metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of poly[aquadi-μ3-oxy­di­acetato-dicopper(II)]

aSchool of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 16 November 2007; accepted 5 December 2007; online 12 December 2007)

The title complex, [Cu2(C4H4O5)2(H2O)]n, has a two-dimensional layer structure. The Cu atom has a distorted octa­hedral (CuO6) environment and is coordinated by four carboxyl­ate group O atoms from three different oxydiacetate ligands in a planar arrangement and one half-occupancy water mol­ecule and an ether O atom in the axial positions. In the crystal structure, weak intra- and inter­molecular O—H⋯O hydrogen bonds help to stabilize the crystal packing. The structure has already been published [Whitlow & Davey (1975[Whitlow, S. H. & Davey, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1228-1232.]). J. Chem. Soc. Dalton. Trans. pp. 1228–1232]; this redetermination reports the structure with higher precision.

Related literature

For related literature, see: Whitlow & Davey (1975[Whitlow, S. H. & Davey, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1228-1232.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H4O5)2(H2O)]

  • Mr = 409.24

  • Orthorhombic, P b c n

  • a = 9.2695 (11) Å

  • b = 14.3052 (2) Å

  • c = 9.2715 (11) Å

  • V = 1229.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 294 (2) K

  • 0.16 × 0.10 × 0.06 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.660, Tmax = 0.812

  • 1544 measured reflections

  • 1477 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.085

  • S = 1.09

  • 1477 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O4i 1.950 (3)
Cu1—O5 1.953 (3)
Cu1—O1 1.955 (3)
Cu1—O2ii 1.958 (3)
Cu1—O3 2.498 (3)
Cu1—O6 2.746 (8)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O5 0.85 2.49 2.909 (8) 112
O6—H6B⋯O3iii 0.85 2.22 2.996 (11) 152
O6—H6A⋯O1 0.85 2.05 2.905 (8) 180
Symmetry code: (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

Supporting information


Comment top

The structure of the title complex, (I), was determined some years ago [Whitlow & Davey, 1975)] using diffraction data collected at ambient temperature, the determination gave higher R values (R =0.088) and Z=8. The information of the structure was not found at the database of CCDC. Complex, (I), has been obtained as a by-product of study of heterobimetallic complexes involving Ba(NO3)2, Cu(NO3)2 and oxydiacetic acid, using Na2CO3 as base. We have taken this opportunity to redetermine the structure of (I) at 294 (2) K, leading to significantly improved precision.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete oxydiacetate dianion and half a water molecule, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1. The Cu atom has octahedral coordination, with O1, O5, O2ii and O4i of three nonequivalent oxydiacetate dianions in a planar arrangement, and O3 and O6 atoms from one ether oxygen and half a water molecules in a trans conformation. Thus, the coordination octahedra of the Cu atoms can be visualized as having an elongated axial distortion.

In the structure of (I), each Cu atom is bonded to an oxydiacetate ligand via the O1 and O5 atoms of carboxylate groups and the ether oxygen O3 atom, each oxydiacetate ligand connect with other two Cu atoms via the O2 and O4 atom as a monodentate bonding mode and a bridging bonding mode, respectively. These result in the Cu1···Cu1 separations are 4.8666 (9)Å and 4.8501 (10) Å, respectively, and complete a two-dimensional layer connectivity of the structure parallel to ac plane. A number of weak intra- and intermolecular O–H···O hydrogen bonds interactions (see Table 2) further stabilize the two-dimensional framework within this layer. A packing diagram for the structure of (I) is shown in Fig. 2.

Related literature top

For related literature, see: Whitlow & Davey (1975).

Experimental top

A mixture of 20 ml aqueous solution of sodium carbonate anhydrous (0.43 g, 4 mmol) and oxydiacetic acid (0.54 g, 4.0 mmol) was added dropwise into a solution of cupric nitrate (0.49 g, 2 mmol) and barium nitrate (0.52 g, 2 mmol) in 20 ml of distillated water under stirring at the room temperature for 20 min. After filtration, slow evaporation the filtrate over a period of two week at room temperature provided the crystals of (I).

Refinement top

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an O–H distance of 0.85 Å, and with Uiso(H) = 1.2 Ueq(O). The H atoms of C–H groups were placed geometrically and during refinement were treated using a riding model, with C–H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Structure description top

The structure of the title complex, (I), was determined some years ago [Whitlow & Davey, 1975)] using diffraction data collected at ambient temperature, the determination gave higher R values (R =0.088) and Z=8. The information of the structure was not found at the database of CCDC. Complex, (I), has been obtained as a by-product of study of heterobimetallic complexes involving Ba(NO3)2, Cu(NO3)2 and oxydiacetic acid, using Na2CO3 as base. We have taken this opportunity to redetermine the structure of (I) at 294 (2) K, leading to significantly improved precision.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete oxydiacetate dianion and half a water molecule, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1. The Cu atom has octahedral coordination, with O1, O5, O2ii and O4i of three nonequivalent oxydiacetate dianions in a planar arrangement, and O3 and O6 atoms from one ether oxygen and half a water molecules in a trans conformation. Thus, the coordination octahedra of the Cu atoms can be visualized as having an elongated axial distortion.

In the structure of (I), each Cu atom is bonded to an oxydiacetate ligand via the O1 and O5 atoms of carboxylate groups and the ether oxygen O3 atom, each oxydiacetate ligand connect with other two Cu atoms via the O2 and O4 atom as a monodentate bonding mode and a bridging bonding mode, respectively. These result in the Cu1···Cu1 separations are 4.8666 (9)Å and 4.8501 (10) Å, respectively, and complete a two-dimensional layer connectivity of the structure parallel to ac plane. A number of weak intra- and intermolecular O–H···O hydrogen bonds interactions (see Table 2) further stabilize the two-dimensional framework within this layer. A packing diagram for the structure of (I) is shown in Fig. 2.

For related literature, see: Whitlow & Davey (1975).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering Scheme; displacement ellipsoids were drawn at the 30% probability level. Symmetry codes (i) -x + 3/2, -y + 1/2, z + 1/2; (ii) x + 1/2, -y + 1/2, -z + 1.
[Figure 2] Fig. 2. Packing diagram showing hydrogen bonds interactions, viewed down the b axis.
poly[aquadi-µ3-oxydiacetato-dicopper(II)] top
Crystal data top
[Cu2(C4H4O5)2(H2O)]F(000) = 816
Mr = 409.24Dx = 2.211 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1544 reflections
a = 9.2695 (11) Åθ = 2.6–27.9°
b = 14.3052 (2) ŵ = 3.52 mm1
c = 9.2715 (11) ÅT = 294 K
V = 1229.4 (2) Å3Plate, blue
Z = 40.16 × 0.10 × 0.06 mm
Data collection top
Rigaku Saturn
diffractometer
1477 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.013
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 1.4°
ω scansh = 112
Absorption correction: multi-scan
(Jacobson, 1998)
k = 318
Tmin = 0.660, Tmax = 0.812l = 112
1544 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.8539P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1477 reflectionsΔρmax = 0.73 e Å3
102 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (11)
Crystal data top
[Cu2(C4H4O5)2(H2O)]V = 1229.4 (2) Å3
Mr = 409.24Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 9.2695 (11) ŵ = 3.52 mm1
b = 14.3052 (2) ÅT = 294 K
c = 9.2715 (11) Å0.16 × 0.10 × 0.06 mm
Data collection top
Rigaku Saturn
diffractometer
1477 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1385 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.812Rint = 0.013
1544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.09Δρmax = 0.73 e Å3
1477 reflectionsΔρmin = 0.55 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.72930 (5)0.20200 (3)0.46964 (6)0.02384 (17)
O10.5403 (3)0.2600 (2)0.4973 (5)0.0304 (8)
O20.3991 (3)0.3753 (2)0.5700 (4)0.0287 (7)
O30.7808 (3)0.37024 (17)0.5203 (3)0.0227 (5)
O40.8062 (4)0.3780 (3)0.1361 (3)0.0314 (7)
O50.7509 (4)0.2607 (3)0.2807 (4)0.0293 (8)
C10.5227 (4)0.3416 (3)0.5428 (5)0.0227 (9)
C20.6489 (4)0.4050 (3)0.5749 (5)0.0245 (9)
H2A0.63050.46610.53320.029*
H2B0.65720.41280.67850.029*
C30.8234 (5)0.4079 (3)0.3855 (5)0.0301 (11)
H3A0.92630.42000.38740.036*
H3B0.77460.46720.37090.036*
C40.7895 (5)0.3437 (3)0.2599 (5)0.0242 (9)
O60.5441 (8)0.1079 (4)0.2898 (10)0.0489 (19)0.50
H6A0.54270.15260.35030.059*0.50
H6B0.58100.13310.21540.059*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0263 (3)0.0194 (2)0.0258 (3)0.0012 (2)0.00097 (18)0.0001 (3)
O10.0215 (14)0.0259 (19)0.044 (2)0.0007 (11)0.0010 (19)0.0069 (15)
O20.0237 (15)0.0221 (17)0.040 (2)0.0032 (12)0.0019 (12)0.0019 (15)
O30.0205 (12)0.0265 (13)0.0212 (14)0.0001 (10)0.0026 (10)0.0004 (12)
O40.0426 (18)0.0308 (19)0.0207 (16)0.0011 (15)0.0001 (13)0.0009 (13)
O50.0404 (18)0.0229 (19)0.0246 (14)0.0042 (13)0.0009 (17)0.0016 (13)
C10.023 (2)0.024 (2)0.022 (2)0.0011 (16)0.0022 (15)0.006 (2)
C20.025 (2)0.022 (2)0.026 (3)0.0014 (16)0.0015 (16)0.0053 (18)
C30.034 (2)0.030 (2)0.026 (3)0.0036 (19)0.003 (2)0.0000 (18)
C40.020 (2)0.028 (2)0.025 (2)0.0027 (18)0.0024 (16)0.0006 (17)
O60.055 (6)0.027 (3)0.064 (7)0.005 (3)0.021 (3)0.003 (4)
Geometric parameters (Å, º) top
Cu1—O4i1.950 (3)O4—Cu1iv1.950 (3)
Cu1—O51.953 (3)O5—C41.255 (5)
Cu1—O11.955 (3)C1—C21.510 (6)
Cu1—O2ii1.958 (3)C2—H2A0.9700
Cu1—O32.498 (3)C2—H2B0.9700
Cu1—O62.746 (8)C3—C41.516 (6)
O1—C11.252 (5)C3—H3A0.9700
O2—C11.268 (5)C3—H3B0.9700
O2—Cu1iii1.958 (3)O6—O6v1.101 (13)
O3—C21.414 (4)O6—H6A0.8504
O3—C31.417 (5)O6—H6B0.8505
O4—C41.258 (5)
O4i—Cu1—O5168.50 (15)O3—C2—H2A109.0
O4i—Cu1—O189.68 (15)C1—C2—H2A109.0
O5—Cu1—O191.52 (11)O3—C2—H2B109.0
O4i—Cu1—O2ii87.29 (12)C1—C2—H2B109.0
O5—Cu1—O2ii89.56 (14)H2A—C2—H2B107.8
O1—Cu1—O2ii169.87 (14)O3—C3—C4112.9 (4)
O3—Cu1—O6134.91 (15)O3—C3—H3A109.0
O1—Cu1—O374.80 (11)C4—C3—H3A109.0
O1—Cu1—O674.19 (19)O3—C3—H3B109.0
C1—O1—Cu1123.9 (3)C4—C3—H3B109.0
C1—O2—Cu1iii118.4 (3)H3A—C3—H3B107.8
C2—O3—C3115.0 (3)O5—C4—O4123.0 (4)
C4—O4—Cu1iv118.2 (3)O5—C4—C3121.0 (4)
C4—O5—Cu1125.0 (3)O4—C4—C3116.1 (4)
O1—C1—O2122.6 (4)O6v—O6—H6A115.5
O1—C1—C2121.7 (4)O6v—O6—H6B75.8
O2—C1—C2115.6 (4)H6A—O6—H6B102.9
O3—C2—C1112.8 (3)
O4i—Cu1—O1—C1108.4 (4)C3—O3—C2—C197.3 (4)
O5—Cu1—O1—C183.1 (4)O1—C1—C2—O312.5 (7)
O2ii—Cu1—O1—C1179.1 (7)O2—C1—C2—O3170.0 (4)
O4i—Cu1—O5—C4176.0 (6)C2—O3—C3—C4100.0 (4)
O1—Cu1—O5—C480.1 (4)Cu1—O5—C4—O4177.8 (3)
O2ii—Cu1—O5—C4110.0 (4)Cu1—O5—C4—C30.3 (7)
Cu1—O1—C1—O2174.6 (3)Cu1iv—O4—C4—O50.2 (6)
Cu1—O1—C1—C22.7 (7)Cu1iv—O4—C4—C3178.0 (3)
Cu1iii—O2—C1—O12.9 (7)O3—C3—C4—O511.2 (6)
Cu1iii—O2—C1—C2179.6 (3)O3—C3—C4—O4170.6 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+3/2, y+1/2, z1/2; (v) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O50.852.492.909 (8)112
O6—H6B···O3iv0.852.222.996 (11)152
O6—H6A···O10.852.052.905 (8)180
Symmetry code: (iv) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C4H4O5)2(H2O)]
Mr409.24
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)294
a, b, c (Å)9.2695 (11), 14.3052 (2), 9.2715 (11)
V3)1229.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.16 × 0.10 × 0.06
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.660, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
1544, 1477, 1385
Rint0.013
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.085, 1.09
No. of reflections1477
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.55

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXTL (Bruker, 2001).

Selected bond lengths (Å) top
Cu1—O4i1.950 (3)Cu1—O2ii1.958 (3)
Cu1—O51.953 (3)Cu1—O32.498 (3)
Cu1—O11.955 (3)Cu1—O62.746 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O50.852.492.909 (8)111.6
O6—H6B···O3iii0.852.222.996 (11)152.3
O6—H6A···O10.852.052.905 (8)179.6
Symmetry code: (iii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

We thank Tianjin Polytechnic University for financial support.

References

First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationWhitlow, S. H. & Davey, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1228–1232.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds