Download citation
Download citation
link to html
The crystal structure of calcium tartrate esahydrate, CaC4H4O6·6H2O, has been solved by the charge-flipping method from single-crystal X-ray diffraction data and refined to R = 0.021, based on 1700 unique observed diffractions. Salient crystallographic data are: a = 7.7390 (1), b = 12.8030 (2), c = 5.8290 (1) Å, Z = 2, and space group P21212. During the refinement step it was possible to locate all H atoms by difference Fourier synthesis. The tartrate molecule has a (-)-gauche conformation and is coordinated to two calcium ions to form infinite chains along the a axis which alternate Ca polyhedra with tartrate molecules. The chains are interlinked by a three-dimensional network of hydrogen bonds from four water molecules surrounding the Ca ion, reinforced by hydrogen bonds from one interstitial water molecule. Micro-Raman and FT-IR spectroscopic data are provided.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520614027516/bp5075sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614027516/bp5075Isup2.hkl
Contains datablock I

CCDC reference: 1039889

Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(I) top
Crystal data top
C4H16CaO12Z = 2
Mr = 296.25F(000) = 312
Orthorhombic, P21212Dx = 1.704 Mg m3
a = 7.7390 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8030 (2) ŵ = 0.60 mm1
c = 5.8290 (1) ÅT = 293 K
V = 577.55 (2) Å30.22 × 0.20 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
θmax = 30.5°, θmin = 3.1°
8303 measured reflectionsh = 1011
1759 independent reflectionsk = 1718
1700 reflections with I > 2σ(I)l = 86
Rint = 0.025
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 0.68Δρmax = 0.29 e Å3
1759 reflectionsΔρmin = 0.19 e Å3
102 parametersAbsolute structure: Flack x determined using 679 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
8 restraintsAbsolute structure parameter: 0.173 (15)
Crystal data top
C4H16CaO12V = 577.55 (2) Å3
Mr = 296.25Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 7.7390 (1) ŵ = 0.60 mm1
b = 12.8030 (2) ÅT = 293 K
c = 5.8290 (1) Å0.22 × 0.20 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
1700 reflections with I > 2σ(I)
8303 measured reflectionsRint = 0.025
1759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021Only H-atom coordinates refined
wR(F2) = 0.075Δρmax = 0.29 e Å3
S = 0.68Δρmin = 0.19 e Å3
1759 reflectionsAbsolute structure: Flack x determined using 679 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
102 parametersAbsolute structure parameter: 0.173 (15)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.50000.31079 (6)0.01632 (12)
O10.01771 (16)0.37975 (10)0.00915 (19)0.0242 (2)
O20.18578 (15)0.53433 (11)0.6286 (2)0.0263 (3)
O30.42004 (16)0.60400 (11)0.7860 (2)0.0287 (3)
O40.31487 (15)0.53668 (11)0.2164 (2)0.0267 (3)
O50.1153 (3)0.32751 (12)0.4185 (3)0.0450 (4)
O60.22163 (16)0.79013 (10)0.1646 (3)0.0325 (3)
C10.34089 (18)0.56254 (11)0.6220 (2)0.0177 (3)
C20.43903 (19)0.54806 (11)0.3954 (2)0.0178 (2)
H10.079 (3)0.3486 (18)0.059 (5)0.029*
H20.065 (3)0.4106 (17)0.129 (4)0.029*
H30.166 (4)0.311 (3)0.551 (5)0.054*
H40.141 (4)0.275 (2)0.323 (6)0.054*
H50.132 (3)0.833 (2)0.165 (6)0.039*
H60.188 (4)0.7346 (19)0.092 (5)0.039*
H70.508 (3)0.6119 (16)0.376 (4)0.021*
H80.359 (3)0.560 (2)0.085 (4)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.01416 (17)0.02106 (19)0.01374 (18)0.00108 (12)0.0000.000
O10.0233 (5)0.0320 (5)0.0173 (5)0.0057 (4)0.0001 (4)0.0006 (4)
O20.0159 (4)0.0431 (6)0.0198 (5)0.0054 (5)0.0036 (4)0.0066 (4)
O30.0235 (5)0.0429 (6)0.0198 (5)0.0088 (5)0.0012 (4)0.0071 (5)
O40.0165 (4)0.0488 (7)0.0149 (4)0.0020 (5)0.0017 (4)0.0060 (5)
O50.0694 (11)0.0289 (6)0.0368 (8)0.0064 (7)0.0244 (8)0.0017 (6)
O60.0222 (5)0.0302 (6)0.0452 (8)0.0029 (4)0.0006 (5)0.0055 (6)
C10.0160 (6)0.0219 (6)0.0152 (5)0.0009 (4)0.0009 (4)0.0014 (5)
C20.0135 (5)0.0255 (6)0.0144 (5)0.0009 (5)0.0001 (4)0.0010 (5)
Geometric parameters (Å, º) top
Ca1—O12.4222 (12)Ca1—O42.5419 (12)
Ca1—O1i2.4222 (12)O2—C11.2541 (18)
Ca1—O22.3858 (12)O3—C11.2535 (18)
Ca1—O2i2.3858 (12)O4—C21.4259 (18)
Ca1—O52.4631 (15)C1—C21.535 (2)
Ca1—O5i2.4631 (15)C2—C2ii1.551 (3)
Ca1—O4i2.5419 (12)
O1—Ca1—O1i79.30 (6)O2i—Ca1—O4i63.66 (4)
O1—Ca1—O2138.50 (4)O5—Ca1—O4i103.70 (5)
O1i—Ca1—O2116.53 (4)O5i—Ca1—O4i82.74 (6)
O1—Ca1—O2i116.53 (4)O1—Ca1—O490.29 (4)
O1i—Ca1—O2i138.50 (4)O1i—Ca1—O470.22 (4)
O2—Ca1—O2i78.13 (6)O2—Ca1—O463.66 (4)
O1—Ca1—O569.32 (5)O2i—Ca1—O4141.25 (4)
O1i—Ca1—O5138.21 (6)O5—Ca1—O482.74 (6)
O2—Ca1—O575.46 (5)O5i—Ca1—O4103.70 (5)
O2i—Ca1—O581.68 (6)O4i—Ca1—O4154.99 (5)
O1—Ca1—O5i138.21 (6)C1—O2—Ca1127.30 (10)
O1i—Ca1—O5i69.32 (5)C2—O4—Ca1120.43 (9)
O2—Ca1—O5i81.68 (6)O2—C1—O3124.49 (14)
O2i—Ca1—O5i75.46 (5)O2—C1—C2117.73 (13)
O5—Ca1—O5i150.47 (9)O3—C1—C2117.76 (13)
O1—Ca1—O4i70.22 (4)O4—C2—C1107.98 (12)
O1i—Ca1—O4i90.29 (4)O4—C2—C2ii109.20 (11)
O2—Ca1—O4i141.25 (4)C1—C2—C2ii113.39 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6iii0.90 (2)1.82 (2)2.7180 (17)178 (2)
O1—H2···O2iv0.88 (2)1.83 (2)2.7131 (16)173 (3)
O4—H8···O3v0.89 (2)1.89 (2)2.7746 (18)171 (2)
O5—H3···O6vi0.89 (2)1.89 (2)2.780 (2)174 (3)
O5—H4···O3vi0.90 (2)2.33 (3)3.112 (2)146 (3)
O6—H5···O3vii0.88 (2)1.85 (2)2.7143 (18)165 (3)
O6—H6···O1i0.87 (2)2.06 (2)2.8717 (18)156 (3)
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y1/2, z; (iv) x, y+1, z1; (v) x, y, z1; (vi) x+1/2, y1/2, z+1; (vii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H16CaO12
Mr296.25
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)7.7390 (1), 12.8030 (2), 5.8290 (1)
V3)577.55 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.22 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8303, 1759, 1700
Rint0.025
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.075, 0.68
No. of reflections1759
No. of parameters102
No. of restraints8
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.29, 0.19
Absolute structureFlack x determined using 679 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Absolute structure parameter0.173 (15)

Computer programs: SHELXL2013 (Sheldrick, 2013).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.90 (2)1.82 (2)2.7180 (17)178 (2)
O1—H2···O2ii0.883 (19)1.834 (19)2.7131 (16)173 (3)
O4—H8···O3iii0.89 (2)1.89 (2)2.7746 (18)171 (2)
O5—H3···O6iv0.89 (2)1.89 (2)2.780 (2)174 (3)
O5—H4···O3iv0.90 (2)2.33 (3)3.112 (2)146 (3)
O6—H5···O3v0.88 (2)1.85 (2)2.7143 (18)165 (3)
O6—H6···O1vi0.87 (2)2.06 (2)2.8717 (18)156 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z1; (iii) x, y, z1; (iv) x+1/2, y1/2, z+1; (v) x1/2, y+3/2, z+1; (vi) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds