metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3-benzoyl­pyridine-κN)zinc(II)]-di-μ-dicyanamido-κ4N1:N5]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 15 June 2008; accepted 30 June 2008; online 5 July 2008)

The title compound, [Zn(C2N3)2(C12H9NO)2]n, is a polymeric zinc(II) complex with the metal ion located on an inversion centre. The ZnII ion is six-coordinated by two N atoms of two 3-benzoyl­pyridine ligands and four N atoms from four dicyanamide ligands, forming a slightly distorted octa­hedral configuration. In the crystal structure, neighboring Zn atoms are linked together by double dicyanamide bridges to form a polymeric zinc(II) complex.

Related literature

For related literature, see: Armentano et al. (2006[Armentano, D., De Munno, G., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626-4636.]); Claramunt et al. (2000[Claramunt, A., Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2627-2630.]); Manson et al. (1998[Manson, J. L., Lee, D. W., Rheingold, A. L. & Miller, J. S. (1998). Inorg. Chem. 37, 5966-5967.]); Miller (2006[Miller, J. S. (2006). Pramana, 67, 1-16.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2N3)2(C12H9NO)2]

  • Mr = 563.89

  • Monoclinic, P 21 /c

  • a = 6.463 (4) Å

  • b = 7.490 (4) Å

  • c = 26.300 (15) Å

  • β = 98.399 (16)°

  • V = 1259.5 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 (2) K

  • 0.07 × 0.04 × 0.03 mm

Data collection
  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.867, Tmax = 1.000 (expected range = 0.841–0.970)

  • 12079 measured reflections

  • 2880 independent reflections

  • 2342 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.09

  • 2880 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.162 (3)
Zn1—N3 2.169 (2)
Zn1—N4 2.172 (3)
N2—Zn1—N3 92.27 (11)
N2—Zn1—N4 90.79 (9)
N3—Zn1—N4 89.87 (9)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dicyanamide ligand has frequently been used to bridge polynuclear transition metal complexes in the study of multidimensional molecule-based magnetic materials and other areas. Many such compounds have been reported (Manson et al., 1998; Claramunt et al., 2000; Armentano et al., 2006; Miller, 2006;). Here, we report the structure of the title ZnII compound, (I). The structure of (I) is illustrated in Fig. 1, and bond distances and angles are given in Table 1. The ZnII ion, which lies on the inversion centre, is in an octahedral geometry and is six-coordinated by six N atoms, from four dicyanamide ligands and two 3-benzoylpyridine ligands in a trans arrangement. The resulting coordination geometry is very close to that expected for an ideal octahedral complex. In the crystal structure, the ZnII ions are bridged to form a one-dimensional chain by dicyanamide ligands, through single end-to-end coordination, the dicyanamide ligand acts as a bidentate bridging ligand by coordinating to adjacent ZnII centres through its two terminal nitrile N atoms. No significant contacts are observed between adjacent chains in the crystal structure.

Related literature top

For related literature, see: Armentano et al. (2006); Claramunt et al. (2000); Manson et al. (1998); Miller (2006); Rigaku (2005).

Experimental top

All chemicals used (reagent grade) were commercially available. 3-benzoylpyridine (18.3 mg, 0.1 mmol) was added slowly with stirring in aqueous solution (5 ml) of Zn(CH3COO)2.2H2O (21.9 mg, 0.1 mmol) and then sodium dicyanamide (17.8 mg, 0.2 mmol) in aqueous solution (5 ml) was added slowly. The resulting colorless solution was continuously stirred for about 30 min at room temperature and then filtered. The filtrate was slowly evaporated at room temperature over several days, and colorless needles crystals suitable for X-ray analysis were obtained.

Refinement top

Positional parameters of all H atoms were calculated geometrically.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all dydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional structure in the title compound. Displacement ellipsoids are drawn at the 30% probability level and all dydrogen atoms.
catena-Poly[[bis(3-benzoylpyridine-κN)zinc(II)]- di-µ-dicyanamido-κ4N1:N5] top
Crystal data top
[Zn(C2N3)2(C12H9NO)2]F(000) = 576
Mr = 563.89Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2637 reflections
a = 6.463 (4) Åθ = 3.1–27.5°
b = 7.490 (4) ŵ = 1.02 mm1
c = 26.300 (15) ÅT = 293 K
β = 98.399 (16)°Block, colorless
V = 1259.5 (13) Å30.07 × 0.04 × 0.03 mm
Z = 2
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2880 independent reflections
Radiation source: fine-focus sealed tube2342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.1°
thin–slice ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.867, Tmax = 1.000l = 3433
12079 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.6329P]
where P = (Fo2 + 2Fc2)/3
2880 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Zn(C2N3)2(C12H9NO)2]V = 1259.5 (13) Å3
Mr = 563.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.463 (4) ŵ = 1.02 mm1
b = 7.490 (4) ÅT = 293 K
c = 26.300 (15) Å0.07 × 0.04 × 0.03 mm
β = 98.399 (16)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2880 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2342 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 1.000Rint = 0.045
12079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.60 e Å3
2880 reflectionsΔρmin = 0.56 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.00000.03523 (16)
O10.1648 (4)0.5269 (5)0.20379 (11)0.1080 (15)
N20.7192 (4)0.2827 (3)0.01736 (10)0.0467 (6)
N30.7294 (4)0.6966 (3)0.03187 (9)0.0441 (6)
N40.5973 (4)0.5346 (3)0.07500 (9)0.0374 (5)
N50.8571 (7)0.9980 (3)0.05024 (17)0.0911 (15)
C10.7821 (4)0.8411 (4)0.03808 (11)0.0405 (6)
C20.7750 (4)0.1441 (4)0.03062 (11)0.0411 (6)
C40.7925 (4)0.5898 (4)0.07850 (11)0.0442 (7)
H4A0.88990.59240.04870.053*
C50.8557 (5)0.6427 (4)0.12406 (11)0.0488 (7)
H5C0.99140.68310.12470.059*
C60.7130 (5)0.6347 (4)0.16892 (11)0.0465 (7)
H6A0.75040.67280.20000.056*
C70.5141 (5)0.5690 (4)0.16669 (11)0.0435 (6)
C80.4633 (4)0.5223 (3)0.11864 (11)0.0395 (6)
H8A0.32900.48050.11690.047*
C90.3436 (5)0.5503 (5)0.21175 (12)0.0568 (8)
C100.3845 (5)0.5665 (4)0.26610 (11)0.0491 (7)
C110.5699 (6)0.5147 (4)0.28267 (13)0.0553 (8)
H11A0.68080.47350.25910.066*
C120.2197 (6)0.6285 (5)0.30199 (13)0.0635 (9)
H12A0.09480.66340.29130.076*
C130.2419 (8)0.6382 (5)0.35361 (14)0.0783 (13)
H13A0.13210.68040.37740.094*
C140.4252 (8)0.5857 (6)0.36965 (15)0.0811 (14)
H14A0.43860.59150.40430.097*
C150.5896 (8)0.5245 (5)0.33469 (14)0.0707 (12)
H15A0.71370.48980.34580.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0407 (3)0.0283 (2)0.0361 (3)0.00125 (17)0.00358 (18)0.00050 (17)
O10.0444 (14)0.232 (5)0.0468 (15)0.0126 (19)0.0035 (12)0.0020 (19)
N20.0456 (13)0.0353 (13)0.0569 (15)0.0031 (10)0.0002 (11)0.0015 (11)
N30.0486 (14)0.0348 (13)0.0479 (14)0.0061 (10)0.0033 (11)0.0023 (10)
N40.0400 (12)0.0358 (12)0.0364 (11)0.0012 (9)0.0055 (9)0.0000 (9)
N50.097 (3)0.0326 (15)0.121 (3)0.0078 (15)0.060 (2)0.0090 (15)
C10.0391 (14)0.0354 (15)0.0438 (15)0.0003 (11)0.0044 (12)0.0041 (11)
C20.0414 (15)0.0348 (15)0.0444 (15)0.0057 (12)0.0024 (12)0.0006 (12)
C40.0394 (14)0.0520 (18)0.0407 (15)0.0017 (13)0.0047 (12)0.0034 (13)
C50.0421 (15)0.0588 (19)0.0459 (16)0.0102 (14)0.0078 (13)0.0037 (14)
C60.0481 (16)0.0505 (17)0.0432 (15)0.0007 (13)0.0142 (13)0.0029 (13)
C70.0442 (15)0.0478 (16)0.0387 (15)0.0025 (13)0.0065 (12)0.0015 (12)
C80.0390 (14)0.0392 (15)0.0402 (14)0.0013 (11)0.0052 (11)0.0001 (11)
C90.0495 (18)0.079 (2)0.0413 (17)0.0025 (17)0.0050 (14)0.0018 (16)
C100.0579 (19)0.0500 (17)0.0378 (15)0.0099 (15)0.0017 (13)0.0014 (13)
C110.071 (2)0.0519 (19)0.0445 (17)0.0105 (16)0.0125 (16)0.0005 (14)
C120.068 (2)0.066 (2)0.0512 (19)0.0146 (18)0.0106 (16)0.0011 (16)
C130.105 (3)0.072 (3)0.048 (2)0.034 (2)0.021 (2)0.0112 (18)
C140.119 (4)0.081 (3)0.043 (2)0.044 (3)0.011 (2)0.0005 (19)
C150.097 (3)0.070 (3)0.049 (2)0.028 (2)0.025 (2)0.0075 (17)
Geometric parameters (Å, º) top
Zn1—N22.162 (3)C6—C71.385 (4)
Zn1—N2i2.162 (3)C6—H6A0.9300
Zn1—N3i2.169 (2)C7—C81.396 (4)
Zn1—N32.169 (2)C7—C91.502 (4)
Zn1—N42.172 (3)C8—H8A0.9300
Zn1—N4i2.172 (3)C9—C101.496 (4)
O1—C91.217 (4)C10—C111.389 (5)
N2—C21.137 (4)C10—C121.395 (5)
N3—C11.139 (4)C11—C151.395 (5)
N4—C81.337 (4)C11—H11A0.9300
N4—C41.343 (4)C12—C131.388 (5)
N5—C2ii1.290 (4)C12—H12A0.9300
N5—C11.293 (4)C13—C141.372 (6)
C2—N5iii1.290 (4)C13—H13A0.9300
C4—C51.379 (4)C14—C151.378 (6)
C4—H4A0.9300C14—H14A0.9300
C5—C61.389 (4)C15—H15A0.9300
C5—H5C0.9300
N2—Zn1—N2i180.00 (9)C7—C6—H6A120.5
N2—Zn1—N3i87.73 (11)C5—C6—H6A120.5
N2i—Zn1—N3i92.27 (11)C6—C7—C8118.0 (3)
N2—Zn1—N392.27 (11)C6—C7—C9125.3 (3)
N2i—Zn1—N387.73 (11)C8—C7—C9116.6 (3)
N3i—Zn1—N3180.0N4—C8—C7123.5 (3)
N2—Zn1—N490.79 (9)N4—C8—H8A118.3
N2i—Zn1—N489.21 (9)C7—C8—H8A118.3
N3i—Zn1—N490.13 (9)O1—C9—C10118.7 (3)
N3—Zn1—N489.87 (9)O1—C9—C7118.9 (3)
N2—Zn1—N4i89.21 (9)C10—C9—C7122.3 (3)
N2i—Zn1—N4i90.79 (9)C11—C10—C12119.3 (3)
N3i—Zn1—N4i89.87 (9)C11—C10—C9123.9 (3)
N3—Zn1—N4i90.13 (9)C12—C10—C9116.7 (3)
N4—Zn1—N4i180.00 (4)C10—C11—C15120.0 (4)
C2—N2—Zn1157.0 (2)C10—C11—H11A120.0
C1—N3—Zn1150.9 (2)C15—C11—H11A120.0
C8—N4—C4117.4 (2)C13—C12—C10120.1 (4)
C8—N4—Zn1122.30 (19)C13—C12—H12A120.0
C4—N4—Zn1119.90 (18)C10—C12—H12A120.0
C2ii—N5—C1123.7 (3)C14—C13—C12120.2 (4)
N3—C1—N5172.8 (3)C14—C13—H13A119.9
N2—C2—N5iii172.0 (3)C12—C13—H13A119.9
N4—C4—C5123.2 (3)C13—C14—C15120.4 (4)
N4—C4—H4A118.4C13—C14—H14A119.8
C5—C4—H4A118.4C15—C14—H14A119.8
C4—C5—C6118.8 (3)C14—C15—C11120.0 (4)
C4—C5—H5C120.6C14—C15—H15A120.0
C6—C5—H5C120.6C11—C15—H15A120.0
C7—C6—C5119.0 (3)
N3i—Zn1—N2—C240.5 (6)C4—N4—C8—C72.1 (4)
N3—Zn1—N2—C2139.5 (6)Zn1—N4—C8—C7170.4 (2)
N4—Zn1—N2—C2130.6 (6)C6—C7—C8—N41.3 (4)
N4i—Zn1—N2—C249.4 (6)C9—C7—C8—N4178.9 (3)
N2—Zn1—N3—C1168.8 (5)C6—C7—C9—O1164.8 (4)
N2i—Zn1—N3—C111.2 (5)C8—C7—C9—O112.6 (5)
N4—Zn1—N3—C178.0 (5)C6—C7—C9—C1012.8 (5)
N4i—Zn1—N3—C1102.0 (5)C8—C7—C9—C10169.8 (3)
N2i—Zn1—N4—C858.2 (2)O1—C9—C10—C11150.0 (4)
N3i—Zn1—N4—C834.0 (2)C7—C9—C10—C1132.4 (5)
N3—Zn1—N4—C8146.0 (2)O1—C9—C10—C1226.4 (5)
N2—Zn1—N4—C465.9 (2)C7—C9—C10—C12151.2 (3)
N2i—Zn1—N4—C4114.1 (2)C12—C10—C11—C150.2 (5)
N3i—Zn1—N4—C4153.6 (2)C9—C10—C11—C15176.1 (3)
N3—Zn1—N4—C426.4 (2)C11—C10—C12—C130.1 (5)
C8—N4—C4—C53.7 (4)C9—C10—C12—C13176.6 (3)
Zn1—N4—C4—C5169.0 (2)C10—C12—C13—C140.5 (6)
N4—C4—C5—C61.7 (5)C12—C13—C14—C150.6 (6)
C4—C5—C6—C71.8 (5)C13—C14—C15—C110.4 (6)
C5—C6—C7—C83.2 (5)C10—C11—C15—C140.0 (5)
C5—C6—C7—C9179.4 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2N3)2(C12H9NO)2]
Mr563.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.463 (4), 7.490 (4), 26.300 (15)
β (°) 98.399 (16)
V3)1259.5 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.07 × 0.04 × 0.03
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.867, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12079, 2880, 2342
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.09
No. of reflections2880
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.56

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N22.162 (3)Zn1—N42.172 (3)
Zn1—N32.169 (2)
N2—Zn1—N392.27 (11)N3—Zn1—N489.87 (9)
N2—Zn1—N490.79 (9)
 

References

First citationArmentano, D., De Munno, G., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626–4636.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClaramunt, A., Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2627–2630.  Web of Science CSD CrossRef Google Scholar
First citationManson, J. L., Lee, D. W., Rheingold, A. L. & Miller, J. S. (1998). Inorg. Chem. 37, 5966–5967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiller, J. S. (2006). Pramana, 67, 1–16.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds