); Sánchez-Moreno et al. (1998[Sánchez-Moreno, C., Larrauri, J. A. & Saura-Calixto, F. J. (1998). Sci. Food. Agric. 76, 270-276.]); Souza et al. (2004[Souza, L. C., Araújo, S. M. S. & Imbroisi, D. O. (2004). Bioorg. Med. Chem. Lett. 14, 5859-5861.]). For the synthesis, see: Souza (2008[Souza, L. C. (2008). PhD thesis, Instituto de Química e Biotecnologia, University of Alagoas, Brazil.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O3

  • Mr = 266.28

  • Monoclinic, P 21 /c

  • a = 8.9940 (2) Å

  • b = 8.2310 (4) Å

  • c = 18.9040 (8) Å

  • β = 101.412 (2)°

  • V = 1371.79 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5298 measured reflections

  • 3113 independent reflections

  • 2459 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.05

  • 3113 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.98 2.44 3.380 (2) 161
C17—H17⋯O3ii 0.93 2.46 3.351 (3) 160
C3—H3BCg1i 0.97 2.97 3.681 (2) 131
C5—H5⋯Cg2iii 0.98 2.96 3.830 (2) 149
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 and Cg2 are the centroids of the C7–C12 and C13–C18 rings, respectively.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326, New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326, New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The free radicals generated in bioorganic redoxi processes induce oxidative damage in various components of the cells (e.g., lipids, proteins and nucleic acids) and their play a significant role in the development of life-limiting chronic diseases such as cancer, hypertension, arteriosclerosis, rheumatism, cataracts and other (Yen & Chen, 1995; Soler-Rivas et al.,2000). The dihydropyran-2,4-diones exhibit structural features present bin many biologically active natural products possessing important pharmacological activities (Brand-William et al.,1995; Sánchez-Moreno et al.,1998). As part of our continuing studies aimed at ascertaining the biological activity of this class, the title compound was synthetized (Souza, 2008) and its antioxidant activity analyzed in vitro, by measuring the decrease in absorbance at 515 nm that occurred when the 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) was reduced by the antioxidant. The spectrophotometric assay was used to determine the radical scavenging activity (Souza et al.,2004).

The ORTEP-3 (Farrugia, 1997) representation of the title compound (5,6-DPDP) is showing in (Fig. 1). Bond lengths and angles are in good agreement with the expected values reported in the literature (Allen et al., 1987). The pirane ring adopts a boat conformation and the calculated puckering parameters are: q2 = 0.624 (1) Å, q3 = 0.121 (1) Å, QT = 0.636 (1) Å, θ = 79.0 (1)° and ϕ = 287.5 (1)° (Cremer & Pople, 1975). The dihedral angle between planes passing through atoms C7—C12 and C13—C18 of the aromatic rings is 59.1 (1) °. In the crystal packing, molecules interact through two intermolecular C–H···O hydrogen bonds and two C—H···.π interactions, Fig. 2 and Table 1.

Related literature top

For general background, see: Yen & Chen (1995); Soler-Rivas et al. (2000). For related structures and biological activity, see: Brand-William et al. (1995); Sánchez-Moreno et al. (1998); Souza et al. (2004). For the synthesis, see: Souza (2008). For geometric analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The trans-5, 6-diphenyltetradehydropyran-2,4-dione has showed similar antioxidant activity at the positive control, the synthetic antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) used as food conserving. The reduction percentage after 60 minutes to a solution of 20 nM of sample were 88% to 5,6-DPDP and 82% to BHT (Souza, 2008).The 5,6-DPDP was synthesized in one pot by preparation of the dianion of the ethyl 3-oxo-4-phenylbutanoate (NaH, n-butillithium, THF, -10° C), and alkylation reaction with benzaldehyde followed by ester hydrolysis (NaOH, H2O, 12 h, RT) and lactonization in acidic medium (HCl, H2O, 2 h, 0°C). The compound was purified by silica gel chromatography and the crystals for x-ray diffraction studies were grown by slow evaporation from a CHCl3 solution.

Refinement top

H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with C—H = [0.93 - 0.98] Å and anisotropic displacement parameter amounting to 1.5 (for Methyl-H atoms) and 1.2 (for the other H atoms) times the value of the equivalent isotropic displacement parameter of the which they are attached.The maximum and minimum residual electron density peaks were located 0.73 and 0.74 Å, from the C5 and H15 atoms respectively.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of C17H14O3, showing the atom labelling with 50% probability displacement.
[Figure 2] Fig. 2. Hydrogen interactions.
trans-5,6-Diphenylperhydropyran-2,4-dione top
Crystal data top
C17H14O3F(000) = 560
Mr = 266.28Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2880 reflections
a = 8.9940 (2) Åθ = 1.0–27.5°
b = 8.2310 (4) ŵ = 0.09 mm1
c = 18.9040 (8) ÅT = 295 K
β = 101.412 (2)°Prism, yellow
V = 1371.79 (9) Å30.30 × 0.30 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2459 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.017
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 1111
CCD rotation images, thick slices scansk = 910
5298 measured reflectionsl = 2424
3113 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3831P]
where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H14O3V = 1371.79 (9) Å3
Mr = 266.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9940 (2) ŵ = 0.09 mm1
b = 8.2310 (4) ÅT = 295 K
c = 18.9040 (8) Å0.30 × 0.30 × 0.18 mm
β = 101.412 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2459 reflections with I > 2σ(I)
5298 measured reflectionsRint = 0.017
3113 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3113 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.69397 (19)0.0595 (2)0.63794 (8)0.0521 (4)
C30.84834 (19)0.0134 (2)0.65634 (8)0.0560 (4)
H3A0.87170.06200.61310.067*
H3B0.92110.07300.67120.067*
C40.86937 (16)0.1403 (2)0.71484 (8)0.0476 (4)
C50.76480 (14)0.12492 (17)0.76852 (7)0.0383 (3)
H50.67710.19530.75150.046*
C60.70604 (15)0.05049 (17)0.76642 (7)0.0385 (3)
H60.79250.12460.77900.046*
C70.83633 (14)0.17992 (16)0.84390 (7)0.0385 (3)
C80.76586 (17)0.2946 (2)0.87924 (9)0.0520 (4)
H80.67450.34020.85620.062*
C90.8303 (2)0.3421 (2)0.94867 (10)0.0652 (5)
H90.78170.41890.97220.078*
C100.9657 (2)0.2763 (2)0.98306 (9)0.0631 (5)
H101.00940.30971.02950.076*
C111.03660 (18)0.1616 (2)0.94891 (9)0.0565 (4)
H111.12810.11660.97230.068*
C120.97190 (16)0.11267 (19)0.87959 (8)0.0477 (4)
H121.01980.03400.85670.057*
C130.59831 (15)0.07985 (17)0.81644 (7)0.0412 (3)
C140.46566 (19)0.0086 (2)0.80971 (12)0.0644 (5)
H140.44010.08340.77240.077*
C150.3711 (3)0.0137 (3)0.85803 (16)0.0935 (8)
H150.28270.04730.85350.112*
C160.4061 (3)0.1242 (4)0.91217 (15)0.1019 (10)
H160.34200.13780.94470.122*
C170.5352 (3)0.2153 (4)0.91893 (11)0.0967 (9)
H170.55830.29150.95580.116*
C180.6323 (2)0.1938 (2)0.87041 (9)0.0643 (5)
H180.71970.25640.87460.077*
O10.62369 (12)0.08786 (13)0.69346 (5)0.0487 (3)
O20.96257 (15)0.24604 (19)0.71798 (7)0.0767 (4)
O30.63076 (17)0.0935 (2)0.57795 (6)0.0792 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0651 (10)0.0484 (9)0.0431 (8)0.0015 (7)0.0113 (7)0.0051 (7)
C30.0617 (9)0.0655 (10)0.0462 (8)0.0027 (8)0.0239 (7)0.0015 (7)
C40.0423 (7)0.0550 (9)0.0467 (8)0.0069 (7)0.0113 (6)0.0061 (7)
C50.0347 (6)0.0387 (7)0.0422 (7)0.0028 (5)0.0091 (5)0.0005 (6)
C60.0368 (6)0.0390 (7)0.0393 (7)0.0005 (5)0.0065 (5)0.0010 (5)
C70.0355 (6)0.0375 (7)0.0436 (7)0.0054 (5)0.0105 (5)0.0013 (6)
C80.0456 (8)0.0520 (9)0.0578 (9)0.0054 (7)0.0089 (7)0.0089 (7)
C90.0683 (11)0.0677 (11)0.0606 (10)0.0065 (9)0.0158 (8)0.0212 (9)
C100.0674 (11)0.0741 (12)0.0456 (9)0.0053 (9)0.0054 (7)0.0149 (8)
C110.0462 (8)0.0640 (10)0.0558 (9)0.0005 (7)0.0015 (7)0.0007 (8)
C120.0400 (7)0.0506 (8)0.0524 (8)0.0012 (6)0.0091 (6)0.0066 (7)
C130.0426 (7)0.0381 (7)0.0435 (7)0.0100 (5)0.0100 (6)0.0046 (6)
C140.0544 (9)0.0477 (9)0.0998 (14)0.0010 (7)0.0365 (9)0.0020 (9)
C150.0823 (14)0.0728 (14)0.147 (2)0.0182 (11)0.0759 (15)0.0221 (15)
C160.113 (2)0.118 (2)0.0933 (17)0.0592 (18)0.0672 (16)0.0339 (16)
C170.1149 (19)0.122 (2)0.0517 (11)0.0542 (18)0.0137 (12)0.0191 (12)
C180.0620 (10)0.0742 (12)0.0529 (9)0.0146 (9)0.0023 (8)0.0170 (9)
O10.0522 (6)0.0502 (6)0.0433 (6)0.0104 (5)0.0084 (4)0.0078 (5)
O20.0722 (8)0.0922 (10)0.0712 (8)0.0402 (7)0.0275 (6)0.0053 (7)
O30.0974 (10)0.0914 (10)0.0454 (7)0.0122 (8)0.0061 (6)0.0174 (7)
Geometric parameters (Å, º) top
C2—O31.1971 (19)C9—C101.374 (3)
C2—O11.3484 (19)C9—H90.9300
C2—C31.489 (2)C10—C111.370 (2)
C3—C41.506 (2)C10—H100.9300
C3—H3A0.9700C11—C121.384 (2)
C3—H3B0.9700C11—H110.9300
C4—O21.2013 (19)C12—H120.9300
C4—C51.5191 (19)C13—C181.375 (2)
C5—C71.5122 (18)C13—C141.382 (2)
C5—C61.5353 (19)C14—C151.378 (3)
C5—H50.9800C14—H140.9300
C6—O11.4633 (16)C15—C161.358 (4)
C6—C131.5013 (18)C15—H150.9300
C6—H60.9800C16—C171.367 (4)
C7—C81.381 (2)C16—H160.9300
C7—C121.387 (2)C17—C181.398 (3)
C8—C91.382 (2)C17—H170.9300
C8—H80.9300C18—H180.9300
O3—C2—O1119.27 (16)C10—C9—H9119.9
O3—C2—C3124.18 (16)C8—C9—H9119.9
O1—C2—C3116.55 (13)C11—C10—C9120.03 (16)
C2—C3—C4115.28 (13)C11—C10—H10120.0
C2—C3—H3A108.5C9—C10—H10120.0
C4—C3—H3A108.5C10—C11—C12119.91 (15)
C2—C3—H3B108.5C10—C11—H11120.0
C4—C3—H3B108.5C12—C11—H11120.0
H3A—C3—H3B107.5C11—C12—C7120.60 (14)
O2—C4—C3121.58 (14)C11—C12—H12119.7
O2—C4—C5123.07 (15)C7—C12—H12119.7
C3—C4—C5115.35 (12)C18—C13—C14119.27 (15)
C7—C5—C4113.59 (11)C18—C13—C6120.03 (14)
C7—C5—C6112.70 (11)C14—C13—C6120.69 (14)
C4—C5—C6108.47 (11)C15—C14—C13120.3 (2)
C7—C5—H5107.2C15—C14—H14119.9
C4—C5—H5107.2C13—C14—H14119.9
C6—C5—H5107.2C16—C15—C14120.5 (2)
O1—C6—C13106.88 (10)C16—C15—H15119.8
O1—C6—C5109.24 (11)C14—C15—H15119.8
C13—C6—C5113.39 (11)C15—C16—C17120.2 (2)
O1—C6—H6109.1C15—C16—H16119.9
C13—C6—H6109.1C17—C16—H16119.9
C5—C6—H6109.1C16—C17—C18119.9 (2)
C8—C7—C12118.76 (13)C16—C17—H17120.0
C8—C7—C5120.68 (13)C18—C17—H17120.0
C12—C7—C5120.54 (13)C13—C18—C17119.8 (2)
C7—C8—C9120.43 (15)C13—C18—H18120.1
C7—C8—H8119.8C17—C18—H18120.1
C9—C8—H8119.8C2—O1—C6118.00 (11)
C10—C9—C8120.25 (16)
O3—C2—C3—C4141.51 (18)C9—C10—C11—C120.3 (3)
O1—C2—C3—C438.6 (2)C10—C11—C12—C70.6 (3)
C2—C3—C4—O2153.41 (17)C8—C7—C12—C111.0 (2)
C2—C3—C4—C526.3 (2)C5—C7—C12—C11179.25 (14)
O2—C4—C5—C733.0 (2)O1—C6—C13—C18119.45 (14)
C3—C4—C5—C7147.27 (13)C5—C6—C13—C18120.13 (15)
O2—C4—C5—C6159.12 (16)O1—C6—C13—C1461.63 (17)
C3—C4—C5—C621.12 (17)C5—C6—C13—C1458.80 (18)
C7—C5—C6—O1173.61 (10)C18—C13—C14—C152.1 (3)
C4—C5—C6—O159.72 (13)C6—C13—C14—C15176.85 (17)
C7—C5—C6—C1354.54 (15)C13—C14—C15—C160.9 (3)
C4—C5—C6—C13178.80 (11)C14—C15—C16—C170.5 (4)
C4—C5—C7—C8126.23 (15)C15—C16—C17—C180.6 (4)
C6—C5—C7—C8109.89 (15)C14—C13—C18—C171.9 (3)
C4—C5—C7—C1255.59 (18)C6—C13—C18—C17176.99 (16)
C6—C5—C7—C1268.29 (16)C16—C17—C18—C130.6 (3)
C12—C7—C8—C90.5 (2)O3—C2—O1—C6177.79 (15)
C5—C7—C8—C9178.72 (15)C3—C2—O1—C62.1 (2)
C7—C8—C9—C100.4 (3)C13—C6—O1—C2175.37 (12)
C8—C9—C10—C110.9 (3)C5—C6—O1—C252.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.443.380 (2)161
C17—H17···O3ii0.932.463.351 (3)160
C3—H3B···Cg1i0.972.983.681 (2)131
C5—H5···Cg2iii0.982.963.830 (2)149
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H14O3
Mr266.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.9940 (2), 8.2310 (4), 18.9040 (8)
β (°) 101.412 (2)
V3)1371.79 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5298, 3113, 2459
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.05
No. of reflections3113
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.443.380 (2)161
C17—H17···O3ii0.932.463.351 (3)160
C3—H3B···Cg1i0.972.97473.681 (2)131
C5—H5···Cg2iii0.982.95523.830 (2)149
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work has received partial support from CNPq, CAPES, FAPEAL, IM-INOFAR and FINEP.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrand-William, W., Cuvelier, M. E. & Berset, C. (1995). Food Sci. Technol. 28, 25–30.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326, New York: Academic Press.  Google Scholar
First citationSánchez-Moreno, C., Larrauri, J. A. & Saura-Calixto, F. J. (1998). Sci. Food. Agric. 76, 270–276.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoler-Rivas, C., Espin, J. C. & Withhers, H. J. (2000). Phytochem. Anal. 11, 330–338.  Web of Science CrossRef CAS Google Scholar
First citationSouza, L. C. (2008). PhD thesis, Instituto de Química e Biotecnologia, University of Alagoas, Brazil.  Google Scholar
First citationSouza, L. C., Araújo, S. M. S. & Imbroisi, D. O. (2004). Bioorg. Med. Chem. Lett. 14, 5859–5861.  Web of Science PubMed Google Scholar
First citationYen, G. C. & Chen, H. Y. J. (1995). Agric. Food Chem. 43, 27–32.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds