Download citation
Download citation
link to html
The LaIII atom in the title complex, [La(C8H7O3)3(C12H8N2)], is coordinated by two N atoms of the 1,10-phenanthroline ligand and four O atoms of three phenoxy­acetate ligands. This mononuclear complex is further extended into a supra­molecular network structure via nonclassical hydrogen bonds between CH groups of 1,10-phenanthroline and phenoxy­acetate and O atoms of neighbouring phenoxy­acetate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027171/bq2017sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027171/bq2017Isup2.hkl
Contains datablock I

CCDC reference: 1148881

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.036
  • wR factor = 0.090
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.43 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.83 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C25 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C31 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O9 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 74.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 3.37 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Deborah et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the La atom is completed by the two N atoms of 1,10-phenanthroline ligand and four O atoms of three phenoxyacetic acid ligands (Table 1). The La—O bond lengths are in the range 2.4175 (19) to 2.827 (2) Å. The La—N bond lengths are in the range 2.707 (2) to 2.750 (3) Å. C—H···O non-classica hydrogen bonds between C—H groups of 1,10-phenanthroline or phenoxyacetic acid and O atoms of neighbouring phenoxyacetic acid molecules, with an average C···O distances of 3.179 (9) Å, generate a layered hydrogen-bonded network (Fig. 2 and Table 2). The non-classical hydrogen-bonding interactions link the mononuclear complex into a supramolecular network structure.

Related literature top

For related literature, see: Allen et al. (1987); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Lanthanum (III) chloride hexahydrate (70.7 mg, 0.2 mmol), phen (39.6 mg, 0.2 mmol), phenoxyacetic acid (91.3 mg, 0.6 mmol) and distilled water (4 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 413 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 - 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). FLAT and EADP restrains of SHELXS applied for C31/C36.

Structure description top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials having optical, electronic, magnetic and biological importance potential applications (Deborah et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six-coordinate environment of the La atom is completed by the two N atoms of 1,10-phenanthroline ligand and four O atoms of three phenoxyacetic acid ligands (Table 1). The La—O bond lengths are in the range 2.4175 (19) to 2.827 (2) Å. The La—N bond lengths are in the range 2.707 (2) to 2.750 (3) Å. C—H···O non-classica hydrogen bonds between C—H groups of 1,10-phenanthroline or phenoxyacetic acid and O atoms of neighbouring phenoxyacetic acid molecules, with an average C···O distances of 3.179 (9) Å, generate a layered hydrogen-bonded network (Fig. 2 and Table 2). The non-classical hydrogen-bonding interactions link the mononuclear complex into a supramolecular network structure.

For related literature, see: Allen et al. (1987); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I) wieved down to b axis. Hydrogen bonds are shown as dashed lines. Part H atoms have been omitted for clarity. [Symmetry code: (A) 2 - x, -y, 2 - z; (B) 1 - x, 1 - y, 1 - z; (C) x - 1, 1/2 - y, z - 1/2; (D) 1 - x, 1/2 + y, 3/2 - z; (E) x, y, z; (F) 2 - x, 1 - y, 2 - z]
(1,10-Phenanthroline)tris(phenoxyacetato)lanthanum(III) top
Crystal data top
[La(C8H7O3)3(C12H8N2)]F(000) = 1552
Mr = 772.52Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9081 reflections
a = 20.182 (3) Åθ = 2.5–27.0°
b = 8.5307 (11) ŵ = 1.31 mm1
c = 20.833 (3) ÅT = 273 K
β = 107.779 (2)°Plane, colorless
V = 3415.5 (8) Å30.33 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker APEX II area-detector
diffractometer
6634 independent reflections
Radiation source: fine-focus sealed tube4671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.674, Tmax = 0.903k = 1010
24692 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.615P]
where P = (Fo2 + 2Fc2)/3
6634 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 1.43 e Å3
3 restraintsΔρmin = 0.59 e Å3
Crystal data top
[La(C8H7O3)3(C12H8N2)]V = 3415.5 (8) Å3
Mr = 772.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 20.182 (3) ŵ = 1.31 mm1
b = 8.5307 (11) ÅT = 273 K
c = 20.833 (3) Å0.33 × 0.12 × 0.08 mm
β = 107.779 (2)°
Data collection top
Bruker APEX II area-detector
diffractometer
6634 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4671 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.903Rint = 0.040
24692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 1.43 e Å3
6634 reflectionsΔρmin = 0.59 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.931205 (11)0.19064 (2)0.964291 (10)0.03933 (9)
O10.97062 (14)0.0601 (3)0.87477 (12)0.0530 (7)
O21.06694 (14)0.0829 (3)0.92161 (13)0.0557 (7)
O31.11837 (16)0.0162 (4)0.82201 (15)0.0735 (9)
O40.94007 (14)0.4209 (3)1.03406 (12)0.0535 (7)
O51.00792 (16)0.6128 (3)1.09095 (13)0.0635 (8)
O60.98698 (16)0.5279 (3)1.20623 (13)0.0681 (9)
O70.84638 (13)0.0360 (3)0.91880 (13)0.0505 (7)
O80.94658 (13)0.1382 (4)0.97709 (13)0.0555 (7)
O90.78443 (16)0.3265 (3)0.89809 (16)0.0696 (9)
N10.79701 (17)0.2347 (4)0.96669 (17)0.0533 (8)
N20.83407 (18)0.3069 (4)0.85438 (16)0.0535 (8)
C10.7780 (2)0.1918 (5)1.0201 (2)0.0688 (13)
H10.81270.16851.06000.083*
C20.7092 (3)0.1804 (7)1.0191 (3)0.0892 (17)
H20.69840.15061.05770.107*
C30.6582 (3)0.2128 (7)0.9617 (4)0.099 (2)
H30.61190.20440.96050.119*
C40.6745 (3)0.2591 (7)0.9041 (3)0.0810 (16)
C50.7460 (2)0.2676 (5)0.9087 (2)0.0573 (11)
C60.6233 (3)0.2982 (8)0.8400 (4)0.116 (2)
H60.57620.29010.83570.139*
C70.6424 (3)0.3453 (8)0.7875 (3)0.109 (2)
H70.60840.37280.74780.131*
C80.7134 (3)0.3547 (6)0.7905 (2)0.0764 (15)
C90.7659 (2)0.3100 (5)0.8504 (2)0.0571 (11)
C100.7354 (4)0.4029 (7)0.7366 (3)0.0936 (19)
H100.70280.43710.69710.112*
C110.8036 (3)0.4011 (6)0.7406 (2)0.0872 (17)
H110.81790.43350.70430.105*
C120.8526 (3)0.3489 (5)0.8009 (2)0.0692 (13)
H120.89930.34380.80330.083*
C131.0287 (2)0.0035 (5)0.87698 (19)0.0473 (9)
C141.0525 (2)0.0507 (5)0.8173 (2)0.0608 (11)
H14A1.01850.01610.77590.073*
H14B1.05570.16400.81570.073*
C151.1456 (3)0.0146 (6)0.7704 (2)0.0679 (13)
C161.2080 (3)0.0552 (7)0.7767 (3)0.0873 (16)
H161.22930.11620.81440.105*
C171.2400 (3)0.0352 (8)0.7268 (4)0.1020 (19)
H171.28240.08350.73090.122*
C181.2094 (4)0.0543 (8)0.6722 (4)0.110 (2)
H181.23070.06690.63870.132*
C191.1481 (4)0.1252 (8)0.6664 (3)0.113 (2)
H191.12770.18760.62890.136*
C201.1149 (3)0.1063 (7)0.7158 (3)0.0902 (17)
H201.07260.15530.71140.108*
C210.9692 (2)0.4993 (5)1.08630 (19)0.0490 (10)
C220.9490 (2)0.4462 (5)1.14728 (19)0.0618 (11)
H22A0.89960.46381.13910.074*
H22B0.95770.33461.15400.074*
C230.9748 (2)0.4889 (5)1.2657 (2)0.0598 (11)
C240.9277 (3)0.3797 (7)1.2719 (2)0.0801 (15)
H240.90140.32401.23450.096*
C250.9197 (4)0.3526 (9)1.3349 (3)0.113 (2)
H250.88830.27681.33940.136*
C260.9566 (4)0.4343 (9)1.3897 (3)0.110 (2)
H260.94960.41731.43120.132*
C271.0043 (3)0.5416 (7)1.3837 (2)0.0969 (18)
H271.03050.59641.42150.116*
C281.0142 (3)0.5702 (6)1.3219 (2)0.0778 (14)
H281.04710.64321.31810.093*
C290.8843 (2)0.1515 (5)0.93930 (19)0.0489 (10)
C300.8575 (2)0.3151 (5)0.9191 (2)0.0610 (11)
H30A0.87450.35030.88270.073*
H30B0.87630.38490.95710.073*
C310.7516 (5)0.3130 (8)0.9450 (5)0.1338 (13)
C320.7850 (5)0.2767 (8)1.0120 (5)0.1338 (13)
H320.83290.26131.02750.161*
C330.7437 (4)0.2637 (8)1.0562 (5)0.1338 (13)
H330.76380.23851.10150.161*
C340.6746 (5)0.2888 (8)1.0310 (5)0.1338 (13)
H340.64770.27551.05980.161*
C350.6406 (5)0.3336 (8)0.9643 (5)0.1338 (13)
H350.59360.35940.95010.161*
C360.6801 (4)0.3378 (8)0.9205 (4)0.1338 (13)
H360.65890.35720.87490.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.04562 (13)0.03362 (13)0.03345 (12)0.00164 (10)0.00420 (8)0.00052 (10)
O10.0624 (17)0.0522 (17)0.0435 (15)0.0088 (15)0.0148 (13)0.0025 (13)
O20.0667 (17)0.0541 (18)0.0462 (16)0.0083 (15)0.0173 (13)0.0111 (14)
O30.074 (2)0.091 (2)0.0632 (19)0.0191 (18)0.0323 (16)0.0229 (17)
O40.0757 (18)0.0386 (16)0.0436 (15)0.0067 (14)0.0140 (13)0.0063 (13)
O50.092 (2)0.0529 (19)0.0445 (16)0.0291 (17)0.0192 (15)0.0019 (13)
O60.096 (2)0.066 (2)0.0420 (16)0.0290 (17)0.0206 (15)0.0074 (14)
O70.0510 (15)0.0388 (16)0.0524 (16)0.0003 (13)0.0021 (12)0.0032 (12)
O80.0492 (16)0.0594 (18)0.0477 (16)0.0039 (13)0.0005 (13)0.0073 (13)
O90.065 (2)0.050 (2)0.078 (2)0.0146 (15)0.0026 (16)0.0072 (16)
N10.053 (2)0.047 (2)0.051 (2)0.0039 (16)0.0044 (17)0.0078 (16)
N20.067 (2)0.040 (2)0.0426 (19)0.0027 (17)0.0014 (16)0.0006 (15)
C10.063 (3)0.083 (4)0.059 (3)0.008 (3)0.017 (2)0.002 (3)
C20.061 (3)0.126 (5)0.085 (4)0.005 (3)0.030 (3)0.015 (3)
C30.054 (3)0.120 (6)0.119 (5)0.003 (3)0.020 (3)0.019 (4)
C40.053 (3)0.091 (4)0.082 (4)0.008 (3)0.005 (3)0.021 (3)
C50.054 (3)0.043 (3)0.065 (3)0.0060 (19)0.003 (2)0.011 (2)
C60.063 (4)0.147 (7)0.111 (5)0.014 (4)0.014 (4)0.028 (5)
C70.081 (4)0.120 (6)0.089 (5)0.038 (4)0.030 (3)0.015 (4)
C80.081 (4)0.066 (3)0.057 (3)0.018 (3)0.016 (3)0.009 (2)
C90.062 (3)0.040 (2)0.051 (2)0.005 (2)0.011 (2)0.005 (2)
C100.119 (5)0.076 (4)0.053 (3)0.019 (4)0.022 (3)0.001 (3)
C110.125 (5)0.076 (4)0.044 (3)0.002 (4)0.001 (3)0.011 (3)
C120.090 (3)0.058 (3)0.050 (3)0.003 (2)0.006 (2)0.008 (2)
C130.061 (3)0.037 (2)0.042 (2)0.004 (2)0.0124 (19)0.0016 (17)
C140.070 (3)0.061 (3)0.054 (3)0.007 (2)0.022 (2)0.012 (2)
C150.076 (3)0.073 (3)0.065 (3)0.006 (3)0.037 (3)0.001 (2)
C160.086 (4)0.107 (5)0.081 (4)0.002 (3)0.043 (3)0.001 (3)
C170.098 (4)0.107 (5)0.123 (5)0.006 (4)0.066 (4)0.008 (4)
C180.148 (6)0.090 (5)0.126 (6)0.017 (5)0.095 (5)0.000 (4)
C190.159 (6)0.108 (5)0.101 (5)0.016 (5)0.082 (5)0.031 (4)
C200.109 (4)0.097 (4)0.082 (4)0.010 (4)0.056 (3)0.026 (3)
C210.064 (3)0.038 (2)0.043 (2)0.002 (2)0.0134 (19)0.0020 (18)
C220.080 (3)0.059 (3)0.047 (2)0.020 (2)0.020 (2)0.006 (2)
C230.077 (3)0.060 (3)0.042 (2)0.003 (2)0.017 (2)0.003 (2)
C240.088 (4)0.096 (4)0.060 (3)0.034 (3)0.027 (3)0.003 (3)
C250.133 (5)0.148 (6)0.070 (4)0.062 (5)0.047 (4)0.002 (4)
C260.138 (5)0.144 (6)0.055 (3)0.030 (5)0.042 (3)0.008 (4)
C270.125 (5)0.113 (5)0.045 (3)0.022 (4)0.015 (3)0.009 (3)
C280.095 (4)0.081 (4)0.053 (3)0.022 (3)0.017 (2)0.010 (3)
C290.053 (2)0.052 (3)0.037 (2)0.004 (2)0.0066 (18)0.0027 (18)
C300.066 (3)0.047 (3)0.061 (3)0.003 (2)0.007 (2)0.006 (2)
C310.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
C320.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
C330.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
C340.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
C350.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
C360.148 (3)0.098 (2)0.182 (4)0.017 (2)0.089 (3)0.031 (2)
Geometric parameters (Å, º) top
La1—O12.501 (3)C11—C121.413 (6)
La1—O42.417 (3)C11—H110.9300
La1—O72.564 (2)C12—H120.9300
La1—O82.826 (3)C13—C141.518 (5)
La1—N12.750 (3)C14—H14A0.9700
La1—N22.707 (3)C14—H14B0.9700
La1—O8i2.436 (3)C15—C161.362 (7)
La1—O2i2.538 (2)C15—C201.363 (7)
La1—O5ii2.551 (3)C16—C171.392 (7)
O1—C131.255 (4)C16—H160.9300
O2—C131.251 (4)C17—C181.351 (8)
O2—La1i2.538 (2)C17—H170.9300
O3—C151.375 (5)C18—C191.349 (8)
O3—C141.422 (5)C18—H180.9300
O4—C211.259 (4)C19—C201.398 (7)
O5—C211.230 (5)C19—H190.9300
O5—La1ii2.551 (3)C20—H200.9300
O6—C231.376 (5)C21—C221.517 (5)
O6—C221.417 (4)C22—H22A0.9700
O7—C291.241 (5)C22—H22B0.9700
O8—C291.268 (5)C23—C241.365 (6)
O8—La1i2.436 (3)C23—C281.383 (6)
O9—C311.343 (8)C24—C251.390 (7)
O9—C301.408 (5)C24—H240.9300
N1—C11.334 (5)C25—C261.350 (8)
N1—C51.356 (5)C25—H250.9300
N2—C121.327 (5)C26—C271.362 (8)
N2—C91.354 (5)C26—H260.9300
C1—C21.386 (6)C27—C281.383 (7)
C1—H10.9300C27—H270.9300
C2—C31.347 (8)C28—H280.9300
C2—H20.9300C29—C301.509 (5)
C3—C41.396 (8)C30—H30A0.9700
C3—H30.9300C30—H30B0.9700
C4—C51.418 (6)C31—C321.387 (11)
C4—C61.457 (8)C31—C361.392 (11)
C5—C91.436 (6)C32—C331.425 (9)
C6—C71.328 (9)C32—H320.9300
C6—H60.9300C33—C341.347 (10)
C7—C81.418 (8)C33—H330.9300
C7—H70.9300C34—C351.402 (11)
C8—C101.390 (8)C34—H340.9300
C8—C91.420 (6)C35—C361.383 (9)
C10—C111.353 (7)C35—H350.9300
C10—H100.9300C36—H360.9300
O1—La1—O4145.89 (9)C12—C11—H11120.7
O1—La1—O773.58 (9)N2—C12—C11122.1 (5)
O1—La1—O865.02 (8)N2—C12—H12118.9
O4—La1—O7138.87 (9)C11—C12—H12118.9
O4—La1—O8139.82 (8)O2—C13—O1127.7 (4)
O7—La1—O847.79 (7)O2—C13—C14119.2 (4)
O1—La1—N1127.85 (9)O1—C13—C14113.1 (3)
O4—La1—N176.73 (9)O3—C14—C13111.1 (3)
O7—La1—N163.87 (9)O3—C14—H14A109.4
O8—La1—N1102.38 (9)C13—C14—H14A109.4
O1—La1—N281.11 (9)O3—C14—H14B109.4
O4—La1—N296.46 (9)C13—C14—H14B109.4
O7—La1—N274.58 (9)H14A—C14—H14B108.0
O8—La1—N2118.27 (8)C16—C15—C20120.2 (5)
N1—La1—N260.16 (11)C16—C15—O3114.8 (4)
O4—La1—O8i88.28 (10)C20—C15—O3125.0 (4)
O8i—La1—O177.78 (9)C15—C16—C17119.9 (6)
O4—La1—O2i75.76 (9)C15—C16—H16120.0
O8i—La1—O2i74.99 (9)C17—C16—H16120.0
O1—La1—O2i128.31 (9)C18—C17—C16120.1 (6)
O4—La1—O5ii77.28 (9)C18—C17—H17120.0
O8i—La1—O5ii78.07 (10)C16—C17—H17120.0
O1—La1—O5ii69.48 (9)C19—C18—C17120.0 (6)
O2i—La1—O5ii142.10 (9)C19—C18—H18120.0
O8i—La1—O7120.43 (9)C17—C18—H18120.0
O2i—La1—O783.70 (9)C18—C19—C20120.9 (6)
O5ii—La1—O7133.46 (8)C18—C19—H19119.5
O8i—La1—N2148.44 (10)C20—C19—H19119.5
O2i—La1—N2136.43 (10)C15—C20—C19118.9 (6)
O5ii—La1—N272.66 (10)C15—C20—H20120.6
O8i—La1—N1150.22 (10)C19—C20—H20120.6
O2i—La1—N176.43 (9)O5—C21—O4127.2 (4)
O5ii—La1—N1122.08 (10)O5—C21—C22119.7 (4)
O8i—La1—O872.87 (10)O4—C21—C22113.0 (4)
O2i—La1—O865.31 (8)O6—C22—C21111.5 (3)
O5ii—La1—O8129.85 (9)O6—C22—H22A109.3
C13—O1—La1130.5 (2)C21—C22—H22A109.3
C13—O2—La1i137.6 (3)O6—C22—H22B109.3
C15—O3—C14117.3 (3)C21—C22—H22B109.3
C21—O4—La1151.7 (3)H22A—C22—H22B108.0
C21—O5—La1ii149.8 (3)C24—C23—O6124.8 (4)
C23—O6—C22117.6 (3)C24—C23—C28119.9 (4)
C29—O7—La1101.5 (2)O6—C23—C28115.2 (4)
C29—O8—La1i162.7 (3)C23—C24—C25119.2 (5)
C29—O8—La188.3 (2)C23—C24—H24120.4
La1i—O8—La1107.13 (10)C25—C24—H24120.4
C31—O9—C30118.1 (5)C26—C25—C24121.2 (5)
C1—N1—C5117.8 (4)C26—C25—H25119.4
C1—N1—La1120.9 (3)C24—C25—H25119.4
C5—N1—La1119.8 (3)C25—C26—C27119.6 (5)
C12—N2—C9119.0 (4)C25—C26—H26120.2
C12—N2—La1119.5 (3)C27—C26—H26120.2
C9—N2—La1121.3 (3)C26—C27—C28120.7 (5)
N1—C1—C2123.3 (5)C26—C27—H27119.6
N1—C1—H1118.4C28—C27—H27119.6
C2—C1—H1118.4C23—C28—C27119.3 (5)
C3—C2—C1119.4 (5)C23—C28—H28120.4
C3—C2—H2120.3C27—C28—H28120.4
C1—C2—H2120.3O7—C29—O8122.2 (4)
C2—C3—C4120.3 (5)O7—C29—C30120.5 (4)
C2—C3—H3119.9O8—C29—C30117.3 (4)
C4—C3—H3119.9O9—C30—C29113.8 (3)
C3—C4—C5117.3 (5)O9—C30—H30A108.8
C3—C4—C6124.5 (6)C29—C30—H30A108.8
C5—C4—C6118.2 (6)O9—C30—H30B108.8
N1—C5—C4122.0 (5)C29—C30—H30B108.8
N1—C5—C9118.2 (4)H30A—C30—H30B107.7
C4—C5—C9119.8 (4)O9—C31—C32123.7 (8)
C7—C6—C4121.5 (6)O9—C31—C36114.0 (9)
C7—C6—H6119.3C32—C31—C36122.3 (8)
C4—C6—H6119.3C31—C32—C33117.9 (9)
C6—C7—C8121.6 (5)C31—C32—H32121.1
C6—C7—H7119.2C33—C32—H32121.1
C8—C7—H7119.2C34—C33—C32118.4 (9)
C10—C8—C7123.3 (5)C34—C33—H33120.8
C10—C8—C9117.0 (5)C32—C33—H33120.8
C7—C8—C9119.7 (5)C33—C34—C35124.4 (8)
N2—C9—C8122.0 (4)C33—C34—H34117.8
N2—C9—C5119.0 (3)C35—C34—H34117.8
C8—C9—C5119.0 (5)C36—C35—C34117.0 (9)
C11—C10—C8121.1 (5)C36—C35—H35121.5
C11—C10—H10119.4C34—C35—H35121.5
C8—C10—H10119.4C35—C36—C31119.7 (9)
C10—C11—C12118.7 (5)C35—C36—H36120.1
C10—C11—H11120.7C31—C36—H36120.1
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O7iii0.932.333.196 (5)156
C30—H30B···O4iv0.972.393.339 (5)166
C12—H12···O5ii0.932.453.039 (5)122
C1—H1···O2i0.932.453.132 (5)130
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[La(C8H7O3)3(C12H8N2)]
Mr772.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)20.182 (3), 8.5307 (11), 20.833 (3)
β (°) 107.779 (2)
V3)3415.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.33 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX II area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.674, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
24692, 6634, 4671
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.07
No. of reflections6634
No. of parameters403
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected bond lengths (Å) top
La1—O12.501 (3)La1—O82.826 (3)
La1—O42.417 (3)La1—N12.750 (3)
La1—O72.564 (2)La1—N22.707 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O7i0.932.333.196 (5)156
C30—H30B···O4ii0.972.393.339 (5)166
C12—H12···O5iii0.932.453.039 (5)122
C1—H1···O2iv0.932.453.132 (5)130
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds