Download citation
Download citation
link to html
Crystals of the langasite family are of interest as they are piezoelectric in different devices. The properties of these classes of crystals can be modified within certain limits by isomorphous substitution. Single-crystal neutron diffraction studies were carried out for LGT (La3Ga5.5Ta0.5O14), LGST (La3Ga5.25Ta0.25Si0.5O14) and LGZrT (La3Ga5.25Ta0.25Zr0.5O14) as the neutron study gives a better average picture of the crystal properties over a macroscopic region of the grown crystal. The effect of small substitutions at various sites on the piezoelectric properties of the crystal was studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110031459/bp5031sup1.cif
Contains datablocks LGT, LGST, LGZrT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110031459/bp5031LGTsup2.hkl
Contains datablock LGT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110031459/bp5031LGSTsup3.hkl
Contains datablock LGST

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110031459/bp5031LGZrTsup4.hkl
Contains datablock LGZrT

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110031459/bp5031sup5.pdf
Anisotropic displacement parameters

Computing details top

For all structures, data collection: SCAD; cell refinement: REFINE; data reduction: DATRED; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP; software used to prepare material for publication: SHELX.

(LGT) top
Crystal data top
Ga5.61La3O14Ta0.41Dx = 6.117 Mg m3
Mr = 1106.05Neutron radiation, λ = 0.99500 Å
Trigonal, P321Cell parameters from 50 reflections
a = 8.224 (4) Åθ = 4–44°
c = 5.126 (1) ŵ = 0.02 mm1
V = 300.2 (2) Å3T = 300 K
Z = 1Cubic, colourless
F(000) = 1503 × 3 × 3 mm
Data collection top
Four circle
diffractometer
355 reflections with I > 2σ(I)
Radiation source: Dhruva reactorRint = 0.025
Cu monochromatorθmax = 44.0°, θmin = 4.0°
τ–\2t scansh = 99
Absorption correction: integration
datred
k = 99
l = 07
374 measured reflections2 standard reflections every 25 reflections
366 independent reflections intensity decay: <3
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0963P)2 + 1.0255P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.043(Δ/σ)max < 0.001
wR(F2) = 0.135Δρmax = 1.15 e Å3
S = 1.17Δρmin = 1.06 e Å3
366 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
40 parametersExtinction coefficient: 1.93 (17)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La0.4246 (3)0.00000.00000.0121 (6)
Ga10.00000.00000.00000.0119 (10)0.61 (3)
Ta0.00000.00000.00000.0119 (10)0.410 (17)
Ga20.7608 (3)0.00000.50000.0132 (6)
Ga30.33330.66670.4696 (5)0.0098 (6)
O10.33330.66670.8193 (6)0.0133 (8)
O20.4565 (3)0.3097 (4)0.6936 (5)0.0190 (7)
O30.2193 (4)0.0777 (3)0.2356 (4)0.0165 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.0108 (8)0.0089 (10)0.0160 (9)0.0044 (5)0.0002 (3)0.0004 (6)
Ga10.0108 (12)0.0108 (12)0.0143 (17)0.0054 (6)0.0000.000
Ta0.0108 (12)0.0108 (12)0.0143 (17)0.0054 (6)0.0000.000
Ga20.0102 (9)0.0108 (11)0.0188 (10)0.0054 (6)0.0030 (4)0.0059 (8)
Ga30.0087 (8)0.0087 (8)0.0120 (11)0.0044 (4)0.0000.000
O10.0136 (11)0.0136 (11)0.0129 (14)0.0068 (5)0.0000.000
O20.0114 (11)0.0219 (12)0.0231 (10)0.0079 (9)0.0013 (8)0.0064 (10)
O30.0151 (12)0.0194 (12)0.0197 (11)0.0121 (9)0.0056 (8)0.0088 (8)
Geometric parameters (Å, º) top
La—O3i2.408 (3)Ga2—O2ii1.865 (3)
La—O32.408 (3)Ga2—O2xiv1.865 (3)
La—O2ii2.462 (3)Ga3—O11.793 (4)
La—O2iii2.462 (3)Ga3—O2xv1.841 (3)
La—O1iv2.6226 (17)Ga3—O2xvi1.841 (3)
La—O1v2.6226 (17)Ga3—O2xvii1.841 (3)
La—O2vi2.890 (3)Ga3—Laxi3.437 (2)
La—O2vii2.890 (3)Ga3—Laxviii3.437 (2)
La—Ga3viii3.437 (2)Ga3—Laxix3.437 (2)
La—Ga3ix3.437 (2)O1—Laxx2.6226 (17)
Ga1—O3x1.992 (2)O1—Laxxi2.6226 (17)
Ga1—O31.992 (2)O1—Laxxii2.6226 (17)
Ga1—O3xi1.992 (2)O2—Ga3iv1.841 (3)
Ga1—O3i1.992 (2)O2—Ga2xix1.865 (3)
Ga1—O3xii1.992 (2)O2—Laxxii2.462 (3)
Ga1—O3xiii1.992 (2)O2—Laxxiii2.890 (3)
Ga2—O3xiv1.847 (2)O3—Ga2xix1.847 (2)
Ga2—O3ii1.847 (2)
O3i—La—O366.98 (12)O3x—Ga1—O3xii83.66 (13)
O3i—La—O2ii139.29 (9)O3—Ga1—O3xii87.06 (10)
O3—La—O2ii108.26 (8)O3xi—Ga1—O3xii87.06 (10)
O3i—La—O2iii108.26 (8)O3i—Ga1—O3xii104.35 (14)
O3—La—O2iii139.29 (9)O3x—Ga1—O3xiii87.06 (10)
O2ii—La—O2iii100.06 (14)O3—Ga1—O3xiii104.35 (14)
O3i—La—O1iv125.62 (8)O3xi—Ga1—O3xiii83.66 (13)
O3—La—O1iv79.16 (7)O3i—Ga1—O3xiii87.06 (10)
O2ii—La—O1iv90.42 (8)O3xii—Ga1—O3xiii164.84 (13)
O2iii—La—O1iv71.88 (9)O3xiv—Ga2—O3ii132.4 (2)
O3i—La—O1v79.16 (7)O3xiv—Ga2—O2ii99.89 (11)
O3—La—O1v125.62 (8)O3ii—Ga2—O2ii109.91 (11)
O2ii—La—O1v71.88 (9)O3xiv—Ga2—O2xiv109.91 (11)
O2iii—La—O1v90.42 (8)O3ii—Ga2—O2xiv99.89 (11)
O1iv—La—O1v152.65 (10)O2ii—Ga2—O2xiv101.2 (2)
O3i—La—O2vi78.77 (9)O1—Ga3—O2xv117.04 (10)
O3—La—O2vi67.11 (8)O1—Ga3—O2xvi117.04 (11)
O2ii—La—O2vi63.51 (10)O2xv—Ga3—O2xvi100.96 (13)
O2iii—La—O2vi153.57 (7)O1—Ga3—O2xvii117.04 (10)
O1iv—La—O2vi125.57 (8)O2xv—Ga3—O2xvii100.96 (13)
O1v—La—O2vi65.40 (7)O2xvi—Ga3—O2xvii100.96 (13)
O3i—La—O2vii67.11 (8)O1—Ga3—Laxi134.45 (4)
O3—La—O2vii78.77 (9)O2xv—Ga3—Laxi43.74 (10)
O2ii—La—O2vii153.57 (7)O2xvi—Ga3—Laxi107.99 (13)
O2iii—La—O2vii63.51 (10)O2xvii—Ga3—Laxi57.23 (11)
O1iv—La—O2vii65.40 (7)O1—Ga3—Laxviii134.45 (4)
O1v—La—O2vii125.57 (8)O2xv—Ga3—Laxviii57.23 (11)
O2vi—La—O2vii139.04 (13)O2xvi—Ga3—Laxviii43.74 (10)
O3i—La—Ga3viii87.59 (7)O2xvii—Ga3—Laxviii107.99 (13)
O3—La—Ga3viii110.05 (7)Laxi—Ga3—Laxviii76.37 (5)
O2ii—La—Ga3viii128.63 (10)O1—Ga3—Laxix134.45 (3)
O2iii—La—Ga3viii31.13 (5)O2xv—Ga3—Laxix107.99 (13)
O1iv—La—Ga3viii65.13 (8)O2xvi—Ga3—Laxix57.23 (11)
O1v—La—Ga3viii109.59 (7)O2xvii—Ga3—Laxix43.74 (10)
O2vi—La—Ga3viii166.09 (8)Laxi—Ga3—Laxix76.37 (5)
O2vii—La—Ga3viii32.38 (5)Laxviii—Ga3—Laxix76.37 (5)
O3i—La—Ga3ix110.05 (7)Ga3—O1—Laxx110.68 (7)
O3—La—Ga3ix87.59 (7)Ga3—O1—Laxxi110.68 (7)
O2ii—La—Ga3ix31.13 (5)Laxx—O1—Laxxi108.24 (7)
O2iii—La—Ga3ix128.63 (10)Ga3—O1—Laxxii110.68 (7)
O1iv—La—Ga3ix109.59 (7)Laxx—O1—Laxxii108.24 (7)
O1v—La—Ga3ix65.13 (8)Laxxi—O1—Laxxii108.24 (7)
O2vi—La—Ga3ix32.38 (5)Ga3iv—O2—Ga2xix119.60 (15)
O2vii—La—Ga3ix166.09 (8)Ga3iv—O2—Laxxii105.13 (12)
Ga3viii—La—Ga3ix159.22 (8)Ga2xix—O2—Laxxii120.59 (13)
O3x—Ga1—O3164.84 (13)Ga3iv—O2—Laxxiii90.39 (12)
O3x—Ga1—O3xi104.35 (14)Ga2xix—O2—Laxxiii111.39 (14)
O3—Ga1—O3xi87.06 (10)Laxxii—O2—Laxxiii104.85 (9)
O3x—Ga1—O3i87.06 (10)Ga2xix—O3—Ga1114.59 (13)
O3—Ga1—O3i83.66 (13)Ga2xix—O3—La137.51 (14)
O3xi—Ga1—O3i164.84 (13)Ga1—O3—La104.68 (9)
Symmetry codes: (i) xy, y, z; (ii) x+1, x+y, z+1; (iii) y+1, xy, z1; (iv) xy+1, y+1, z+1; (v) x, y1, z1; (vi) xy, y, z+1; (vii) x, y, z1; (viii) xy+1, y+1, z; (ix) x, y1, z; (x) x, x+y, z; (xi) y, xy, z; (xii) x+y, x, z; (xiii) y, x, z; (xiv) y+1, xy, z; (xv) xy, y+1, z+1; (xvi) x+1, x+y+1, z+1; (xvii) y, x, z+1; (xviii) x, y+1, z; (xix) x+y+1, x+1, z; (xx) x, y+1, z+1; (xxi) y, xy, z+1; (xxii) x+y+1, x+1, z+1; (xxiii) x, y, z+1.
langtate (LGST) top
Crystal data top
Ga5.34La3O14Si0.36Ta0.29Dx = 6.000 Mg m3
Mr = 1075.12Neutron radiation, λ = 0.99500 Å
Trigonal, P321Cell parameters from 50 reflections
a = 8.195 (7) Åθ = 4.0–44°
c = 5.118 (1) ŵ = 0.02 mm1
V = 297.7 (4) Å3T = 300 K
Z = 1Cubic, colourless
F(000) = 1483 × 3 × 3 mm
Data collection top
Four circle
diffractometer
440 reflections with I > 2σ(I)
Radiation source: dhruva reactorRint = 0.022
Cu monochromatorθmax = 44.1°, θmin = 4.0°
τ–\2t scansh = 1111
Absorption correction: integration
Datred
k = 510
l = 67
461 measured reflections2 standard reflections every 25 reflections
454 independent reflections intensity decay: <3
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0939P)2 + 1.5721P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max = 0.012
wR(F2) = 0.134Δρmax = 0.83 e Å3
S = 1.14Δρmin = 0.83 e Å3
454 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
42 parametersExtinction coefficient: 2.10 (17)
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La0.4222 (3)0.00000.00000.0077 (6)
Ga10.00000.00000.00000.0104 (10)0.75 (3)
Ta0.00000.00000.00000.0104 (10)0.288 (12)
Ga20.7640 (3)0.00000.50000.0081 (6)
Si0.33330.66670.5321 (6)0.0067 (7)0.18 (2)
Ga30.33330.66670.5321 (6)0.0067 (7)0.794 (10)
O12D0.33330.66670.1873 (7)0.0122 (8)
O26G0.4609 (3)0.3108 (4)0.3113 (4)0.0161 (6)
O36G0.2211 (4)0.0794 (4)0.7633 (4)0.0171 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.0108 (8)0.0070 (9)0.0040 (8)0.0035 (5)0.0006 (3)0.0013 (6)
Ga10.0137 (13)0.0137 (13)0.0038 (17)0.0068 (6)0.0000.000
Ta0.0137 (13)0.0137 (13)0.0038 (17)0.0068 (6)0.0000.000
Ga20.0084 (8)0.0089 (10)0.0072 (9)0.0044 (5)0.0027 (4)0.0053 (7)
Si0.0076 (9)0.0076 (9)0.0050 (11)0.0038 (4)0.0000.000
Ga30.0076 (9)0.0076 (9)0.0050 (11)0.0038 (4)0.0000.000
O12D0.0122 (10)0.0122 (10)0.0121 (16)0.0061 (5)0.0000.000
O26G0.0125 (11)0.0212 (12)0.0144 (10)0.0084 (9)0.0055 (8)0.0086 (8)
O36G0.0200 (12)0.0262 (14)0.0115 (11)0.0165 (10)0.0073 (9)0.0140 (8)
Geometric parameters (Å, º) top
La—O36Gi2.384 (3)Ga2—O26Gxiv1.891 (3)
La—O36Gii2.384 (3)Ga2—O26Giii1.891 (3)
La—O26Giii2.479 (3)Si—O12D1.764 (4)
La—O26Giv2.479 (3)Si—O26Gxv1.792 (3)
La—O12Dv2.631 (2)Si—O26Gxvi1.792 (3)
La—O12Dvi2.631 (2)Si—O26Gxi1.792 (3)
La—O26Gvii2.885 (3)O12D—Laxvii2.631 (2)
La—O26G2.885 (3)O12D—Laxviii2.631 (2)
La—Ga3viii3.426 (3)O12D—Laxix2.631 (2)
La—Ga3ix3.426 (3)O26G—Ga3viii1.792 (3)
Ga1—O36Gx1.999 (3)O26G—Siviii1.792 (3)
Ga1—O36Gxi1.999 (3)O26G—Ga2xix1.891 (3)
Ga1—O36Gii1.999 (3)O26G—Laxix2.479 (3)
Ga1—O36Gxii1.999 (3)O36G—Ga2xix1.822 (3)
Ga1—O36Gxiii1.999 (3)O36G—Taxx1.999 (3)
Ga1—O36Gi1.999 (3)O36G—Ga1xx1.999 (3)
Ga2—O36Giii1.822 (3)O36G—Laxx2.384 (3)
Ga2—O36Gxiv1.822 (3)
O36Gi—La—O36Gii68.20 (12)O36Gxi—Ga1—O36Gii87.07 (11)
O36Gi—La—O26Giii138.63 (10)O36Gx—Ga1—O36Gxii87.07 (11)
O36Gii—La—O26Giii107.47 (9)O36Gxi—Ga1—O36Gxii83.91 (14)
O36Gi—La—O26Giv107.47 (9)O36Gii—Ga1—O36Gxii165.34 (15)
O36Gii—La—O26Giv138.63 (10)O36Gx—Ga1—O36Gxiii83.91 (14)
O26Giii—La—O26Giv101.25 (14)O36Gxi—Ga1—O36Gxiii87.07 (11)
O36Gi—La—O12Dv78.62 (8)O36Gii—Ga1—O36Gxiii87.07 (11)
O36Gii—La—O12Dv126.76 (9)O36Gxii—Ga1—O36Gxiii103.94 (17)
O26Giii—La—O12Dv72.20 (10)O36Gx—Ga1—O36Gi87.07 (11)
O26Giv—La—O12Dv89.90 (9)O36Gxi—Ga1—O36Gi103.94 (17)
O36Gi—La—O12Dvi126.76 (9)O36Gii—Ga1—O36Gi83.91 (14)
O36Gii—La—O12Dvi78.62 (8)O36Gxii—Ga1—O36Gi87.07 (11)
O26Giii—La—O12Dvi89.90 (9)O36Gxiii—Ga1—O36Gi165.34 (15)
O26Giv—La—O12Dvi72.20 (10)O36Giii—Ga2—O36Gxiv134.7 (2)
O12Dv—La—O12Dvi151.96 (9)O36Giii—Ga2—O26Gxiv100.57 (12)
O36Gi—La—O26Gvii68.00 (9)O36Gxiv—Ga2—O26Gxiv108.50 (11)
O36Gii—La—O26Gvii79.93 (10)O36Giii—Ga2—O26Giii108.50 (11)
O26Giii—La—O26Gvii153.37 (7)O36Gxiv—Ga2—O26Giii100.57 (12)
O26Giv—La—O26Gvii61.77 (11)O26Gxiv—Ga2—O26Giii99.0 (2)
O12Dv—La—O26Gvii124.52 (9)O12D—Si—O26Gxv116.57 (11)
O12Dvi—La—O26Gvii66.05 (8)O12D—Si—O26Gxvi116.57 (11)
O36Gi—La—O26G79.93 (10)O26Gxv—Si—O26Gxvi101.53 (14)
O36Gii—La—O26G68.00 (9)O12D—Si—O26Gxi116.57 (11)
O26Giii—La—O26G61.77 (11)O26Gxv—Si—O26Gxi101.53 (14)
O26Giv—La—O26G153.37 (7)O26Gxvi—Si—O26Gxi101.53 (14)
O12Dv—La—O26G66.05 (8)Si—O12D—Laxvii111.37 (7)
O12Dvi—La—O26G124.52 (9)Si—O12D—Laxviii111.37 (7)
O26Gvii—La—O26G141.24 (13)Laxvii—O12D—Laxviii107.51 (8)
O36Gi—La—Ga3viii110.24 (8)Si—O12D—Laxix111.37 (7)
O36Gii—La—Ga3viii87.82 (8)Laxvii—O12D—Laxix107.51 (8)
O26Giii—La—Ga3viii30.25 (6)Laxviii—O12D—Laxix107.51 (8)
O26Giv—La—Ga3viii128.89 (9)Ga3viii—O26G—Siviii0.00 (17)
O12Dv—La—Ga3viii65.72 (9)Ga3viii—O26G—Ga2xix121.31 (15)
O12Dvi—La—Ga3viii108.73 (9)Siviii—O26G—Ga2xix121.31 (15)
O26Gvii—La—Ga3viii167.39 (8)Ga3viii—O26G—Laxix105.55 (12)
O26G—La—Ga3viii31.52 (5)Siviii—O26G—Laxix105.55 (12)
O36Gi—La—Ga3ix87.82 (8)Ga2xix—O26G—Laxix119.90 (13)
O36Gii—La—Ga3ix110.24 (8)Ga3viii—O26G—La91.15 (12)
O26Giii—La—Ga3ix128.89 (9)Siviii—O26G—La91.15 (12)
O26Giv—La—Ga3ix30.25 (6)Ga2xix—O26G—La109.69 (13)
O12Dv—La—Ga3ix108.73 (9)Laxix—O26G—La104.33 (9)
O12Dvi—La—Ga3ix65.72 (9)Ga2xix—O36G—Taxx114.09 (13)
O26Gvii—La—Ga3ix31.52 (5)Ga2xix—O36G—Ga1xx114.09 (13)
O26G—La—Ga3ix167.39 (8)Taxx—O36G—Ga1xx0.0
Ga3viii—La—Ga3ix158.56 (7)Ga2xix—O36G—Laxx139.13 (14)
O36Gx—Ga1—O36Gxi165.34 (15)Taxx—O36G—Laxx103.95 (10)
O36Gx—Ga1—O36Gii103.94 (17)Ga1xx—O36G—Laxx103.95 (10)
Symmetry codes: (i) x, y, z1; (ii) xy, y, z+1; (iii) y+1, xy, z; (iv) x+1, x+y, z; (v) xy+1, y+1, z; (vi) x, y1, z; (vii) xy, y, z; (viii) xy+1, y+1, z+1; (ix) x, y1, z1; (x) x+y, x, z1; (xi) y, x, z+1; (xii) y, xy, z1; (xiii) x, x+y, z+1; (xiv) x+1, x+y, z+1; (xv) xy, y+1, z+1; (xvi) x+1, x+y+1, z+1; (xvii) y, xy, z; (xviii) x, y+1, z; (xix) x+y+1, x+1, z; (xx) x, y, z+1.
langtate (LGZrT) top
Crystal data top
Ga5.48La3O14Ta0.03Zr0.50Dx = 5.876 Mg m3
Mr = 1073.18Neutron radiation, λ = 0.99500 Å
Trigonal, P321Cell parameters from 50 reflections
a = 8.256 (5) Åθ = 4–44°
c = 5.141 (2) ŵ = 0.01 mm1
V = 303.5 (3) Å3T = 300 K
Z = 1Cubic, colourless
F(000) = 1503 × 3 × 3 mm
Data collection top
Four circle
diffractometer
341 reflections with I > 2σ(I)
Radiation source: DhruvaRint = 0.0000
Cu monochromatorθmax = 44.1°, θmin = 4.0°
τ–\2t scansh = 910
Absorption correction: integration
datred
k = 1011
l = 77
354 measured reflections2 standard reflections every 25 reflections
354 independent reflections intensity decay: <3
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0446P)2 + 0.320P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.071Δρmax = 0.60 e Å3
S = 1.14Δρmin = 0.71 e Å3
354 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 3.14 (16)
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La0.42582 (18)0.00000.00000.0096 (4)
Ga20.7583 (2)0.00000.50000.0103 (4)0.977 (8)
Zr20.7583 (2)0.00000.50000.0103 (4)0.026 (5)
Ga10.00000.00000.00000.0099 (9)0.55 (4)
Zr10.00000.00000.00000.0099 (9)0.42 (5)
Ta0.00000.00000.00000.0099 (9)0.027 (3)
Ga30.33330.66670.5309 (3)0.0091 (4)
O10.33330.66670.1806 (4)0.0118 (5)
O20.4578 (2)0.3108 (3)0.3051 (3)0.0151 (4)
O30.2232 (2)0.0796 (2)0.7597 (3)0.0148 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.0114 (5)0.0104 (7)0.0066 (5)0.0052 (3)0.0003 (2)0.0006 (4)
Ga20.0116 (6)0.0118 (7)0.0075 (6)0.0059 (4)0.0016 (2)0.0033 (5)
Zr20.0116 (6)0.0118 (7)0.0075 (6)0.0059 (4)0.0016 (2)0.0033 (5)
Ga10.0117 (10)0.0117 (10)0.0063 (13)0.0059 (5)0.0000.000
Zr10.0117 (10)0.0117 (10)0.0063 (13)0.0059 (5)0.0000.000
Ta0.0117 (10)0.0117 (10)0.0063 (13)0.0059 (5)0.0000.000
Ga30.0110 (6)0.0110 (6)0.0051 (7)0.0055 (3)0.0000.000
O10.0155 (7)0.0155 (7)0.0044 (9)0.0078 (4)0.0000.000
O20.0116 (7)0.0229 (8)0.0101 (6)0.0080 (6)0.0014 (5)0.0064 (6)
O30.0163 (8)0.0189 (8)0.0117 (7)0.0106 (6)0.0035 (5)0.0066 (5)
Geometric parameters (Å, º) top
La—O3i2.420 (2)Ga3—O2xvi1.8438 (19)
La—O3ii2.420 (2)Ga3—O2xii1.8438 (19)
La—O2iii2.454 (2)Ga3—Zr2xvii3.202 (2)
La—O2iv2.454 (2)Ga3—Zr2xviii3.202 (2)
La—O1v2.6301 (17)Ga3—Zr2xix3.202 (2)
La—O1vi2.6301 (17)Ga3—Laxx3.4453 (18)
La—O2vii2.905 (2)Ga3—Laxxi3.4453 (18)
La—O22.905 (2)Ga3—Laxxii3.4453 (18)
La—Ga3viii3.4453 (18)O1—Laxvii2.6301 (17)
La—Ga3ix3.4453 (18)O1—Laxviii2.6301 (17)
Ga2—O3iii1.8417 (17)O1—Laxix2.6301 (17)
Ga2—O3x1.8417 (17)O2—Ga3viii1.8438 (19)
Ga2—O2x1.869 (2)O2—Zr2xix1.869 (2)
Ga2—O2iii1.869 (2)O2—Ga2xix1.869 (2)
Ga1—O3xi2.0357 (17)O2—Laxix2.454 (2)
Ga1—O3xii2.0357 (17)O3—Zr2xix1.8417 (17)
Ga1—O3ii2.0357 (17)O3—Ga2xix1.8417 (17)
Ga1—O3xiii2.0357 (17)O3—Taxxiii2.0357 (17)
Ga1—O3i2.0357 (17)O3—Zr1xxiii2.0357 (17)
Ga1—O3xiv2.0357 (17)O3—Ga1xxiii2.0357 (17)
Ga3—O11.801 (3)O3—Laxxiii2.420 (2)
Ga3—O2xv1.8438 (19)
O3i—La—O3ii68.42 (8)O2xvi—Ga3—O2xii100.74 (9)
O3i—La—O2iii138.94 (6)O1—Ga3—Zr2xvii87.15 (3)
O3ii—La—O2iii107.62 (6)O2xv—Ga3—Zr2xvii30.64 (5)
O3i—La—O2iv107.62 (6)O2xvi—Ga3—Zr2xvii112.42 (7)
O3ii—La—O2iv138.94 (6)O2xii—Ga3—Zr2xvii123.17 (7)
O2iii—La—O2iv100.58 (9)O1—Ga3—Zr2xviii87.15 (3)
O3i—La—O1v78.41 (5)O2xv—Ga3—Zr2xviii123.17 (7)
O3ii—La—O1v125.87 (6)O2xvi—Ga3—Zr2xviii30.64 (5)
O2iii—La—O1v71.88 (6)O2xii—Ga3—Zr2xviii112.42 (7)
O2iv—La—O1v90.78 (5)Zr2xvii—Ga3—Zr2xviii119.755 (5)
O3i—La—O1vi125.87 (6)O1—Ga3—Zr2xix87.15 (3)
O3ii—La—O1vi78.41 (5)O2xv—Ga3—Zr2xix112.42 (7)
O2iii—La—O1vi90.78 (5)O2xvi—Ga3—Zr2xix123.17 (7)
O2iv—La—O1vi71.88 (6)O2xii—Ga3—Zr2xix30.64 (5)
O1v—La—O1vi153.07 (6)Zr2xvii—Ga3—Zr2xix119.755 (5)
O3i—La—O2vii67.30 (6)Zr2xviii—Ga3—Zr2xix119.755 (5)
O3ii—La—O2vii78.78 (6)O1—Ga3—Laxx134.42 (3)
O2iii—La—O2vii153.75 (5)O2xv—Ga3—Laxx57.47 (7)
O2iv—La—O2vii63.36 (6)O2xvi—Ga3—Laxx43.29 (6)
O1v—La—O2vii125.76 (6)O2xii—Ga3—Laxx107.80 (9)
O1vi—La—O2vii65.11 (5)Zr2xvii—Ga3—Laxx73.71 (3)
O3i—La—O278.78 (6)Zr2xviii—Ga3—Laxx68.79 (3)
O3ii—La—O267.30 (6)Zr2xix—Ga3—Laxx138.29 (5)
O2iii—La—O263.36 (6)O1—Ga3—Laxxi134.42 (3)
O2iv—La—O2153.75 (5)O2xv—Ga3—Laxxi43.29 (6)
O1v—La—O265.11 (5)O2xvi—Ga3—Laxxi107.80 (9)
O1vi—La—O2125.76 (6)O2xii—Ga3—Laxxi57.47 (7)
O2vii—La—O2138.91 (8)Zr2xvii—Ga3—Laxxi68.79 (3)
O3i—La—Ga3viii109.98 (5)Zr2xviii—Ga3—Laxxi138.29 (5)
O3ii—La—Ga3viii87.27 (5)Zr2xix—Ga3—Laxxi73.71 (3)
O2iii—La—Ga3viii31.01 (3)Laxx—Ga3—Laxxi76.42 (5)
O2iv—La—Ga3viii129.04 (6)O1—Ga3—Laxxii134.42 (3)
O1v—La—Ga3viii65.09 (6)O2xv—Ga3—Laxxii107.80 (9)
O1vi—La—Ga3viii109.78 (6)O2xvi—Ga3—Laxxii57.47 (7)
O2vii—La—Ga3viii165.82 (5)O2xii—Ga3—Laxxii43.29 (6)
O2—La—Ga3viii32.36 (3)Zr2xvii—Ga3—Laxxii138.29 (5)
O3i—La—Ga3ix87.27 (5)Zr2xviii—Ga3—Laxxii73.71 (3)
O3ii—La—Ga3ix109.98 (5)Zr2xix—Ga3—Laxxii68.79 (3)
O2iii—La—Ga3ix129.04 (6)Laxx—Ga3—Laxxii76.42 (5)
O2iv—La—Ga3ix31.01 (3)Laxxi—Ga3—Laxxii76.42 (5)
O1v—La—Ga3ix109.78 (6)Ga3—O1—Laxvii110.67 (4)
O1vi—La—Ga3ix65.09 (6)Ga3—O1—Laxviii110.67 (4)
O2vii—La—Ga3ix32.36 (3)Laxvii—O1—Laxviii108.24 (5)
O2—La—Ga3ix165.82 (5)Ga3—O1—Laxix110.67 (4)
Ga3viii—La—Ga3ix159.52 (5)Laxvii—O1—Laxix108.24 (5)
O3iii—Ga2—O3x132.25 (14)Laxviii—O1—Laxix108.24 (5)
O3iii—Ga2—O2x100.35 (8)Ga3viii—O2—Zr2xix119.17 (10)
O3x—Ga2—O2x109.28 (7)Ga3viii—O2—Ga2xix119.17 (10)
O3iii—Ga2—O2iii109.28 (7)Zr2xix—O2—Ga2xix0.00 (6)
O3x—Ga2—O2iii100.35 (8)Ga3viii—O2—Laxix105.70 (8)
O2x—Ga2—O2iii101.93 (15)Zr2xix—O2—Laxix120.29 (8)
O3xi—Ga1—O3xii165.09 (9)Ga2xix—O2—Laxix120.29 (8)
O3xi—Ga1—O3ii104.22 (10)Ga3viii—O2—La90.17 (8)
O3xii—Ga1—O3ii86.98 (7)Zr2xix—O2—La111.63 (9)
O3xi—Ga1—O3xiii86.98 (7)Ga2xix—O2—La111.63 (9)
O3xii—Ga1—O3xiii83.87 (9)Laxix—O2—La105.07 (6)
O3ii—Ga1—O3xiii165.09 (9)Zr2xix—O3—Ga2xix0.00 (10)
O3xi—Ga1—O3i86.98 (7)Zr2xix—O3—Taxxiii114.03 (8)
O3xii—Ga1—O3i104.22 (10)Ga2xix—O3—Taxxiii114.03 (8)
O3ii—Ga1—O3i83.87 (9)Zr2xix—O3—Zr1xxiii114.03 (8)
O3xiii—Ga1—O3i86.98 (7)Ga2xix—O3—Zr1xxiii114.03 (8)
O3xi—Ga1—O3xiv83.87 (9)Taxxiii—O3—Zr1xxiii0.0
O3xii—Ga1—O3xiv86.98 (7)Zr2xix—O3—Ga1xxiii114.03 (8)
O3ii—Ga1—O3xiv86.98 (7)Ga2xix—O3—Ga1xxiii114.03 (8)
O3xiii—Ga1—O3xiv104.22 (10)Taxxiii—O3—Ga1xxiii0.0
O3i—Ga1—O3xiv165.09 (9)Zr1xxiii—O3—Ga1xxiii0.0
O1—Ga3—O2xv117.21 (7)Zr2xix—O3—Laxxiii138.60 (9)
O1—Ga3—O2xvi117.21 (7)Ga2xix—O3—Laxxiii138.60 (9)
O2xv—Ga3—O2xvi100.74 (9)Taxxiii—O3—Laxxiii103.86 (7)
O1—Ga3—O2xii117.21 (7)Zr1xxiii—O3—Laxxiii103.86 (7)
O2xv—Ga3—O2xii100.74 (9)Ga1xxiii—O3—Laxxiii103.86 (7)
Symmetry codes: (i) x, y, z1; (ii) xy, y, z+1; (iii) y+1, xy, z; (iv) x+1, x+y, z; (v) xy+1, y+1, z; (vi) x, y1, z; (vii) xy, y, z; (viii) xy+1, y+1, z+1; (ix) x, y1, z1; (x) x+1, x+y, z+1; (xi) x+y, x, z1; (xii) y, x, z+1; (xiii) y, xy, z1; (xiv) x, x+y, z+1; (xv) xy, y+1, z+1; (xvi) x+1, x+y+1, z+1; (xvii) y, xy, z; (xviii) x, y+1, z; (xix) x+y+1, x+1, z; (xx) x, y+1, z+1; (xxi) y, xy, z+1; (xxii) x+y+1, x+1, z+1; (xxiii) x, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds