Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure-factor phase method of convergent-beam electron diffraction (CBED) has been widely applied as an effective tool in determining the polarity of binary compound materials, for example, the typical sphalerite material, GaAs. However, its validity on other polar materials is still unknown. In this paper we extensively investigated its potential applicability onto 11 AB-type semiconductors by dynamical simulations of CBED. Two key factors during the simulation, the difference between A and B atomic numbers and the sample thickness, are discussed in detail. It was found that this method is efficient to determine the polarity for a sphalerite structure under certain conditions, and, reversely, limited to determine the polarity for a wurtzite structure even though it is very similar to the sphalerite structure.

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds