organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,6-Dihydr­­oxy-3-hy­droxy­methyl-8-meth­oxy­anthracene-9,10-dione monohydrate

aKey Laboratory of Marine Drugs of the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
*Correspondence e-mail: weimingzhu@ouc.edu.cn

(Received 16 November 2007; accepted 14 December 2007; online 21 December 2007)

The title compound, C16H12O6·H2O, isolated from the halotolerant fungus Aspergillus variecolor B-17, is also known as questinol monohydrate. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network. ππ stacking inter­actions consolidate the supra­molecular structure [the shortest inter­planar distances are 3.456 (3), 3.366 (4) and 3.382 (4) Å].

Related literature

For general background, see: Stickings & Mahmoodian (1962[Stickings, C. E. & Mahmoodian, A. (1962). Chem. Ind. (London), 40, 1718-1719.]); Slater et al. (1971[Slater, G. P., Haskins, R. H. & Hogge, L. R. (1971). Can. J. Microbiol. 17, 1576-1579.]); Kimura et al. (1983[Kimura, Y., Kozawa, M., Baba, K. & Hata, K. (1983). Planta Med. 48, 164-168.]); Arai et al. (1989[Arai, K., Aoki, Y. & Yamamoto, Y. (1989). Chem. Pharm. Bull. 37, 621-625.]); Nielsen et al. (2004[Nielsen, K. F., Holm, G., Uttrup, L. P. & Nielsen, P. A. (2004). Int. Biodeter. Biodegr. 54, 325-336.]); Wang et al. (2007[Wang, W. L., Zhu, T. J., Tao, H. W., Lu, Z. Y., Fang, Y. C., Gu, Q. Q. & Zhu, W. M. (2007). J. Antibiot. 60, 603-607.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O6·H2O

  • Mr = 318.27

  • Monoclinic, P 21 /c

  • a = 11.3317 (11) Å

  • b = 16.7515 (19) Å

  • c = 7.2193 (9) Å

  • β = 95.453 (2)°

  • V = 1364.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 (2) K

  • 0.18 × 0.14 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.994

  • 7003 measured reflections

  • 2404 independent reflections

  • 1108 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.099

  • S = 1.01

  • 2404 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6 0.82 1.82 2.525 (3) 144
O2—H2⋯O5i 0.82 2.38 2.945 (3) 127
O2—H2⋯O6i 0.82 2.16 2.919 (3) 154
O4—H4⋯O7ii 0.82 1.85 2.665 (3) 170
O7—H7A⋯O1 0.85 2.03 2.878 (3) 176
O7—H7B⋯O2iii 0.85 1.94 2.771 (3) 165
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Questinol was first isolated from the metabolites of Penicillium frequentans (Stickings & Mahmoodian, 1962). This compound and related derivatives arise from their biological activities (Slater et al., 1971; Kimura et al., 1983; Arai et al., 1989; Nielsen et al., 2004). We isolated the title compound (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganism (Wang et al., 2007). This was the first report about the X-ray crystallographic study of the title compound.

As shown in Fig. 1, crystal water connected with questinol by a O-H···O hydrogen bond. There is an intramolecular hydrogen bond between a hydroxyl O1 and carbonyl oxygen atom O6. The three six-membered rings adopt a planar conformation with the maximum deviation being 0.070 (3) Å (for atom C13).

In the crystal structure, O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to form a three-dimensional network. A supramolecular structure is consolidated by three types (Symmetry codes: (iii) x, 3/2-y, z-1/2; (iv) X, 3/2-Y, z+1/2; (v) 2-X, 1-Y, 2-Z) of π-π stacking interactions (Fig. 3). The shortest interplanar distances for these π-π stacking interactions are 3.456 (3) Å, 3.366 (4) Å and 3.382 (4) Å, respectively.

Related literature top

For general background, see: Stickings & Mahmoodian (1962); Slater et al. (1971); Kimura et al. (1983); Arai et al. (1989); Nielsen et al. (2004); Wang, et al. (2007).

Experimental top

The isolated halotolerant fugal strain Aspergillus variecolor B-17, was isolated from the sediments collected in Jilantai salt field, Alashan, Inner Mongolia, China. The working strain was cultured under static conditions at 303 K for 45 days in thirty 1000-ml conical flasks containing the liquid medium (300 ml/flask) composed of maltose (20 g/L), mannitol (20 g/L), glucose (10 g/L), monosodium glutamate (10 g/L), NH4Cl (10 g/L), MgSO4 (10 g/L), yeast extract paste (3 g/L), maize paste (3 g/L), NaCl (120 g/L) and KCl (5 g/L) after adjusting its pH to 7.0. The fermented whole broth (9 liters) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone and the acetone solution was concentrated under reduced pressure to afford crude extract (7.8 g). The crude extract, which was subjected to chromatography over silica gel column using a stepwise gradient elution of CHCl3—MeOH, to yield four fractions (Fr.1-Fr.4). Fr.3 was subjected to chromatographing on a silica gel column eluting with CHCl3—MeOH (93:7), to afford sixteen subfractions (Fr.3–1-Fr.3–16). The title compound (9 mg) was purified by extensive preparative HPLC using MeOH-H2O from Fr.3–3 and Fr.3–4. The single crystals were obtained by slow evaporation of CHCl3—MeOH (1:1) solution at 299 K.

Refinement top

Water H atoms were found in a difference Fouier map and were treated as riding, with fixed Uiso(H) = 1.2Ueq. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93–0.97 (C—H) and 0.82 Å (O—H), and with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(Cmethyl, Ohydroxyl).

Structure description top

Questinol was first isolated from the metabolites of Penicillium frequentans (Stickings & Mahmoodian, 1962). This compound and related derivatives arise from their biological activities (Slater et al., 1971; Kimura et al., 1983; Arai et al., 1989; Nielsen et al., 2004). We isolated the title compound (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganism (Wang et al., 2007). This was the first report about the X-ray crystallographic study of the title compound.

As shown in Fig. 1, crystal water connected with questinol by a O-H···O hydrogen bond. There is an intramolecular hydrogen bond between a hydroxyl O1 and carbonyl oxygen atom O6. The three six-membered rings adopt a planar conformation with the maximum deviation being 0.070 (3) Å (for atom C13).

In the crystal structure, O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to form a three-dimensional network. A supramolecular structure is consolidated by three types (Symmetry codes: (iii) x, 3/2-y, z-1/2; (iv) X, 3/2-Y, z+1/2; (v) 2-X, 1-Y, 2-Z) of π-π stacking interactions (Fig. 3). The shortest interplanar distances for these π-π stacking interactions are 3.456 (3) Å, 3.366 (4) Å and 3.382 (4) Å, respectively.

For general background, see: Stickings & Mahmoodian (1962); Slater et al. (1971); Kimura et al. (1983); Arai et al. (1989); Nielsen et al. (2004); Wang, et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering but for non-H atoms. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The packing diagram for (I). The H-bonds are shown as dotted lines; H atoms not involved in hydrogen bonding were omitted for clarity. [Symmetry codes: (i) 1 - x, 1/2 + y, 3/2 - z; (ii) 1 + x, y, z; (iii) x, 3/2 - y, z - 1/2.]
[Figure 3] Fig. 3. A view showing the π-π stacking interactions, viewed down the a axis. H atoms and H2O molecules have been omitted for clarity. [Symmetry codes: (iii) x, 3/2 - y, z - 1/2; (iv) x, 3/2 - y, z + 1/2; (v) 2 - x, 1 - y, 2 - z.]
1,6-Dihydroxy-3-hydroxymethyl-8-methoxyanthracene-9,10-dione monohydrate top
Crystal data top
C16H12O6·H2OF(000) = 664
Mr = 318.27Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 901 reflections
a = 11.3317 (11) Åθ = 2.2–25.2°
b = 16.7515 (19) ŵ = 0.12 mm1
c = 7.2193 (9) ÅT = 298 K
β = 95.453 (2)°Flake, yellow
V = 1364.2 (3) Å30.18 × 0.14 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2404 independent reflections
Radiation source: fine-focus sealed tube1108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1310
Tmin = 0.978, Tmax = 0.994k = 1919
7003 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0163P)2]
where P = (Fo2 + 2Fc2)/3
2404 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H12O6·H2OV = 1364.2 (3) Å3
Mr = 318.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3317 (11) ŵ = 0.12 mm1
b = 16.7515 (19) ÅT = 298 K
c = 7.2193 (9) Å0.18 × 0.14 × 0.05 mm
β = 95.453 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2404 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1108 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.994Rint = 0.090
7003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
2404 reflectionsΔρmin = 0.24 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47014 (19)0.62825 (13)0.9624 (3)0.0409 (7)
H10.49270.58280.94230.061*
O20.4486 (2)0.91888 (13)0.8924 (3)0.0452 (7)
H20.42150.93370.78870.068*
O30.9454 (2)0.74461 (14)0.7759 (4)0.0548 (8)
O41.1510 (2)0.48495 (14)0.6863 (3)0.0489 (7)
H41.18980.52460.66440.073*
O50.77278 (19)0.40952 (13)0.8557 (3)0.0446 (7)
O60.6237 (2)0.52178 (13)0.9245 (3)0.0419 (7)
O70.2909 (2)0.61113 (14)0.6547 (3)0.0609 (8)
H7A0.34230.61450.74810.073*
H7B0.32790.60160.56010.073*
C10.5559 (3)0.6817 (2)0.9249 (4)0.0302 (9)
C20.5248 (3)0.76155 (18)0.9251 (4)0.0316 (9)
H2A0.44860.77630.94850.038*
C30.6068 (3)0.8194 (2)0.8904 (4)0.0303 (9)
C40.7203 (3)0.79692 (18)0.8534 (4)0.0314 (9)
H4A0.77570.83580.83080.038*
C50.7514 (3)0.7171 (2)0.8500 (4)0.0290 (8)
C60.8705 (3)0.6940 (2)0.8020 (4)0.0334 (9)
C70.9000 (3)0.60779 (19)0.7896 (4)0.0294 (9)
C81.0101 (3)0.5876 (2)0.7384 (4)0.0363 (9)
H81.06260.62740.70940.044*
C91.0428 (3)0.5076 (2)0.7301 (4)0.0351 (9)
C100.9635 (3)0.4471 (2)0.7656 (4)0.0366 (10)
H100.98510.39390.75490.044*
C110.8527 (3)0.4668 (2)0.8167 (4)0.0334 (9)
C120.8161 (3)0.54798 (19)0.8292 (4)0.0285 (8)
C130.7004 (3)0.5714 (2)0.8841 (4)0.0304 (9)
C140.6699 (3)0.65733 (19)0.8854 (4)0.0278 (8)
C150.5733 (3)0.90622 (19)0.8933 (4)0.0393 (9)
H15A0.61320.93091.00360.047*
H15B0.60100.93240.78560.047*
C160.8055 (3)0.3271 (2)0.8389 (5)0.0564 (12)
H16A0.82250.31650.71350.085*
H16B0.74130.29360.86940.085*
H16C0.87460.31600.92260.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (16)0.0249 (15)0.0619 (17)0.0027 (12)0.0123 (13)0.0018 (12)
O20.0414 (16)0.0392 (16)0.0558 (17)0.0107 (13)0.0084 (13)0.0035 (12)
O30.0387 (17)0.0291 (16)0.100 (2)0.0081 (13)0.0226 (15)0.0001 (14)
O40.0384 (16)0.0398 (17)0.0711 (19)0.0066 (13)0.0182 (14)0.0000 (13)
O50.0337 (15)0.0244 (15)0.0771 (19)0.0011 (13)0.0122 (14)0.0005 (14)
O60.0333 (15)0.0244 (15)0.0702 (18)0.0049 (12)0.0167 (13)0.0007 (12)
O70.0491 (18)0.073 (2)0.0616 (18)0.0052 (15)0.0096 (14)0.0054 (15)
C10.029 (2)0.029 (2)0.032 (2)0.0075 (18)0.0036 (18)0.0010 (16)
C20.033 (2)0.025 (2)0.038 (2)0.0050 (18)0.0069 (18)0.0032 (16)
C30.039 (2)0.022 (2)0.030 (2)0.0024 (19)0.0027 (18)0.0010 (15)
C40.033 (2)0.023 (2)0.039 (2)0.0027 (18)0.0053 (17)0.0039 (17)
C50.028 (2)0.030 (2)0.030 (2)0.0011 (18)0.0053 (17)0.0013 (16)
C60.033 (2)0.027 (2)0.041 (2)0.0038 (19)0.0032 (18)0.0011 (17)
C70.029 (2)0.028 (2)0.032 (2)0.0014 (18)0.0073 (17)0.0002 (16)
C80.036 (2)0.032 (2)0.043 (2)0.001 (2)0.0117 (18)0.0018 (18)
C90.028 (2)0.042 (3)0.036 (2)0.009 (2)0.0072 (18)0.0001 (18)
C100.034 (2)0.031 (2)0.045 (2)0.0034 (18)0.0025 (19)0.0053 (17)
C110.028 (2)0.031 (2)0.040 (2)0.0017 (19)0.0008 (18)0.0001 (17)
C120.024 (2)0.027 (2)0.035 (2)0.0004 (18)0.0047 (17)0.0012 (16)
C130.029 (2)0.034 (2)0.028 (2)0.0038 (19)0.0002 (17)0.0044 (17)
C140.030 (2)0.026 (2)0.027 (2)0.0021 (17)0.0045 (17)0.0017 (15)
C150.042 (2)0.035 (2)0.041 (2)0.002 (2)0.0071 (19)0.0018 (18)
C160.061 (3)0.020 (2)0.089 (3)0.003 (2)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C11.368 (3)C4—H4A0.9300
O1—H10.8200C5—C141.403 (4)
O2—C151.428 (3)C5—C61.476 (4)
O2—H20.8200C6—C71.486 (4)
O3—C61.227 (3)C7—C81.376 (4)
O4—C91.349 (3)C7—C121.428 (4)
O4—H40.8200C8—C91.394 (4)
O5—C111.367 (4)C8—H80.9300
O5—C161.439 (4)C9—C101.394 (4)
O6—C131.256 (3)C10—C111.382 (4)
O7—H7A0.8500C10—H100.9300
O7—H7B0.8500C11—C121.428 (4)
C1—C21.382 (4)C12—C131.460 (4)
C1—C141.409 (4)C13—C141.481 (4)
C2—C31.381 (4)C15—H15A0.9700
C2—H2A0.9300C15—H15B0.9700
C3—C41.390 (4)C16—H16A0.9600
C3—C151.504 (4)C16—H16B0.9600
C4—C51.383 (4)C16—H16C0.9600
C1—O1—H1109.5O4—C9—C10117.0 (3)
C15—O2—H2109.5C8—C9—C10120.9 (3)
C9—O4—H4109.5C11—C10—C9119.6 (3)
C11—O5—C16118.3 (3)C11—C10—H10120.2
H7A—O7—H7B107.3C9—C10—H10120.2
O1—C1—C2116.6 (3)O5—C11—C10121.7 (3)
O1—C1—C14122.1 (3)O5—C11—C12116.9 (3)
C2—C1—C14121.3 (3)C10—C11—C12121.4 (3)
C3—C2—C1120.1 (3)C11—C12—C7116.9 (3)
C3—C2—H2A119.9C11—C12—C13123.2 (3)
C1—C2—H2A119.9C7—C12—C13119.9 (3)
C2—C3—C4119.7 (3)O6—C13—C12123.0 (3)
C2—C3—C15120.0 (3)O6—C13—C14118.3 (3)
C4—C3—C15120.3 (3)C12—C13—C14118.6 (3)
C5—C4—C3120.5 (3)C5—C14—C1117.5 (3)
C5—C4—H4A119.8C5—C14—C13122.3 (3)
C3—C4—H4A119.8C1—C14—C13120.2 (3)
C4—C5—C14120.9 (3)O2—C15—C3113.2 (3)
C4—C5—C6119.9 (3)O2—C15—H15A108.9
C14—C5—C6119.2 (3)C3—C15—H15A108.9
O3—C6—C5121.0 (3)O2—C15—H15B108.9
O3—C6—C7120.0 (3)C3—C15—H15B108.9
C5—C6—C7119.0 (3)H15A—C15—H15B107.7
C8—C7—C12121.3 (3)O5—C16—H16A109.5
C8—C7—C6118.0 (3)O5—C16—H16B109.5
C12—C7—C6120.8 (3)H16A—C16—H16B109.5
C7—C8—C9119.9 (3)O5—C16—H16C109.5
C7—C8—H8120.0H16A—C16—H16C109.5
C9—C8—H8120.0H16B—C16—H16C109.5
O4—C9—C8122.1 (3)
O1—C1—C2—C3179.3 (3)O5—C11—C12—C7179.6 (3)
C14—C1—C2—C31.6 (5)C10—C11—C12—C71.0 (5)
C1—C2—C3—C40.7 (5)O5—C11—C12—C131.2 (5)
C1—C2—C3—C15179.2 (3)C10—C11—C12—C13179.5 (3)
C2—C3—C4—C50.4 (5)C8—C7—C12—C111.2 (5)
C15—C3—C4—C5179.8 (3)C6—C7—C12—C11179.0 (3)
C3—C4—C5—C140.6 (5)C8—C7—C12—C13179.7 (3)
C3—C4—C5—C6177.2 (3)C6—C7—C12—C130.5 (4)
C4—C5—C6—O34.5 (5)C11—C12—C13—O60.1 (5)
C14—C5—C6—O3177.7 (3)C7—C12—C13—O6178.4 (3)
C4—C5—C6—C7176.9 (3)C11—C12—C13—C14177.7 (3)
C14—C5—C6—C71.0 (4)C7—C12—C13—C143.9 (4)
O3—C6—C7—C83.5 (5)C4—C5—C14—C10.2 (5)
C5—C6—C7—C8177.8 (3)C6—C5—C14—C1178.0 (3)
O3—C6—C7—C12176.7 (3)C4—C5—C14—C13179.6 (3)
C5—C6—C7—C122.0 (4)C6—C5—C14—C132.6 (4)
C12—C7—C8—C92.0 (5)O1—C1—C14—C5179.6 (3)
C6—C7—C8—C9178.2 (3)C2—C1—C14—C51.3 (5)
C7—C8—C9—O4177.9 (3)O1—C1—C14—C130.2 (4)
C7—C8—C9—C102.7 (5)C2—C1—C14—C13179.3 (3)
O4—C9—C10—C11178.0 (3)O6—C13—C14—C5177.2 (3)
C8—C9—C10—C112.5 (5)C12—C13—C14—C55.1 (4)
C16—O5—C11—C101.2 (4)O6—C13—C14—C12.2 (4)
C16—O5—C11—C12178.1 (3)C12—C13—C14—C1175.5 (3)
C9—C10—C11—O5178.9 (3)C2—C3—C15—O213.1 (4)
C9—C10—C11—C121.7 (5)C4—C3—C15—O2167.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.822.525 (3)144
O2—H2···O5i0.822.382.945 (3)127
O2—H2···O6i0.822.162.919 (3)154
O4—H4···O7ii0.821.852.665 (3)170
O7—H7A···O10.852.032.878 (3)176
O7—H7B···O2iii0.851.942.771 (3)165
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H12O6·H2O
Mr318.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.3317 (11), 16.7515 (19), 7.2193 (9)
β (°) 95.453 (2)
V3)1364.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.18 × 0.14 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.978, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7003, 2404, 1108
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.099, 1.01
No. of reflections2404
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.822.525 (3)143.7
O2—H2···O5i0.822.382.945 (3)126.8
O2—H2···O6i0.822.162.919 (3)154.2
O4—H4···O7ii0.821.852.665 (3)170.2
O7—H7A···O10.852.032.878 (3)176.3
O7—H7B···O2iii0.851.942.771 (3)164.8
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Chinese National Natural Science Fund (grant Nos. 30470196 and 30670219).

References

First citationArai, K., Aoki, Y. & Yamamoto, Y. (1989). Chem. Pharm. Bull. 37, 621–625.  CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKimura, Y., Kozawa, M., Baba, K. & Hata, K. (1983). Planta Med. 48, 164–168.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNielsen, K. F., Holm, G., Uttrup, L. P. & Nielsen, P. A. (2004). Int. Biodeter. Biodegr. 54, 325–336.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSlater, G. P., Haskins, R. H. & Hogge, L. R. (1971). Can. J. Microbiol. 17, 1576–1579.  CrossRef CAS PubMed Web of Science Google Scholar
First citationStickings, C. E. & Mahmoodian, A. (1962). Chem. Ind. (London), 40, 1718–1719.  Google Scholar
First citationWang, W. L., Zhu, T. J., Tao, H. W., Lu, Z. Y., Fang, Y. C., Gu, Q. Q. & Zhu, W. M. (2007). J. Antibiot. 60, 603–607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds