Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The high-temperature clinoenstatite (HT-CEn) is one of the most important MgSiO3 pyroxene polymorphs, but the details of its structure and stability have been uncertain. The single crystal of the C2/c HT-CEn end-member is firstly synthesized by rapid pressure-temperature quenching from 15-16 GPa and 1173-2173 K. The single-crystal X-ray diffraction analysis shows unusual bonding distances and static disorder of the atoms frozen in this metastable structure. The degree of kinking of the silicate tetrahedral chains is 175° for HT-CEn. The chain angle for HP-CEn is substantially smaller (135°), but the angle for L-CEn is in the opposite direction at -160° (= 200°). The degree of kinking increases by being curved by more than 180° for the transition from HT-CEn to L-CEn. As for the reverse change from the expansion to the stretch, a potential barrier exists at the point of the continuity. It is suggested that the reason why a structure can be quenched under ambient conditions is as follows: the present HT-CEn single crystal has been formed by the isosymmetric phase transition from the high-pressure C2/c clinoenstatite (HP-CEn). The presence of HT-CEn from HP-CEn in natural rocks is an indicator of quenching history, which leads to the possibility that it exists in shocked meteorites and impact materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213028248/bp5052sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213028248/bp5052Isup2.hkl
Contains datablock I

CCDC reference: 966424

Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

Data collection: WinAFC Version 1.03 (Rigaku Corporation, 1999); cell refinement: WinAFC Version 1.03 (Rigaku Corporation, 1999); data reduction: RADY (Sasaki, 1987); program(s) used to refine structure: RADY (Sasaki, 1987); molecular graphics: VESTA (Momma & Izumi, 2006).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(I) top
Crystal data top
Mg2O6Si2F(000) = 400
Mr = 200.78Dx = 3.240 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 51 reflections
a = 9.5387 (8) Åθ = 20.1–25.3°
b = 8.6601 (7) ŵ = 1.11 mm1
c = 5.2620 (4) ÅT = 296 K
β = 108.701 (6)°Block, colourless
V = 411.73 (6) Å30.12 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC7R
diffractometer
θmax = 50.0°
ω–2θ scansh = 2020
4535 measured reflectionsk = 1818
2171 independent reflectionsl = 011
766 reflections with F > 3.0 σ(F)3 standard reflections every 200 reflections
Rint = 0.015 intensity decay: none
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/σ2(F)
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max = 0.00021
wR(F2) = 0.020Δρmax = 0.73 e Å3
S = 1.51Δρmin = 1.05 e Å3
766 reflectionsExtinction correction: isotropic Type I (Becker & Coppens, 1974a and 1974b)
48 parametersExtinction coefficient: 0.47 (8)E3
Crystal data top
Mg2O6Si2V = 411.73 (6) Å3
Mr = 200.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.5387 (8) ŵ = 1.11 mm1
b = 8.6601 (7) ÅT = 296 K
c = 5.2620 (4) Å0.12 × 0.10 × 0.10 mm
β = 108.701 (6)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.015
4535 measured reflections3 standard reflections every 200 reflections
2171 independent reflections intensity decay: none
766 reflections with F > 3.0 σ(F)
Refinement top
R[F2 > 2σ(F2)] = 0.02948 parameters
wR(F2) = 0.020Δρmax = 0.73 e Å3
S = 1.51Δρmin = 1.05 e Å3
766 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.9042 (1)0.25000.0052 (2)
Mg20.00000.2856 (1)0.25000.0255 (4)
Si0.29223 (6)0.09198 (7)0.2457 (1)0.0102 (1)
O10.1130 (1)0.0828 (2)0.1380 (3)0.0232 (4)
O20.3636 (2)0.2577 (2)0.3179 (3)0.0225 (5)
O30.3543 (1)0.0065 (2)0.0258 (3)0.0197 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0053 (3)0.0042 (4)0.0051 (4)0.00000.0004 (3)0.0000
Mg20.0244 (6)0.0284 (7)0.0192 (7)0.00000.0007 (5)0.0000
Si0.0077 (2)0.0121 (3)0.0104 (3)0.0002 (3)0.0026 (2)0.0016 (3)
O10.0080 (6)0.0333 (9)0.0263 (9)0.0068 (7)0.0027 (6)0.0095 (8)
O20.0303 (9)0.0134 (7)0.0247 (9)0.0022 (7)0.0102 (8)0.0042 (7)
O30.0131 (5)0.0280 (8)0.0178 (8)0.0027 (7)0.0045 (6)0.0107 (7)
Geometric parameters (Å, º) top
Mg1—O1i2.076 (2)Mg2—O2viii2.260 (2)
Mg1—O1ii2.076 (2)Mg2—O2ix2.260 (2)
Mg1—O1iii1.983 (1)Mg2—O3v2.435 (2)
Mg1—O1iv1.983 (1)Mg2—O3vi2.435 (2)
Mg1—O2v1.931 (2)Si—O11.621 (1)
Mg1—O2vi1.931 (2)Si—O21.582 (2)
Mg2—O12.236 (2)Si—O31.636 (2)
Mg2—O1vii2.236 (2)Si—O3x1.640 (2)
O1i—Mg1—O1ii83.66 (10)O1—Mg2—O3v137.53 (6)
O1i—Mg1—O1iii79.97 (6)O1—Mg2—O3vi119.73 (5)
O1i—Mg1—O1iv95.15 (6)O1vii—Mg2—O2viii77.01 (6)
O1i—Mg1—O2v169.81 (6)O1vii—Mg2—O2ix87.96 (6)
O1i—Mg1—O2vi89.73 (7)O1vii—Mg2—O3v119.73 (5)
O1ii—Mg1—O1iii95.15 (6)O1vii—Mg2—O3vi137.53 (6)
O1ii—Mg1—O1iv79.97 (6)O2viii—Mg2—O2ix160.92 (10)
O1ii—Mg1—O2v89.73 (7)O2viii—Mg2—O3v132.27 (7)
O1ii—Mg1—O2vi169.81 (6)O2viii—Mg2—O3vi65.65 (5)
O1iii—Mg1—O1iv173.50 (12)O2ix—Mg2—O3v65.65 (5)
O1iii—Mg1—O2v92.96 (7)O2ix—Mg2—O3vi132.27 (7)
O1iii—Mg1—O2vi91.31 (7)O3v—Mg2—O3vi76.47 (8)
O1iv—Mg1—O2v91.31 (7)O1—Si—O2116.93 (9)
O1iv—Mg1—O2vi92.96 (7)O1—Si—O3108.11 (8)
O2v—Mg1—O2vi97.82 (11)O1—Si—O3x108.96 (9)
O1—Mg2—O1vii76.51 (9)O2—Si—O3110.79 (10)
O1—Mg2—O2viii87.96 (6)O2—Si—O3x104.61 (8)
O1—Mg2—O2ix77.01 (6)O3—Si—O3x106.98 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y, z+1/2; (viii) x+1/2, y+1/2, z+1; (ix) x1/2, y+1/2, z1/2; (x) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaMg2O6Si2
Mr200.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)9.5387 (8), 8.6601 (7), 5.2620 (4)
β (°) 108.701 (6)
V3)411.73 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F > 3.0 σ(F)] reflections
4535, 2171, 766
Rint0.015
(sin θ/λ)max1)1.078
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.020, 1.51
No. of reflections766
No. of parameters48
No. of restraints?
Δρmax, Δρmin (e Å3)0.73, 1.05

Computer programs: WinAFC Version 1.03 (Rigaku Corporation, 1999), RADY (Sasaki, 1987), VESTA (Momma & Izumi, 2006).

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds