Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Gd atom in the title title complex, [Gd(NO3)2(C26H34N6O2)]NO3·H2O, exhibits a nine-coordinate distorted tricapped trigonal prismatic coordination geometry. The water mol­ecule is disordered, with restrained occupancy factors of 0.4 and 0.6, with one component lying on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018144/bq2010sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018144/bq2010Isup2.hkl
Contains datablock I

CCDC reference: 646641

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in solvent or counterion
  • R factor = 0.049
  • wR factor = 0.107
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level B CELLV02_ALERT_1_B The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 4 Calculated cell volume su = 17.81 Cell volume su given = 13.00
Alert level C PLAT150_ALERT_1_C Volume as Calculated Differs from that Given ... 6724.50 Ang-3 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 23.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Lanthanide macrocyclic complexes have been received extensive attention, owing to their many possible applications in biological systems, material science and chemical processes (Alexander, 1995;Hu et al., 2003; Hu et al., 2004). A series of lanthanide(III) complexes with macrocyclic Schiff bases have synthesized by one step template condensation of 2,6-diformyl- 4-chlorophenol with 1,5-diamino-3-azapentane in the presence of lanthanide ions (Alexander, 1995). Guerriero et al. (1987) and Bunzli et al. (1988) have reported the crystal structures of the Tb(III) and Eu(III) complexes in which the central ion is nine-coordinate, being bound to five donor atoms from the cyclic polydentate ligand and to four O atoms of two bidentae nitrates.

The title complex (I) (Fig. 1), which is synthesized by template reaction of 2,6-diformyl-4-methylphenol with 1,5-diamino-3-azapentane in the presence of gadolinium(III) nitrate, exhibits a similar coordinate geometry (Fig. 2). Gd1 is encaptured with in the macrocyclic ligand which provided five donor atoms (the two O atoms O1, O2 from the phenolates and the three N atoms N1, N2, N3 from one end of the macrocycle). The ninefold coordination is completed around Gd1 by two bidentate nitrates which locate on the opposite sides of the bisphenoidal positions. The third nitrate is ionic. At the free end of the macrocycle, a further five-membered imidazoling rings is formed by contraction, this makes the ligand more compact hence allowing a more appropriate spatial arrangement of the donor atoms of the macrocyclic ligand around the lanthanide ions. The coordination polyhedron can be described as a distorted tricapped trigonal prism in which N2, O4 and O7 are the caps, as show in Fig.2.

Related literature top

For related literature, see: Alexander (1995); Bunzli & Moret (1988); Guerriero et al. (1987); Hu et al. (2003, 2004).

Experimental top

To a methanolic solution (20 ml) of 2,6-diformyl-4-methylphenol(1 mmol) and Gd(NO3)3.6H2O (0.5 mmol), 1,5-diamino-3-azapentane (1 mmol) was added dropwise. After refluxing 3 h, the solvent was removed. Yellow solid was recrystallized in acetonitrile and then yellow block crystals suitable for X-ray analysis were obtained.

Refinement top

The carbon-bound H atoms were generated geometrically (C–H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The water H atom was located in a difference Fourier map, and was refined with an O–H distance restraint of 0.85±0.01 Å; its temperature factor was refined.

Structure description top

Lanthanide macrocyclic complexes have been received extensive attention, owing to their many possible applications in biological systems, material science and chemical processes (Alexander, 1995;Hu et al., 2003; Hu et al., 2004). A series of lanthanide(III) complexes with macrocyclic Schiff bases have synthesized by one step template condensation of 2,6-diformyl- 4-chlorophenol with 1,5-diamino-3-azapentane in the presence of lanthanide ions (Alexander, 1995). Guerriero et al. (1987) and Bunzli et al. (1988) have reported the crystal structures of the Tb(III) and Eu(III) complexes in which the central ion is nine-coordinate, being bound to five donor atoms from the cyclic polydentate ligand and to four O atoms of two bidentae nitrates.

The title complex (I) (Fig. 1), which is synthesized by template reaction of 2,6-diformyl-4-methylphenol with 1,5-diamino-3-azapentane in the presence of gadolinium(III) nitrate, exhibits a similar coordinate geometry (Fig. 2). Gd1 is encaptured with in the macrocyclic ligand which provided five donor atoms (the two O atoms O1, O2 from the phenolates and the three N atoms N1, N2, N3 from one end of the macrocycle). The ninefold coordination is completed around Gd1 by two bidentate nitrates which locate on the opposite sides of the bisphenoidal positions. The third nitrate is ionic. At the free end of the macrocycle, a further five-membered imidazoling rings is formed by contraction, this makes the ligand more compact hence allowing a more appropriate spatial arrangement of the donor atoms of the macrocyclic ligand around the lanthanide ions. The coordination polyhedron can be described as a distorted tricapped trigonal prism in which N2, O4 and O7 are the caps, as show in Fig.2.

For related literature, see: Alexander (1995); Bunzli & Moret (1988); Guerriero et al. (1987); Hu et al. (2003, 2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Coordination polyhedron in (I).
(13,27-Dimethyl-3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta- 1(29),2,9,11,13,15 (30),16,23,25,27-decaene-29,30-diol- N3,N6,N9,O29,O30)bis(nitrato-κ2O,O')gadolinium(III) nitrate hydrate top
Crystal data top
[Gd(NO3)2(C26H34N6O2)]NO3·H2OF(000) = 3320
Mr = 823.89Dx = 1.628 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5110 reflections
a = 23.764 (3) Åθ = 2.6–25.0°
b = 14.298 (3) ŵ = 2.05 mm1
c = 19.804 (2) ÅT = 291 K
β = 91.769 (2)°Block, yellow
V = 6724.5 (13) Å30.30 × 0.26 × 0.24 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6596 independent reflections
Radiation source: sealed tube4171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2922
Tmin = 0.55, Tmax = 0.61k = 1617
19136 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
6596 reflections(Δ/σ)max < 0.001
440 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
[Gd(NO3)2(C26H34N6O2)]NO3·H2OV = 6724.5 (13) Å3
Mr = 823.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.764 (3) ŵ = 2.05 mm1
b = 14.298 (3) ÅT = 291 K
c = 19.804 (2) Å0.30 × 0.26 × 0.24 mm
β = 91.769 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6596 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4171 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.61Rint = 0.046
19136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.98Δρmax = 0.41 e Å3
6596 reflectionsΔρmin = 1.38 e Å3
440 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2695 (2)0.9536 (4)0.1213 (3)0.0501 (13)
C20.2875 (2)1.0154 (4)0.0702 (3)0.0563 (14)
C30.3425 (3)1.0095 (4)0.0459 (3)0.0585 (14)
H30.35431.05260.01420.070*
C40.3791 (3)0.9403 (4)0.0685 (3)0.0570 (14)
C50.3604 (3)0.8761 (4)0.1157 (3)0.0589 (15)
H50.38430.82790.12980.071*
C60.3075 (3)0.8820 (4)0.1422 (3)0.0563 (14)
C70.4394 (2)0.9327 (5)0.0409 (3)0.0607 (15)
H7A0.46590.96010.07270.091*
H7B0.44090.96520.00140.091*
H7C0.44870.86800.03440.091*
C80.2520 (3)1.0863 (4)0.0406 (3)0.0652 (16)
H80.26921.12610.01030.078*
C90.1757 (3)1.1865 (4)0.0145 (3)0.0593 (15)
H9A0.19141.19230.02990.071*
H9B0.18511.24260.04000.071*
C100.1122 (3)1.1764 (4)0.0078 (3)0.0611 (16)
H10A0.09581.23500.00760.073*
H10B0.10281.12860.02540.073*
C110.0258 (3)1.1483 (4)0.0724 (3)0.0575 (15)
H11A0.01101.21130.06860.069*
H11B0.01141.11240.03410.069*
C120.0074 (3)1.1057 (4)0.1351 (3)0.0569 (15)
H12A0.03341.10620.13610.068*
H12B0.02201.14110.17350.068*
C130.0081 (2)0.9434 (4)0.1513 (3)0.0542 (14)
H130.04450.96260.16020.065*
C140.0023 (2)0.8441 (4)0.1526 (3)0.0537 (13)
C150.0424 (3)0.7853 (4)0.1679 (3)0.0626 (15)
H150.07630.81340.17860.075*
C160.0405 (2)0.6898 (4)0.1684 (3)0.0536 (13)
C170.0090 (3)0.6498 (4)0.1495 (3)0.0586 (15)
H170.01110.58490.14720.070*
C180.0560 (3)0.7014 (4)0.1337 (3)0.0570 (14)
C190.0547 (2)0.8007 (4)0.1346 (3)0.0504 (13)
C200.0906 (3)0.6320 (4)0.1876 (3)0.0613 (16)
H20A0.11940.67240.20390.092*
H20B0.07940.58850.22230.092*
H20C0.10480.59840.14870.092*
C210.1067 (3)0.6533 (4)0.1148 (3)0.0512 (13)
H210.10630.58820.11610.061*
C220.2031 (2)0.6402 (4)0.0824 (3)0.0548 (14)
H22A0.20520.62900.03420.066*
H22B0.20230.58020.10520.066*
C230.2554 (2)0.6978 (4)0.1079 (3)0.0516 (13)
H23A0.28680.65560.11660.062*
H23B0.26610.74120.07300.062*
C240.2306 (3)0.6971 (4)0.2291 (3)0.0546 (14)
H24A0.25900.65060.24050.065*
H24B0.19420.66660.22410.065*
C250.2295 (3)0.7747 (4)0.2825 (3)0.0647 (16)
H25A0.19120.79390.29100.078*
H25B0.24760.75450.32460.078*
C260.2897 (2)0.8117 (4)0.1911 (3)0.0499 (13)
H260.32240.77480.20640.060*
Gd10.132602 (11)0.996866 (19)0.112967 (14)0.04773 (10)
N10.0281 (2)1.0091 (3)0.1389 (2)0.0551 (11)
N20.0895 (2)1.1511 (3)0.0718 (3)0.0590 (13)
H20.10091.19580.10200.071*
N30.2000 (2)1.1025 (3)0.0500 (2)0.0542 (12)
N40.2619 (2)0.8522 (3)0.2508 (2)0.0554 (11)
H4A0.23850.89890.23790.067*
H4B0.28780.87520.28050.067*
N50.2444 (2)0.7482 (4)0.1676 (3)0.0641 (13)
N60.1521 (2)0.6931 (3)0.0965 (2)0.0584 (12)
H6A0.15270.75300.09240.070*
N70.1260 (2)0.8939 (3)0.0123 (2)0.0533 (11)
N80.1368 (2)1.0475 (4)0.2570 (3)0.0598 (12)
N90.1283 (2)0.3947 (4)0.1408 (3)0.0589 (13)
O10.22107 (16)0.9625 (3)0.15061 (18)0.0525 (9)
O20.09826 (15)0.8486 (2)0.12235 (18)0.0485 (8)
O30.09112 (17)0.9594 (3)0.00056 (19)0.0583 (10)
O40.17109 (19)0.8926 (3)0.0223 (2)0.0637 (11)
O50.11340 (17)0.8315 (3)0.0522 (2)0.0648 (11)
O60.13705 (18)1.1068 (3)0.2101 (2)0.0640 (11)
O70.13078 (17)0.9602 (3)0.2391 (2)0.0616 (10)
O80.1408 (2)1.0668 (3)0.3166 (3)0.0853 (14)
O90.14265 (19)0.3210 (3)0.1536 (2)0.0661 (12)
O100.15358 (18)0.4520 (3)0.1704 (2)0.0627 (11)
O110.0879 (2)0.4096 (3)0.1042 (2)0.0685 (12)
O1W0.00000.3603 (5)0.25000.069 (2)0.80
H1WA0.00810.30260.24740.083*0.40
H1WB0.01450.38960.21750.083*0.40
O2W0.8107 (3)0.9370 (5)0.1122 (3)0.0629 (17)0.60
H2WD0.84650.93830.11290.075*0.60
H2WB0.79810.99180.11890.075*0.60
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.049 (3)0.053 (3)0.013 (2)0.006 (2)0.011 (2)
C20.040 (3)0.055 (4)0.074 (4)0.009 (2)0.002 (3)0.003 (3)
C30.057 (3)0.052 (3)0.067 (3)0.007 (3)0.001 (3)0.003 (3)
C40.050 (3)0.062 (4)0.058 (3)0.010 (3)0.004 (3)0.013 (3)
C50.054 (4)0.057 (3)0.065 (3)0.007 (3)0.004 (3)0.010 (3)
C60.050 (3)0.057 (3)0.062 (3)0.007 (3)0.005 (3)0.004 (3)
C70.035 (3)0.074 (4)0.073 (4)0.013 (3)0.007 (3)0.010 (3)
C80.072 (5)0.064 (4)0.059 (3)0.009 (3)0.007 (3)0.009 (3)
C90.059 (4)0.061 (4)0.056 (3)0.013 (3)0.010 (3)0.007 (3)
C100.066 (4)0.053 (3)0.063 (4)0.004 (3)0.016 (3)0.014 (3)
C110.060 (4)0.052 (3)0.059 (3)0.007 (3)0.019 (3)0.000 (3)
C120.049 (3)0.054 (3)0.067 (4)0.007 (3)0.008 (3)0.024 (3)
C130.035 (3)0.060 (3)0.067 (3)0.004 (3)0.001 (2)0.014 (3)
C140.037 (3)0.064 (4)0.061 (3)0.003 (3)0.005 (2)0.011 (3)
C150.054 (4)0.066 (4)0.068 (4)0.002 (3)0.008 (3)0.026 (3)
C160.046 (3)0.060 (3)0.055 (3)0.014 (3)0.010 (2)0.013 (3)
C170.055 (4)0.062 (4)0.059 (3)0.005 (3)0.005 (3)0.006 (3)
C180.063 (4)0.053 (3)0.055 (3)0.002 (3)0.000 (3)0.006 (2)
C190.036 (3)0.046 (3)0.069 (3)0.002 (2)0.003 (2)0.005 (2)
C200.061 (4)0.053 (3)0.071 (4)0.025 (3)0.027 (3)0.018 (3)
C210.061 (4)0.033 (3)0.059 (3)0.001 (2)0.006 (3)0.008 (2)
C220.052 (4)0.057 (3)0.056 (3)0.008 (3)0.017 (3)0.007 (3)
C230.039 (3)0.059 (3)0.057 (3)0.009 (2)0.013 (2)0.003 (3)
C240.046 (3)0.063 (4)0.056 (3)0.001 (3)0.004 (3)0.018 (3)
C250.056 (4)0.069 (4)0.069 (4)0.020 (3)0.009 (3)0.005 (3)
C260.030 (3)0.064 (3)0.055 (3)0.003 (2)0.003 (2)0.006 (2)
Gd10.03673 (14)0.04502 (15)0.06105 (16)0.00045 (12)0.00490 (10)0.00840 (13)
N10.048 (3)0.050 (3)0.067 (3)0.009 (2)0.005 (2)0.020 (2)
N20.057 (3)0.047 (3)0.071 (3)0.004 (2)0.028 (2)0.007 (2)
N30.043 (3)0.060 (3)0.059 (3)0.007 (2)0.007 (2)0.014 (2)
N40.046 (3)0.060 (3)0.060 (3)0.001 (2)0.006 (2)0.009 (2)
N50.061 (3)0.065 (3)0.066 (3)0.000 (3)0.000 (3)0.001 (2)
N60.066 (3)0.046 (3)0.063 (3)0.002 (2)0.004 (3)0.004 (2)
N70.048 (3)0.050 (3)0.063 (3)0.002 (2)0.011 (2)0.002 (2)
N80.049 (3)0.067 (3)0.064 (3)0.009 (3)0.012 (2)0.008 (3)
N90.054 (3)0.057 (3)0.065 (3)0.001 (2)0.022 (2)0.026 (2)
O10.048 (2)0.053 (2)0.057 (2)0.0023 (17)0.0058 (18)0.0030 (17)
O20.047 (2)0.0388 (18)0.061 (2)0.0012 (16)0.0111 (17)0.0042 (15)
O30.055 (2)0.062 (2)0.057 (2)0.008 (2)0.0115 (18)0.0004 (18)
O40.062 (3)0.064 (3)0.065 (2)0.006 (2)0.004 (2)0.0013 (19)
O50.061 (3)0.067 (3)0.066 (3)0.004 (2)0.003 (2)0.036 (2)
O60.063 (3)0.065 (3)0.064 (2)0.008 (2)0.005 (2)0.014 (2)
O70.054 (3)0.067 (3)0.065 (2)0.010 (2)0.0086 (19)0.026 (2)
O80.064 (3)0.075 (3)0.118 (4)0.006 (2)0.019 (3)0.005 (3)
O90.066 (3)0.069 (3)0.062 (2)0.021 (2)0.018 (2)0.014 (2)
O100.062 (3)0.058 (2)0.066 (2)0.015 (2)0.022 (2)0.021 (2)
O110.067 (3)0.070 (3)0.067 (3)0.011 (2)0.017 (2)0.017 (2)
O1W0.067 (5)0.072 (5)0.071 (5)0.0000.016 (4)0.000
O2W0.047 (4)0.067 (4)0.074 (4)0.005 (3)0.002 (3)0.005 (3)
Geometric parameters (Å, º) top
C1—O11.311 (6)C21—N61.284 (8)
C1—C61.417 (7)C21—H210.9300
C1—C21.421 (8)C22—N61.462 (8)
C2—C31.408 (8)C22—C231.563 (8)
C2—C81.433 (8)C22—H22A0.9700
C3—C41.383 (8)C22—H22B0.9700
C3—H30.9300C23—N51.415 (7)
C4—C51.392 (8)C23—H23A0.9700
C4—C71.552 (8)C23—H23B0.9700
C5—C61.380 (8)C24—N51.465 (8)
C5—H50.9300C24—C251.533 (8)
C6—C261.467 (8)C24—H24A0.9700
C7—H7A0.9600C24—H24B0.9700
C7—H7B0.9600C25—N41.497 (8)
C7—H7C0.9600C25—H25A0.9700
C8—N31.275 (8)C25—H25B0.9700
C8—H80.9300C26—N51.473 (7)
C9—N31.499 (7)C26—N41.490 (7)
C9—C101.516 (8)C26—H260.9800
C9—H9A0.9700Gd1—O12.263 (4)
C9—H9B0.9700Gd1—O22.281 (3)
C10—N21.439 (8)Gd1—O62.483 (4)
C10—H10A0.9700Gd1—O32.485 (4)
C10—H10B0.9700Gd1—O42.527 (4)
C11—C121.462 (8)Gd1—O72.553 (4)
C11—N21.515 (8)Gd1—N22.554 (4)
C11—H11A0.9700Gd1—N32.555 (5)
C11—H11B0.9700Gd1—N12.558 (5)
C12—N11.467 (7)Gd1—N72.884 (5)
C12—H12A0.9700Gd1—N82.941 (6)
C12—H12B0.9700N2—H20.9100
C13—N11.302 (7)N4—H4A0.9000
C13—C141.442 (8)N4—H4B0.9000
C13—H130.9300N6—H6A0.8600
C14—C151.394 (8)N7—O51.223 (6)
C14—C191.446 (8)N7—O41.254 (6)
C15—C161.365 (8)N7—O31.277 (6)
C15—H150.9300N8—O81.213 (7)
C16—C171.371 (8)N8—O61.258 (6)
C16—C201.507 (8)N8—O71.304 (7)
C17—C181.383 (9)N9—O91.133 (6)
C17—H170.9300N9—O101.164 (6)
C18—C191.420 (8)N9—O111.204 (6)
C18—C211.445 (9)N9—O1W3.824 (6)
C19—O21.271 (6)O1W—H1WA0.8499
C20—H20A0.9600O1W—H1WB0.8501
C20—H20B0.9600O2W—H2WD0.8499
C20—H20C0.9600O2W—H2WB0.8500
O1—C1—C6120.1 (5)N5—C26—H26109.3
O1—C1—C2122.9 (5)N4—C26—H26109.3
C6—C1—C2117.0 (5)O1—Gd1—O295.90 (13)
C3—C2—C1120.6 (5)O1—Gd1—O682.25 (13)
C3—C2—C8116.4 (6)O2—Gd1—O6122.13 (13)
C1—C2—C8123.0 (6)O1—Gd1—O3126.15 (14)
C4—C3—C2120.9 (6)O2—Gd1—O374.96 (13)
C4—C3—H3119.5O6—Gd1—O3147.48 (13)
C2—C3—H3119.5O1—Gd1—O475.71 (14)
C3—C4—C5118.5 (6)O2—Gd1—O469.41 (13)
C3—C4—C7120.9 (5)O6—Gd1—O4156.35 (14)
C5—C4—C7120.5 (5)O3—Gd1—O451.10 (14)
C6—C5—C4121.9 (5)O1—Gd1—O771.15 (13)
C6—C5—H5119.0O2—Gd1—O773.31 (14)
C4—C5—H5119.0O6—Gd1—O751.25 (14)
C5—C6—C1120.9 (5)O3—Gd1—O7145.32 (14)
C5—C6—C26119.6 (5)O4—Gd1—O7126.28 (14)
C1—C6—C26119.5 (5)O1—Gd1—N2130.66 (15)
C4—C7—H7A109.5O2—Gd1—N2133.42 (14)
C4—C7—H7B109.5O6—Gd1—N273.01 (14)
H7A—C7—H7B109.5O3—Gd1—N275.73 (15)
C4—C7—H7C109.5O4—Gd1—N2115.63 (16)
H7A—C7—H7C109.5O7—Gd1—N2118.06 (16)
H7B—C7—H7C109.5O1—Gd1—N372.45 (14)
N3—C8—C2129.1 (7)O2—Gd1—N3145.13 (14)
N3—C8—H8115.5O6—Gd1—N389.51 (14)
C2—C8—H8115.5O3—Gd1—N385.59 (14)
N3—C9—C10109.5 (5)O4—Gd1—N375.83 (14)
N3—C9—H9A109.8O7—Gd1—N3128.93 (14)
C10—C9—H9A109.8N2—Gd1—N365.50 (16)
N3—C9—H9B109.8O1—Gd1—N1147.86 (14)
C10—C9—H9B109.8O2—Gd1—N172.23 (13)
H9A—C9—H9B108.2O6—Gd1—N179.62 (15)
N2—C10—C9110.2 (5)O3—Gd1—N180.55 (15)
N2—C10—H10A109.6O4—Gd1—N1123.92 (15)
C9—C10—H10A109.6O7—Gd1—N176.80 (14)
N2—C10—H10B109.6N2—Gd1—N167.85 (15)
C9—C10—H10B109.6N3—Gd1—N1133.27 (14)
H10A—C10—H10B108.1O1—Gd1—N7101.41 (14)
C12—C11—N2110.1 (5)O2—Gd1—N765.53 (13)
C12—C11—H11A109.6O6—Gd1—N7171.41 (12)
N2—C11—H11A109.6O3—Gd1—N726.18 (13)
C12—C11—H11B109.6O4—Gd1—N725.71 (13)
N2—C11—H11B109.6O7—Gd1—N7137.25 (14)
H11A—C11—H11B108.2N2—Gd1—N798.95 (15)
C11—C12—N1109.1 (5)N3—Gd1—N784.27 (14)
C11—C12—H12A109.9N1—Gd1—N7100.38 (15)
N1—C12—H12A109.9O1—Gd1—N874.39 (14)
C11—C12—H12B109.9O2—Gd1—N898.69 (14)
N1—C12—H12B109.9O6—Gd1—N825.03 (13)
H12A—C12—H12B108.3O3—Gd1—N8158.56 (14)
N1—C13—C14126.9 (6)O4—Gd1—N8146.35 (14)
N1—C13—H13116.6O7—Gd1—N826.26 (14)
C14—C13—H13116.6N2—Gd1—N895.62 (16)
C15—C14—C13117.8 (5)N3—Gd1—N8108.96 (14)
C15—C14—C19117.5 (6)N1—Gd1—N878.01 (15)
C13—C14—C19124.5 (5)N7—Gd1—N8163.50 (15)
C16—C15—C14125.4 (6)C13—N1—C12117.8 (5)
C16—C15—H15117.3C13—N1—Gd1129.8 (4)
C14—C15—H15117.3C12—N1—Gd1112.3 (3)
C15—C16—C17116.3 (6)C10—N2—C11114.6 (4)
C15—C16—C20121.6 (5)C10—N2—Gd1109.9 (4)
C17—C16—C20122.1 (5)C11—N2—Gd1111.4 (3)
C16—C17—C18123.0 (6)C10—N2—H2106.8
C16—C17—H17118.5C11—N2—H2106.8
C18—C17—H17118.5Gd1—N2—H2106.8
C17—C18—C19120.8 (6)C8—N3—C9116.0 (6)
C17—C18—C21119.3 (5)C8—N3—Gd1126.1 (4)
C19—C18—C21119.9 (5)C9—N3—Gd1117.6 (4)
O2—C19—C18121.2 (5)C26—N4—C25107.0 (4)
O2—C19—C14122.0 (5)C26—N4—H4A110.3
C18—C19—C14116.8 (5)C25—N4—H4A110.3
C16—C20—H20A109.5C26—N4—H4B110.3
C16—C20—H20B109.5C25—N4—H4B110.3
H20A—C20—H20B109.5H4A—N4—H4B108.6
C16—C20—H20C109.5C23—N5—C24119.5 (5)
H20A—C20—H20C109.5C23—N5—C26115.2 (5)
H20B—C20—H20C109.5C24—N5—C26103.0 (4)
N6—C21—C18125.2 (5)C21—N6—C22122.3 (5)
N6—C21—H21117.4C21—N6—H6A118.9
C18—C21—H21117.4C22—N6—H6A118.9
N6—C22—C23108.7 (5)O5—N7—O4122.1 (5)
N6—C22—H22A110.0O5—N7—O3120.3 (5)
C23—C22—H22A110.0O4—N7—O3117.4 (5)
N6—C22—H22B110.0O5—N7—Gd1159.1 (4)
C23—C22—H22B110.0O4—N7—Gd161.0 (3)
H22A—C22—H22B108.3O3—N7—Gd159.2 (3)
N5—C23—C22111.9 (5)O8—N8—O6124.3 (6)
N5—C23—H23A109.2O8—N8—O7119.2 (5)
C22—C23—H23A109.2O6—N8—O7116.5 (5)
N5—C23—H23B109.2O8—N8—Gd1177.1 (4)
C22—C23—H23B109.2O6—N8—Gd156.7 (3)
H23A—C23—H23B107.9O7—N8—Gd160.0 (3)
N5—C24—C25102.8 (5)O9—N9—O10113.2 (5)
N5—C24—H24A111.2O9—N9—O11121.9 (6)
C25—C24—H24A111.2O10—N9—O11124.6 (5)
N5—C24—H24B111.2O9—N9—O1W89.7 (4)
C25—C24—H24B111.2O10—N9—O1W102.3 (4)
H24A—C24—H24B109.1O11—N9—O1W74.2 (3)
N4—C25—C24103.1 (5)C1—O1—Gd1134.0 (3)
N4—C25—H25A111.1C19—O2—Gd1144.3 (3)
C24—C25—H25A111.1N7—O3—Gd194.6 (3)
N4—C25—H25B111.1N7—O4—Gd193.3 (3)
C24—C25—H25B111.1N8—O6—Gd198.3 (4)
H25A—C25—H25B109.1N8—O7—Gd193.7 (3)
C6—C26—N5115.8 (5)N9—O1W—H1WA84.5
C6—C26—N4113.7 (5)H1WA—O1W—H1WB109.5
N5—C26—N498.7 (4)H2WD—O2W—H2WB109.5
C6—C26—H26109.3

Experimental details

Crystal data
Chemical formula[Gd(NO3)2(C26H34N6O2)]NO3·H2O
Mr823.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)23.764 (3), 14.298 (3), 19.804 (2)
β (°) 91.769 (2)
V3)6724.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.55, 0.61
No. of measured, independent and
observed [I > 2σ(I)] reflections
19136, 6596, 4171
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.107, 0.98
No. of reflections6596
No. of parameters440
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 1.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected bond lengths (Å) top
Gd1—O12.263 (4)Gd1—O72.553 (4)
Gd1—O22.281 (3)Gd1—N22.554 (4)
Gd1—O62.483 (4)Gd1—N32.555 (5)
Gd1—O32.485 (4)Gd1—N12.558 (5)
Gd1—O42.527 (4)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds