Download citation
Download citation
link to html
Dioxotetrafluorotungstates (NH4)2WO2F4 [(I) at 297 K and (II) at 133 K] and Rb2WO2F4 (III) were synthesized in a single-crystal form and their structures were determined by X-ray diffraction. Two independent states of the cis-WO2F4 octahedron are characteristic of static and dynamic disorder in structure (I). Dynamically disordered W2 is displaced from the symmetry axis producing four possible orientations of anion that permits O and F atoms to be identified in separate orientations owing to the inherent differences between W-O and W-F bonding. After the phase transition at lower temperature (201 K), (I) transforms into the twin structure (II) with complete O/F ordering. Structure (III) is characterized by full O/F static disorder without any phase transitions at lower temperature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108033053/bp5013sup1.cif
Contains datablocks I, II, III, publication_text

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108033053/bp5013Isup2.fcf
Contains datablock I

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108033053/bp5013IIsup3.fcf
Contains datablock II

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108033053/bp5013IIIsup4.fcf
Contains datablock III

Computing details top

For all compounds, data collection: Bruker Smart v5.054 (Bruker, 1998); cell refinement: Bruker SAINT v6.02a (Bruker, 2000); data reduction: Bruker SAINT v6.02a (Bruker, 2000); program(s) used to solve structure: Bruker SHELXTL v5.1 (Bruker, 1998); program(s) used to refine structure: Bruker SHELXTL v5.1 (Bruker, 1998); molecular graphics: Bruker SHELXTL v5.1 (Bruker, 1998); software used to prepare material for publication: Bruker SHELXTL v5.1 (Bruker, 1998).

(I) ammonium dioxotetrafluorotungstate top
Crystal data top
(F4O2W)·2(H4N)F(000) = 557
Mr = 327.93Dx = 3.558 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 863 reflections
a = 5.9410 (4) Åθ = 2.8–39.0°
b = 14.4206 (10) ŵ = 18.77 mm1
c = 7.1456 (5) ÅT = 297 K
V = 612.18 (7) Å3Sphere, colorless
Z = 40.26 × 0.26 × 0.26 × 0.13 (radius) mm
Data collection top
Bruker Smart 1000 CCD
diffractometer
1012 independent reflections
Radiation source: fine-focus sealed tube937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.33 pixels mm-1θmax = 39.0°, θmin = 2.8°
ω scansh = 109
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2520
Tmin = 0.089, Tmax = 0.089l = 1212
8105 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0203P)2 + 0.6776P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.045
S = 1.13Δρmax = 1.58 e Å3
1012 reflectionsΔρmin = 1.52 e Å3
41 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0201 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.00000.10388 (3)0.25000.00515 (10)0.1431 (6)
W20.02077 (6)0.109663 (14)0.23099 (4)0.01958 (7)0.2142 (2)
N10.50000.27480 (19)0.25000.0318 (5)
N20.00000.4420 (2)0.25000.0308 (5)
F10.00000.24802 (14)0.25000.0534 (7)
O10.00000.01325 (15)0.25000.0329 (5)
F20.22685 (19)0.12096 (9)0.06646 (15)0.0364 (2)0.75
O20.22685 (19)0.12096 (9)0.06646 (15)0.0364 (2)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0114 (2)0.00007 (16)0.00398 (16)0.0000.0000.000
W20.01619 (14)0.02899 (9)0.01358 (13)0.00032 (7)0.00311 (10)0.00168 (6)
N10.0306 (11)0.0266 (10)0.0381 (11)0.0000.0000.000
N20.0278 (10)0.0334 (12)0.0313 (10)0.0000.0000.000
F10.0458 (12)0.0179 (8)0.097 (2)0.0000.0000.000
O10.0383 (11)0.0168 (8)0.0435 (11)0.0000.0000.000
F20.0265 (4)0.0568 (6)0.0260 (4)0.0044 (4)0.0101 (3)0.0030 (4)
O20.0265 (4)0.0568 (6)0.0260 (4)0.0044 (4)0.0101 (3)0.0030 (4)
Geometric parameters (Å, º) top
W1—W2i0.2015 (4)N1—F2ix3.046 (2)
W1—W2ii0.2015 (4)N1—F2x3.046 (2)
W1—W2iii0.2015 (4)N1—O1xi3.056 (4)
W1—O11.689 (2)N2—F12.798 (3)
W1—O2i1.8966 (11)N2—O2xii2.9278 (14)
W1—F2i1.8966 (11)N2—O2vii2.9278 (14)
W1—O2ii1.8966 (11)N2—F2viii2.9278 (14)
W1—F2ii1.8966 (11)N2—O2xiii2.9278 (14)
W1—F12.079 (2)N2—O1xi3.0397 (8)
W2—W2i0.2467 (7)N2—O1xiv3.0397 (8)
W2—W2ii0.2717 (5)N2—F2xv3.318 (3)
W2—W2iii0.3670 (6)N2—F2xvi3.318 (3)
W2—O21.7052 (11)N2—F2xvii3.318 (3)
W2—O11.782 (2)F1—O2i2.6256 (19)
W2—F2i1.8902 (11)F1—F2i2.6256 (19)
W2—F2ii1.9027 (11)F1—F22.6256 (19)
W2—F12.004 (2)F1—O2iii2.6256 (19)
W2—F2iii2.0701 (11)O1—O2ii2.6986 (19)
N1—F12.9955 (5)O1—F2ii2.6986 (19)
N1—F1iv2.9955 (5)O1—O2i2.6986 (19)
N1—F2v3.0314 (18)O1—O2iii2.6986 (19)
N1—F2vi3.0314 (18)F2—O2ii2.623 (2)
N1—F2vii3.0314 (18)F2—F2ii2.623 (2)
N1—F2viii3.0314 (18)F2—O2i2.695 (2)
N1—F23.046 (2)F2—F2i2.695 (2)
N1—F2ii3.046 (2)
O1—W1—O2i97.46 (4)O1—W2—F2ii94.11 (4)
O1—W1—F2i97.46 (4)O2i—W2—F2ii165.14 (6)
O1—W1—O2ii97.46 (4)F2i—W2—F2ii165.14 (6)
F2i—W1—O2ii165.08 (8)F2—W2—F189.76 (5)
O1—W1—F2ii97.46 (4)O1—W2—F1168.84 (2)
O2i—W1—F2ii165.08 (8)O2i—W2—F184.75 (4)
O1—W1—O2iii97.46 (4)F2i—W2—F184.75 (4)
O2i—W1—O2iii87.50 (7)O2ii—W2—F184.42 (4)
F2i—W1—O2iii87.50 (7)F2ii—W2—F184.42 (4)
O2ii—W1—O2iii90.57 (7)F1—W2—O2iii80.24 (4)
F2ii—W1—O2iii90.57 (7)F2—W2—O2iii169.98 (8)
O1—W1—F2iii97.46 (4)O1—W2—O2iii88.61 (4)
O1—W1—F1180.0O1—W2—F2i94.55 (4)
O2i—W1—F182.54 (4)F2—W2—O1101.38 (5)
F2i—W1—F182.54 (4)O2i—W2—O2iii82.82 (7)
O2ii—W1—F182.54 (4)F2i—W2—O2iii82.82 (7)
F2ii—W1—F182.54 (4)O2ii—W2—O2iii85.34 (7)
F2—W2—O2i96.99 (7)F2ii—W2—O2iii85.34 (7)
O1—W2—O2i94.55 (4)F2—W2—F2iii169.98 (8)
F2—W2—O2ii93.11 (8)O1—W2—F2iii88.61 (4)
O1—W2—O2ii94.11 (4)O2i—W2—F2iii82.82 (7)
O2i—W2—O2ii165.14 (6)F2i—W2—F2iii82.82 (7)
F2i—W2—O2ii165.14 (6)O2ii—W2—F2iii85.34 (7)
F2—W2—F2ii93.11 (8)F2ii—W2—F2iii85.34 (7)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1, y, z; (x) x+1, y, z+1/2; (xi) x+1/2, y+1/2, z; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z; (xvii) x1/2, y+1/2, z+1/2.
(II) ammonium dioxotetrafluorotungstate top
Crystal data top
(F4O2W)·2(H4N)Z = 4
Mr = 327.93F(000) = 592
Triclinic, P1Dx = 3.645 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9013 (4) ÅCell parameters from 1019 reflections
b = 14.1993 (9) Åθ = 1.4–39.4°
c = 7.7162 (5) ŵ = 19.36 mm1
α = 90.022 (2)°T = 133 K
β = 112.466 (2)°Sphere, colorless
γ = 89.999 (2)°0.26 × 0.26 × 0.25 × 0.13 (radius) mm
V = 597.50 (7) Å3
Data collection top
Bruker Smart 1000 CCD
diffractometer
6355 independent reflections
Radiation source: fine-focus sealed tube6066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 39.4°, θmin = 1.4°
ω scansh = 910
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2525
Tmin = 0.086, Tmax = 0.086l = 1312
15611 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.P)2 + 17.957P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.027
S = 1.06Δρmax = 10.21 e Å3
6355 reflectionsΔρmin = 7.78 e Å3
165 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00027 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.62509 (3)0.118066 (15)0.21307 (2)0.00468 (3)
W20.41301 (3)0.382878 (15)0.78691 (2)0.00510 (3)
N10.7310 (8)0.3639 (3)0.4445 (6)0.0081 (8)
N20.9588 (8)0.1236 (4)0.8872 (7)0.0109 (8)
N30.2855 (8)0.1360 (3)0.5537 (7)0.0081 (8)
N40.0741 (9)0.3764 (4)0.1145 (7)0.0111 (8)
O10.5008 (7)0.1123 (4)0.0296 (5)0.0115 (7)
O20.8673 (7)0.0355 (3)0.2679 (6)0.0105 (7)
O30.5313 (7)0.3883 (3)1.0289 (5)0.0101 (6)
O40.5998 (6)0.4641 (3)0.7321 (5)0.0082 (6)
F10.7293 (7)0.1486 (3)0.4929 (5)0.0121 (7)
F20.8345 (6)0.2233 (2)0.2278 (5)0.0087 (6)
F30.3709 (6)0.2106 (2)0.2138 (5)0.0108 (6)
F40.4036 (6)0.0316 (2)0.2592 (5)0.0118 (6)
F50.2371 (7)0.3521 (3)0.5071 (5)0.0128 (7)
F60.1421 (6)0.4678 (3)0.7396 (5)0.0119 (7)
F70.1562 (6)0.2882 (2)0.7857 (6)0.0112 (7)
F80.6074 (6)0.2770 (2)0.7713 (5)0.0095 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.00575 (5)0.00573 (5)0.00226 (5)0.00412 (6)0.00118 (4)0.00104 (6)
W20.00601 (5)0.00393 (5)0.00440 (6)0.00096 (6)0.00091 (4)0.00117 (6)
N10.0101 (13)0.0087 (16)0.0063 (13)0.0008 (11)0.0041 (11)0.0001 (11)
N20.0106 (14)0.0081 (16)0.0121 (15)0.0001 (15)0.0022 (12)0.0023 (15)
N30.0061 (13)0.0077 (16)0.0101 (15)0.0009 (11)0.0026 (11)0.0003 (12)
N40.0112 (14)0.0087 (17)0.0124 (16)0.0021 (15)0.0035 (12)0.0010 (15)
O10.0141 (12)0.0160 (15)0.0052 (11)0.0049 (15)0.0045 (9)0.0039 (13)
O20.0102 (13)0.0076 (13)0.0136 (15)0.0008 (11)0.0044 (11)0.0016 (12)
O30.0120 (12)0.0091 (13)0.0073 (12)0.0009 (13)0.0016 (10)0.0041 (13)
O40.0091 (11)0.0065 (12)0.0118 (13)0.0031 (10)0.0071 (10)0.0009 (11)
F10.0125 (12)0.0138 (13)0.0077 (12)0.0007 (11)0.0013 (10)0.0017 (11)
F20.0089 (10)0.0051 (10)0.0144 (12)0.0042 (9)0.0068 (9)0.0026 (10)
F30.0116 (12)0.0115 (13)0.0098 (12)0.0058 (10)0.0045 (10)0.0036 (10)
F40.0134 (11)0.0089 (12)0.0174 (13)0.0059 (10)0.0107 (10)0.0034 (10)
F50.0168 (13)0.0168 (14)0.0031 (10)0.0015 (12)0.0020 (10)0.0032 (10)
F60.0087 (11)0.0093 (12)0.0150 (14)0.0041 (10)0.0016 (11)0.0013 (11)
F70.0093 (11)0.0087 (12)0.0161 (14)0.0018 (10)0.0053 (10)0.0038 (11)
F80.0110 (11)0.0051 (11)0.0152 (13)0.0028 (9)0.0080 (10)0.0016 (10)
Geometric parameters (Å, º) top
W1—O11.732 (3)N3—F53.090 (6)
W1—O21.770 (4)N3—O2v3.097 (6)
W1—F21.915 (3)N3—F2viii3.136 (5)
W1—F41.923 (4)N3—F1viii3.138 (6)
W1—F31.996 (4)N4—F52.828 (6)
W1—F12.053 (4)N4—F32.859 (6)
W2—O31.727 (4)N4—F2viii2.904 (6)
W2—O41.755 (4)N4—O4iii2.914 (6)
W2—F61.923 (4)N4—F6ix2.981 (7)
W2—F81.923 (3)N4—O3x3.018 (6)
W2—F72.024 (4)N4—O3ii3.018 (7)
W2—F52.053 (3)N4—F7ii3.030 (7)
N1—F22.816 (6)N4—F8x3.319 (6)
N1—F5i2.842 (6)N4—F6ii3.332 (7)
N1—O42.976 (6)N4—O4x3.432 (6)
N1—O3ii2.984 (6)N4—W2x3.752 (4)
N1—F6i3.004 (5)O1—F32.676 (6)
N1—F6iii3.017 (6)O1—F22.705 (5)
N1—F7i3.056 (5)O1—O22.709 (5)
N1—F13.081 (6)O1—F42.754 (6)
N1—F33.087 (5)O2—F22.683 (5)
N1—O4iii3.099 (6)O2—F12.708 (6)
N1—F83.134 (6)O2—F42.712 (6)
N1—F53.136 (6)O3—F72.696 (5)
N2—F12.840 (6)O3—O42.697 (6)
N2—F7i2.852 (6)O3—F82.708 (6)
N2—F82.903 (6)O3—F62.759 (5)
N2—O2iv2.920 (7)O4—F82.672 (5)
N2—F4v2.976 (6)O4—F52.699 (5)
N2—O1vi3.011 (7)O4—F62.724 (6)
N2—O1vii3.017 (6)F1—F32.532 (5)
N2—F3vii3.018 (5)F1—F22.583 (5)
N2—F2vi3.304 (7)F1—F42.656 (5)
N3—F82.827 (5)F2—F32.702 (5)
N3—F12.837 (6)F3—F42.564 (5)
N3—O2viii2.971 (6)F5—F72.541 (6)
N3—O1vi2.991 (6)F5—F82.582 (5)
N3—F43.010 (6)F5—F62.646 (6)
N3—F4v3.015 (6)F6—F72.573 (5)
N3—F33.045 (7)F7—F82.712 (5)
N3—F73.081 (6)
O1—W1—O2101.4 (2)O3—W2—F698.07 (18)
O1—W1—F295.62 (18)O4—W2—F695.48 (17)
O2—W1—F293.36 (16)O3—W2—F895.64 (18)
O1—W1—F497.64 (18)O4—W2—F893.09 (17)
O2—W1—F494.40 (17)F6—W2—F8162.04 (15)
F2—W1—F4163.00 (16)O3—W2—F791.56 (18)
O1—W1—F391.48 (18)O4—W2—F7166.87 (17)
O2—W1—F3167.00 (18)F6—W2—F781.33 (15)
F2—W1—F387.39 (15)F8—W2—F786.77 (16)
F4—W1—F381.69 (15)O3—W2—F5168.29 (18)
O1—W1—F1168.51 (18)O4—W2—F589.89 (17)
O2—W1—F189.88 (17)F6—W2—F583.35 (16)
F2—W1—F181.15 (15)F8—W2—F580.91 (16)
F4—W1—F183.76 (15)F7—W2—F577.12 (16)
F3—W1—F177.40 (15)O3—W2—O4101.51 (19)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x1, y, z; (ix) x, y+1, z+1; (x) x1, y, z1.
(III) rubidium tungsten oxide fluoride top
Crystal data top
(F4O2W)·2RbDx = 5.059 Mg m3
Mr = 462.79Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 876 reflections
Hall symbol: -P 3 2"θ = 3.9–31.4°
a = 6.0056 (3) ŵ = 34.94 mm1
c = 4.8636 (5) ÅT = 297 K
V = 151.92 (2) Å3Plate, colorless
Z = 10.12 × 0.12 × 0.03 mm
F(000) = 200
Data collection top
Bruker Smart 1000 CCD
diffractometer
216 independent reflections
Radiation source: fine-focus sealed tube208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 31.4°, θmin = 3.9°
ω scansh = 85
Absorption correction: integration
SADABS v.2.03; Bruker 1999
k = 88
Tmin = 0.011, Tmax = 0.183l = 67
1232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.013P)2 + 0.656P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.95 e Å3
216 reflectionsΔρmin = 1.90 e Å3
13 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.169 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W0.00000.00000.00000.02998 (8)
Rb0.66670.33330.68686 (12)0.02856 (12)
F0.3003 (4)0.1501 (2)0.2177 (4)0.0293 (5)0.67
O0.3003 (4)0.1501 (2)0.2177 (4)0.0293 (5)0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W0.02882 (10)0.02882 (10)0.03229 (16)0.01441 (5)0.0000.000
Rb0.02559 (15)0.02559 (15)0.0345 (3)0.01279 (8)0.0000.000
F0.0223 (9)0.0294 (7)0.0339 (10)0.0111 (5)0.0077 (8)0.0038 (4)
O0.0223 (9)0.0294 (7)0.0339 (10)0.0111 (5)0.0077 (8)0.0038 (4)
Geometric parameters (Å, º) top
W—Fi1.887 (2)Rb—Fvi3.0434 (4)
W—F1.887 (2)Rb—Fxv3.0434 (4)
W—Fii1.887 (2)Rb—Fxvi3.0434 (4)
W—Fiii1.887 (2)Rb—Fxvii3.0434 (4)
W—Fiv1.887 (2)Rb—Fviii3.0434 (4)
W—Fv1.887 (2)Rb—Oxiv3.0434 (4)
W—Oi1.887 (2)Rb—Ovi3.0434 (4)
W—O1.887 (2)Rb—Oxv3.0434 (4)
W—Oii1.887 (2)Rb—Oxvi3.0434 (4)
W—Oiii1.887 (2)Rb—Oxvii3.0434 (4)
W—Oiv1.887 (2)Rb—Oviii3.0434 (4)
W—Ov1.887 (2)Rb—Fxviii3.209 (2)
W—Rbvi3.7871 (3)Rb—Fxix3.209 (2)
W—Rbvii3.7871 (3)Rb—Fxx3.209 (2)
W—Rbviii3.7871 (3)Rb—Oxviii3.209 (2)
W—Rbix3.7871 (3)Rb—Oxix3.209 (2)
W—Rbx3.7871 (3)Rb—Oxx3.209 (2)
W—Rbxi3.7871 (3)F—Fii2.631 (4)
Rb—Fxii2.973 (2)F—Fiv2.631 (4)
Rb—F2.973 (2)F—Fiii2.705 (4)
Rb—Fxiii2.973 (2)F—Fv2.705 (4)
Rb—Oxii2.973 (2)F—Rbvi3.0434 (4)
Rb—O2.973 (2)F—Rbviii3.0434 (4)
Rb—Oxiii2.973 (2)F—Fxv3.159 (4)
Rb—Fxiv3.0434 (4)F—Fxvii3.159 (4)
Fi—W—F180.00 (11)Fii—W—Fiv91.59 (9)
Fi—W—Fii91.59 (9)Fiii—W—Fiv180.00 (3)
F—W—Fii88.41 (9)Fi—W—Fv88.41 (9)
Fi—W—Fiii88.41 (9)F—W—Fv91.59 (9)
F—W—Fiii91.59 (9)Fii—W—Fv180.00 (12)
Fii—W—Fiii88.41 (9)Fiii—W—Fv91.59 (9)
Fi—W—Fiv91.59 (9)Fiv—W—Fv88.41 (9)
F—W—Fiv88.41 (9)
Symmetry codes: (i) x, y, z; (ii) y, x+y, z; (iii) x+y, x, z; (iv) xy, x, z; (v) y, xy, z; (vi) x+1, y, z+1; (vii) x1, y, z1; (viii) x+1, y+1, z+1; (ix) x1, y1, z1; (x) x, y, z+1; (xi) x, y, z1; (xii) y+1, xy, z; (xiii) x+y+1, x+1, z; (xiv) y+1, x+y+1, z+1; (xv) xy, x, z+1; (xvi) xy+1, x, z+1; (xvii) y, x+y, z+1; (xviii) y+1, xy, z+1; (xix) x+y+1, x+1, z+1; (xx) x, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds