Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ag2(CN)2(C5H12N2S)]n, crystallizes as an infinite three-dimensional framework structure. It exists in an unusual ionic form, the asymmetric unit being composed of a cation [(μ-tetra­methyl­thio­urea-S)Ag]+ and an anion [(Ag(CN)2]. The thio­urea S atom is coordinated asymmetrically to silver ions, linking two almost parallel chains. The same silver atom is linked to a symmetry-related atom by the [Ag(CN)2] anion. In this way, a three-dimensional structure is built up. The shortest Ag...Ag inter­molecular contact distance involves the silver atom in the [Ag(CN)2] anion [Ag...Ag 3.6965 (5) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044844/bq2035sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044844/bq2035Isup2.hkl
Contains datablock I

CCDC reference: 663643

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](N-C) = 0.005 Å
  • R factor = 0.030
  • wR factor = 0.070
  • Data-to-parameter ratio = 24.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.402 0.709 Tmin(prime) and Tmax expected: 0.498 0.713 RR(prime) = 0.812 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.79
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structure of the asymmetric unit of the title compound is shown in Fig. 1. The reaction of the silver nitrate complex of tetramethylthiourea with KCN lead to the formation of an unusual ionic three dimensional polymer. The asymmetric unit is composed of a cation, [(µ-tetramethylthiourea-S)Ag]+, and an anion, [(Ag(CN)2]-. The S-atom of the cation asymmetrically bridges two silver Ag1 atoms in two almost parallel symmetry related chains; bond distance S1—Ag1 is 2.4990 (9) Å, while distance S1—Ag1i is 2.7075 (9) Å [symmetry operation (i) = x + 1/2, -y + 1/2, -z]. The Ag1 atoms in these chains are further linked via the N-atoms of the [(Ag(CN)2]- anions (Fig. 2), so building up the three dimensional framework.

The Ag1—N(CN) distances are normal [2.288 (3) and 2.242 (3) Å], as are the Ag2—C distances [2.047 (3) and 2.048 (3) Å], indicating no disorder of the CN bonds. The reaction of tetramethylthiourea with AgCN lead to the formation of a one-dimensional chiral polymer (Stocker et al., 2000). There the cyanide groups, coordinated to equivalent Ag atoms, have equal distances at both ends (2.155 (4) Å) and are completely disordered.

In the crystal structure the shortest Ag···Ag intermolecular contact distance involves atom Ag2 of the [Ag(CN)2]- anion; distance Ag2···Ag2iii is equal to 3.6965 (5) Å [symmetry operation (iii) = x - 1/2, y, -z - 1/2].

Related literature top

For related literature, see: Stocker et al. (2000).

Experimental top

The title compound was prepared by adding 2 mmol of tetramethylthiourea in 15–20 ml of methanol to 1 mmol (0.17 g) of AgNO3, followed by the addition of 1 mmol of KCN dissolved in 15 - 20 ml of distilled water. A clear solution was obtained and was stirred for ca 30 min. The solution was filtered and the filtrate allowed to evaporate slowly at room temperature, giving colorless block-like crystals.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.98 Å with Uiso(H) = 1.5U eq (C).

Structure description top

The structure of the asymmetric unit of the title compound is shown in Fig. 1. The reaction of the silver nitrate complex of tetramethylthiourea with KCN lead to the formation of an unusual ionic three dimensional polymer. The asymmetric unit is composed of a cation, [(µ-tetramethylthiourea-S)Ag]+, and an anion, [(Ag(CN)2]-. The S-atom of the cation asymmetrically bridges two silver Ag1 atoms in two almost parallel symmetry related chains; bond distance S1—Ag1 is 2.4990 (9) Å, while distance S1—Ag1i is 2.7075 (9) Å [symmetry operation (i) = x + 1/2, -y + 1/2, -z]. The Ag1 atoms in these chains are further linked via the N-atoms of the [(Ag(CN)2]- anions (Fig. 2), so building up the three dimensional framework.

The Ag1—N(CN) distances are normal [2.288 (3) and 2.242 (3) Å], as are the Ag2—C distances [2.047 (3) and 2.048 (3) Å], indicating no disorder of the CN bonds. The reaction of tetramethylthiourea with AgCN lead to the formation of a one-dimensional chiral polymer (Stocker et al., 2000). There the cyanide groups, coordinated to equivalent Ag atoms, have equal distances at both ends (2.155 (4) Å) and are completely disordered.

In the crystal structure the shortest Ag···Ag intermolecular contact distance involves atom Ag2 of the [Ag(CN)2]- anion; distance Ag2···Ag2iii is equal to 3.6965 (5) Å [symmetry operation (iii) = x - 1/2, y, -z - 1/2].

For related literature, see: Stocker et al. (2000).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing the atomic numbering scheme and displacement parameters drawn at the 50% probabilty level.
[Figure 2] Fig. 2. The crystal packing of compound (I) viewed along the a axis. The hydrogen atoms and C and N-atoms of the thiourea moiety have been omitted for clarity.
Poly[di-µ2-cyanido-κ2C:N;κ2N:C2-N,N,N',N'- tetramethylthiourea-κ2S:S-disilver(I)] top
Crystal data top
[Ag2(CN)2(C5H12N2S)]F(000) = 1536
Mr = 400.01Dx = 2.195 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 23959 reflections
a = 7.3563 (4) Åθ = 1.8–29.6°
b = 15.6735 (11) ŵ = 3.38 mm1
c = 20.9978 (16) ÅT = 173 K
V = 2421.0 (3) Å3Block, colourless
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
3284 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2003)
h = 109
Tmin = 0.402, Tmax = 0.709k = 2121
32772 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0265P)2 + 3.3418P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3284 reflectionsΔρmax = 0.46 e Å3
132 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00073 (8)
Crystal data top
[Ag2(CN)2(C5H12N2S)]V = 2421.0 (3) Å3
Mr = 400.01Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3563 (4) ŵ = 3.38 mm1
b = 15.6735 (11) ÅT = 173 K
c = 20.9978 (16) Å0.20 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
3284 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2003)
2731 reflections with I > 2σ(I)
Tmin = 0.402, Tmax = 0.709Rint = 0.070
32772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
3284 reflectionsΔρmin = 0.94 e Å3
132 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.34332 (3)0.25371 (2)0.08070 (1)0.0319 (1)
Ag20.51946 (4)0.00703 (2)0.24123 (1)0.0409 (1)
S10.16344 (11)0.22840 (6)0.01848 (4)0.0326 (2)
N10.3533 (4)0.25257 (19)0.12435 (13)0.0349 (8)
N20.3000 (4)0.37387 (19)0.06475 (13)0.0340 (8)
N30.3898 (5)0.1365 (2)0.14355 (15)0.0412 (10)
N40.3563 (5)0.3562 (2)0.15502 (16)0.0425 (10)
C10.2806 (5)0.2894 (2)0.07285 (15)0.0304 (9)
C20.3721 (6)0.2957 (3)0.18619 (17)0.0526 (15)
C30.3799 (5)0.1602 (3)0.1272 (2)0.0447 (12)
C40.1848 (6)0.4213 (3)0.02035 (18)0.0437 (11)
C50.4564 (6)0.4223 (3)0.0878 (2)0.0520 (14)
C60.4379 (5)0.0842 (2)0.17756 (17)0.0367 (10)
C70.3986 (6)0.4043 (2)0.19317 (17)0.0378 (10)
H2A0.304600.349600.185400.0780*
H2B0.500900.307300.194500.0780*
H2C0.323400.259000.219900.0780*
H3A0.269200.133100.143500.0670*
H3B0.481900.147200.155600.0670*
H3C0.406200.138500.084400.0670*
H4A0.063900.395100.018800.0660*
H4B0.239300.420000.022200.0660*
H4C0.173900.480600.034700.0660*
H5A0.546600.382900.105600.0780*
H5B0.416900.462300.120800.0780*
H5C0.510800.454000.052400.0780*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0352 (1)0.0369 (1)0.0236 (1)0.0003 (1)0.0017 (1)0.0003 (1)
Ag20.0590 (2)0.0348 (1)0.0290 (1)0.0060 (1)0.0008 (1)0.0063 (1)
S10.0276 (4)0.0458 (4)0.0245 (3)0.0063 (3)0.0019 (3)0.0043 (3)
N10.0337 (14)0.0465 (16)0.0246 (12)0.0047 (13)0.0024 (11)0.0015 (12)
N20.0328 (15)0.0401 (15)0.0292 (13)0.0021 (12)0.0053 (12)0.0058 (12)
N30.0458 (18)0.0419 (16)0.0358 (16)0.0038 (13)0.0028 (14)0.0075 (13)
N40.0450 (19)0.0447 (16)0.0377 (16)0.0011 (14)0.0037 (14)0.0085 (14)
C10.0268 (14)0.0400 (17)0.0243 (14)0.0031 (13)0.0021 (12)0.0029 (13)
C20.056 (3)0.078 (3)0.0237 (16)0.015 (2)0.0075 (16)0.0088 (18)
C30.039 (2)0.051 (2)0.044 (2)0.0043 (16)0.0001 (16)0.0111 (18)
C40.048 (2)0.045 (2)0.0382 (18)0.0076 (17)0.0065 (17)0.0007 (16)
C50.049 (2)0.049 (2)0.058 (3)0.0059 (19)0.013 (2)0.0116 (19)
C60.044 (2)0.0343 (16)0.0317 (17)0.0023 (14)0.0013 (14)0.0039 (14)
C70.047 (2)0.0347 (17)0.0316 (17)0.0025 (15)0.0029 (15)0.0030 (14)
Geometric parameters (Å, º) top
Ag1—S12.4990 (9)N4—C71.143 (5)
Ag1—N32.288 (3)C2—H2A0.9800
Ag1—N42.242 (3)C2—H2B0.9800
Ag1—S1i2.7075 (9)C2—H2C0.9800
Ag2—C62.047 (3)C3—H3A0.9800
Ag2—C7ii2.048 (3)C3—H3B0.9800
S1—C11.721 (3)C3—H3C0.9800
N1—C11.337 (4)C4—H4A0.9800
N1—C21.470 (5)C4—H4B0.9800
N1—C31.462 (6)C4—H4C0.9800
N2—C11.342 (4)C5—H5A0.9800
N2—C41.463 (5)C5—H5B0.9800
N2—C51.461 (5)C5—H5C0.9800
N3—C61.143 (5)
Ag1···C43.572 (4)C6···C2vi3.459 (5)
Ag1···C4i3.929 (5)C6···Ag2vii3.798 (4)
Ag1···C5iii3.967 (5)C7···Ag2x3.523 (4)
Ag1···N1iii3.721 (3)C2···H5A2.5300
Ag1···C1iii4.198 (4)C2···H5B2.9700
Ag1···C2iii4.186 (4)C5···H2B2.8900
Ag1···C3iii3.794 (4)C5···H2A2.6000
Ag1···C3i4.284 (4)C6···H2Ai2.8900
Ag2···C6iv3.798 (4)C7···H3Ai2.9800
Ag2···C3v3.471 (4)C7···H5Bxii2.9200
Ag2···C2vi3.804 (5)H2A···N22.5600
Ag2···C5vi3.856 (4)H2A···C52.6000
Ag2···Ag2vii3.6965 (5)H2A···H5A2.5000
Ag2···Ag2iv3.6965 (5)H2A···H5B2.3800
Ag2···N4viii3.939 (3)H2A···Ag2iii3.4400
Ag2···C7viii3.523 (4)H2A···C6iii2.8900
Ag1···H3Ciii3.6300H2A···Ag2xi3.3100
Ag1···H4A3.6700H2B···C52.8900
Ag1···H2Biii3.6000H2B···H5A2.2400
Ag1···H3Biii3.4600H2B···Ag1i3.6000
Ag1···H4Ai3.1200H2B···Ag2xi3.4100
Ag1···H5Aiii3.1000H2C···H3A2.5700
Ag1···H4B2.9800H2C···H3B2.5000
Ag2···H3Aix3.7800H3A···S13.1200
Ag2···H2Ai3.4400H3A···H2C2.5700
Ag2···H3Av3.2500H3A···Ag2xiii3.7800
Ag2···H3Bv2.8400H3A···C7iii2.9800
Ag2···H2Avi3.3100H3A···Ag2v3.2500
Ag2···H2Bvi3.4100H3B···H2C2.5000
Ag2···H5Avi3.7600H3B···Ag1i3.4600
Ag2···H5Bvi3.0700H3B···N4i2.7500
S1···C1iii3.419 (4)H3B···Ag2v2.8400
S1···C5iii3.589 (5)H3C···S12.6600
S1···H3A3.1200H3C···Ag1i3.6300
S1···H4B3.1700H3C···H4Ai2.5100
S1···H3C2.6600H4A···Ag13.6700
S1···H4A2.7100H4A···S12.7100
N1···Ag1i3.721 (3)H4A···Ag1iii3.1200
N3···C1i3.438 (5)H4A···H3Ciii2.5100
N4···Ag2x3.939 (3)H4B···Ag12.9800
N1···H5A2.5200H4B···S13.1700
N2···H2A2.5600H4B···H5C2.5900
N3···H5Aiii2.6600H4C···H5B2.5600
N4···H3Biii2.7500H4C···H5C2.5400
C1···Ag1i4.198 (4)H5A···N12.5200
C2···C52.931 (6)H5A···C22.5300
C2···Ag2xi3.804 (5)H5A···H2A2.5000
C2···C6xi3.459 (5)H5A···H2B2.2400
C2···Ag1i4.186 (4)H5A···Ag1i3.1000
C3···Ag2v3.471 (4)H5A···N3i2.6600
C3···Ag1iii4.284 (4)H5A···Ag2xi3.7600
C3···Ag1i3.794 (4)H5B···C22.9700
C4···Ag13.572 (4)H5B···H2A2.3800
C4···Ag1iii3.929 (5)H5B···H4C2.5600
C5···Ag2xi3.856 (4)H5B···C7xii2.9200
C5···S1i3.589 (5)H5B···Ag2xi3.0700
C5···C22.931 (6)H5C···H4B2.5900
C5···Ag1i3.967 (5)H5C···H4C2.5400
S1—Ag1—N3115.62 (9)N1—C2—H2B109.00
S1—Ag1—N4135.76 (9)N1—C2—H2C109.00
S1—Ag1—S1i94.30 (3)H2A—C2—H2B109.00
N3—Ag1—N499.64 (12)H2A—C2—H2C109.00
S1i—Ag1—N3103.39 (9)H2B—C2—H2C109.00
S1i—Ag1—N4102.98 (9)N1—C3—H3A109.00
C6—Ag2—C7ii178.41 (13)N1—C3—H3B109.00
Ag1—S1—C1101.51 (12)N1—C3—H3C109.00
Ag1—S1—Ag1iii147.80 (4)H3A—C3—H3B109.00
Ag1iii—S1—C193.32 (12)H3A—C3—H3C109.00
C1—N1—C2123.6 (3)H3B—C3—H3C110.00
C1—N1—C3120.9 (3)N2—C4—H4A110.00
C2—N1—C3114.0 (3)N2—C4—H4B109.00
C1—N2—C4121.4 (3)N2—C4—H4C109.00
C1—N2—C5123.7 (3)H4A—C4—H4B109.00
C4—N2—C5113.8 (3)H4A—C4—H4C109.00
Ag1—N3—C6169.2 (3)H4B—C4—H4C109.00
Ag1—N4—C7166.4 (3)N2—C5—H5A109.00
S1—C1—N1119.8 (2)N2—C5—H5B109.00
S1—C1—N2121.2 (2)N2—C5—H5C110.00
N1—C1—N2119.1 (3)H5A—C5—H5B110.00
Ag2—C6—N3177.8 (3)H5A—C5—H5C109.00
Ag2xiv—C7—N4177.7 (3)H5B—C5—H5C109.00
N1—C2—H2A109.00
N3—Ag1—S1—C1139.11 (15)Ag1—S1—C1—N1120.5 (3)
N3—Ag1—S1—Ag1iii105.15 (12)Ag1—S1—C1—N259.8 (3)
N4—Ag1—S1—C181.55 (18)Ag1iii—S1—C1—N188.3 (3)
N4—Ag1—S1—Ag1iii34.19 (16)Ag1iii—S1—C1—N291.4 (3)
S1i—Ag1—S1—C132.04 (12)C2—N1—C1—S1148.1 (3)
S1i—Ag1—S1—Ag1iii147.78 (7)C2—N1—C1—N231.6 (5)
S1—Ag1—S1i—Ag1i18.94 (8)C3—N1—C1—S117.1 (5)
S1—Ag1—S1i—C1i136.79 (11)C3—N1—C1—N2163.2 (3)
N3—Ag1—S1i—Ag1i98.68 (11)C4—N2—C1—S116.8 (5)
N3—Ag1—S1i—C1i19.17 (14)C4—N2—C1—N1162.9 (3)
N4—Ag1—S1i—Ag1i157.94 (11)C5—N2—C1—S1149.9 (3)
N4—Ag1—S1i—C1i84.21 (14)C5—N2—C1—N130.4 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y, z1/2; (v) x+1, y, z; (vi) x, y+1/2, z1/2; (vii) x1/2, y, z1/2; (viii) x+1/2, y1/2, z; (ix) x+1/2, y, z1/2; (x) x+1/2, y+1/2, z; (xi) x, y+1/2, z+1/2; (xii) x+1, y+1, z; (xiii) x+1/2, y, z+1/2; (xiv) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N10.982.522.871 (6)101

Experimental details

Crystal data
Chemical formula[Ag2(CN)2(C5H12N2S)]
Mr400.01
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)7.3563 (4), 15.6735 (11), 20.9978 (16)
V3)2421.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerStoe IPDS2
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2003)
Tmin, Tmax0.402, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
32772, 3284, 2731
Rint0.070
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.07
No. of reflections3284
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.94

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Ag1—S12.4990 (9)Ag1—S1i2.7075 (9)
Ag1—N32.288 (3)Ag2—C62.047 (3)
Ag1—N42.242 (3)Ag2—C7ii2.048 (3)
Ag2···Ag2iii3.6965 (5)Ag2···Ag2iv3.6965 (5)
S1—Ag1—N3115.62 (9)S1i—Ag1—N4102.98 (9)
S1—Ag1—N4135.76 (9)C6—Ag2—C7ii178.41 (13)
S1—Ag1—S1i94.30 (3)Ag1—S1—C1101.51 (12)
N3—Ag1—N499.64 (12)Ag1—S1—Ag1v147.80 (4)
S1i—Ag1—N3103.39 (9)Ag1v—S1—C193.32 (12)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z1/2; (iii) x1/2, y, z1/2; (iv) x+1/2, y, z1/2; (v) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N10.982.522.871 (6)101
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds