Download citation
Download citation
link to html
Dicaesium octaiodide is composed of layers of zigzag polyiodide units (I82−) intercalated with caesium cations. Each I82− unit is built of two triiodides bridged with one diiodine molecules. This system was subjected to compression up to 5.9 GPa under hydro­static conditions. Pressure alters the supramolecular architecture around I82−, leading to bending of the triiodide units away from their energetically preferred geometry (D∞h). Short I2...I3 contacts compress significantly, reaching lengths typical for the covalently bonded polyiodides. Unlike in reported structures at ambient conditions, pressure-induced catenation proceeds without symmetrization of the polyiodides, pointing to a different electron-transfer mechanism. The structure is shown to be half as compressible [B0 = 12.9 (4) GPa] than the similar CsI3 structure. The high bulk modulus is associated with higher I—I connectivity and a more compact cationic net, than in CsI3. The small discontinuity in the compressibility trend around 3 GPa suggests formation of more covalent I—I bonds. The potential sources of this discontinuity and its implication on the electronic properties of Cs2I8 are discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621010192/bm5146sup1.cif
Contains datablocks CsI4_0p0001GPa, CsI4_0p43GPa, CsI4_0p91GPa, CsI4_1p15GPa, CsI4_1p65GPa, CsI4_1p97GPa, CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_3p33GPa, CsI4_4p19GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_0p0001GPasup2.hkl
Contains datablock CsI4_0p0001GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_0p43GPasup3.hkl
Contains datablock CsI4_0p43GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_0p91GPasup4.hkl
Contains datablock CsI4_0p91GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_1p15GPasup5.hkl
Contains datablock CsI4_1p15GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_1p65GPasup6.hkl
Contains datablock CsI4_1p65GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_1p97GPasup7.hkl
Contains datablock CsI4_1p97GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_2p32GPasup8.hkl
Contains datablock CsI4_2p32GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_2p74GPasup9.hkl
Contains datablock CsI4_2p74GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_3p05GPasup10.hkl
Contains datablock CsI4_3p05GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_3p33GPasup11.hkl
Contains datablock CsI4_3p33GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_4p19GPasup12.hkl
Contains datablock CsI4_4p19GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_4p71GPasup13.hkl
Contains datablock CsI4_4p71GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_5p42GPasup14.hkl
Contains datablock CsI4_5p42GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621010192/bm5146CsI4_5p91GPasup15.hkl
Contains datablock CsI4_5p91GPa

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621010192/bm5146sup16.pdf
Tables containing selected crystallographic data on ambient- and high-pressure structures; microphotographs showing the process of identification of the reaction products between iodine vapour and gasket material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520621010192/bm5146CsI4_0p43GPasup17.cml
Supplementary material

CCDC references: 2097965; 2097966; 2097967; 2097968; 2097969; 2097970; 2097971; 2097972; 2097973; 2097974; 2097975; 2097976; 2097977; 2097978

Computing details top

Data collection: CrysAlis PRO 1.171.41.110a (Rigaku OD, 2021) for CsI4_0p0001GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for CsI4_0p43GPa, CsI4_0p91GPa, CsI4_1p15GPa, CsI4_1p65GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for CsI4_1p97GPa, CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_4p19GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for CsI4_3p33GPa. Cell refinement: CrysAlis PRO 1.171.41.110a (Rigaku OD, 2021) for CsI4_0p0001GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for CsI4_0p43GPa, CsI4_0p91GPa, CsI4_1p15GPa, CsI4_1p65GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for CsI4_1p97GPa, CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_4p19GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for CsI4_3p33GPa. Data reduction: CrysAlis PRO 1.171.41.110a (Rigaku OD, 2021) for CsI4_0p0001GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for CsI4_0p43GPa, CsI4_0p91GPa, CsI4_1p15GPa, CsI4_1p65GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for CsI4_1p97GPa, CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_4p19GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa; CrysAlis PRO 1.171.40.84a (Rigaku OD, 2020) for CsI4_3p33GPa. Program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2018) for CsI4_0p0001GPa, CsI4_3p33GPa; SHELXT (Sheldrick, 2015) for CsI4_0p43GPa; SHELXT 2014/5 (Sheldrick, 2014) for CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa; olex2.solve 1.3 (Bourhis et al., 2015) for CsI4_4p19GPa. Program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015) for CsI4_0p0001GPa, CsI4_0p43GPa, CsI4_0p91GPa, CsI4_1p15GPa, CsI4_1p65GPa, CsI4_1p97GPa, CsI4_2p32GPa, CsI4_2p74GPa, CsI4_3p05GPa, CsI4_3p33GPa, CsI4_4p71GPa, CsI4_5p42GPa, CsI4_5p91GPa; olex2.refine 1.3 (Bourhis et al., 2015) for CsI4_4p19GPa. For all structures, molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

dicesium octaiodide (CsI4_0p0001GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 4.519 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 10.2847 (9) ÅCell parameters from 1143 reflections
b = 8.9809 (1) Åθ = 1.8–19.9°
c = 11.2100 (4) ŵ = 3.84 mm1
β = 114.598 (7)°T = 296 K
V = 941.46 (10) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1881 independent reflections
Radiation source: undulator, ID15B, ESRF1474 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.019
Detector resolution: 13.3333 pixels mm-1θmax = 21.2°, θmin = 1.8°
phi scanh = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.41.110a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1515
Tmin = 0.406, Tmax = 1.000l = 1918
3490 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.66 e Å3
1881 reflectionsΔρmin = 0.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.37997 (8)0.70803 (4)0.39214 (4)0.0498 (3)
Cs10.77568 (10)0.87459 (5)0.69681 (4)0.0607 (3)
I10.55970 (10)0.89915 (5)0.32404 (5)0.0590 (3)
I30.17152 (10)0.51486 (4)0.44968 (5)0.0579 (3)
I40.04999 (10)0.85835 (5)0.49453 (4)0.0568 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0560 (9)0.04619 (19)0.04879 (19)0.00599 (19)0.0235 (3)0.00228 (12)
Cs10.0643 (10)0.0608 (2)0.0569 (2)0.0087 (2)0.0252 (4)0.00739 (14)
I10.0565 (11)0.0629 (3)0.0634 (3)0.0026 (3)0.0307 (4)0.00422 (17)
I30.0599 (9)0.0471 (2)0.0729 (3)0.0017 (2)0.0336 (4)0.00536 (15)
I40.0536 (10)0.0545 (2)0.0601 (2)0.0100 (2)0.0216 (4)0.00195 (15)
Geometric parameters (Å, º) top
I2—Cs1i4.0347 (6)Cs1—I3iii3.9743 (6)
I2—Cs14.3467 (11)Cs1—I3iv3.9959 (6)
I2—I12.8497 (10)Cs1—I3v3.9985 (12)
I2—I33.0287 (10)Cs1—I4v3.9542 (8)
Cs1—I1i3.9255 (12)Cs1—I4vi4.2951 (12)
Cs1—I13.8364 (7)Cs1—I4i4.0950 (9)
Cs1—I1ii3.9560 (10)I4—I4vii2.7659 (11)
Cs1i—I2—Cs191.137 (16)I3v—Cs1—I2i97.277 (17)
I1—I2—Cs160.240 (19)I3iii—Cs1—I3iv134.562 (15)
I1—I2—Cs1i66.99 (2)I3iv—Cs1—I3v103.66 (2)
I1—I2—I3176.08 (3)I3iii—Cs1—I3v62.50 (2)
I3—I2—Cs1122.957 (17)I3v—Cs1—I4i71.778 (19)
I3—I2—Cs1i109.97 (3)I3v—Cs1—I4vi71.58 (2)
I2i—Cs1—I288.863 (16)I3iv—Cs1—I4vi61.435 (15)
I2i—Cs1—I4vi100.444 (15)I3iv—Cs1—I4i97.664 (18)
I2i—Cs1—I4i62.716 (16)I3iii—Cs1—I4i115.389 (17)
I1ii—Cs1—I2i116.23 (2)I3iii—Cs1—I4vi133.63 (3)
I1ii—Cs1—I265.595 (17)I4v—Cs1—I2i140.392 (15)
I1—Cs1—I240.154 (15)I4vi—Cs1—I2100.335 (15)
I1—Cs1—I2i71.767 (12)I4v—Cs1—I2125.931 (17)
I1i—Cs1—I2i41.926 (14)I4i—Cs1—I2105.123 (14)
I1i—Cs1—I267.621 (19)I4v—Cs1—I1ii71.175 (19)
I1—Cs1—I1ii105.72 (3)I4v—Cs1—I3v51.306 (16)
I1i—Cs1—I1ii74.445 (17)I4v—Cs1—I3iv73.291 (14)
I1—Cs1—I1i79.01 (2)I4v—Cs1—I3iii64.707 (14)
I1ii—Cs1—I3iii72.642 (15)I4v—Cs1—I4vi91.89 (3)
I1—Cs1—I3iv73.668 (14)I4i—Cs1—I4vi38.402 (15)
I1ii—Cs1—I3iv78.284 (15)I4v—Cs1—I4i115.97 (2)
I1ii—Cs1—I3v117.228 (16)I2—I1—Cs1viii104.267 (18)
I1—Cs1—I3iii147.65 (3)I2—I1—Cs179.607 (18)
I1i—Cs1—I3iii69.345 (18)I2—I1—Cs1i71.09 (3)
I1—Cs1—I3v135.64 (2)Cs1—I1—Cs1viii101.51 (2)
I1i—Cs1—I3v121.587 (16)Cs1—I1—Cs1i100.99 (2)
I1i—Cs1—I3iv134.02 (3)Cs1i—I1—Cs1viii155.720 (19)
I1ii—Cs1—I4i170.68 (2)I2—I3—Cs1ix125.37 (3)
I1ii—Cs1—I4vi139.466 (15)I2—I3—Cs1x107.990 (19)
I1—Cs1—I4i64.978 (17)I2—I3—Cs1iv100.63 (2)
I1—Cs1—I4v146.716 (18)Cs1ix—I3—Cs1x117.50 (2)
I1i—Cs1—I4i103.362 (17)Cs1ix—I3—Cs1iv98.442 (10)
I1—Cs1—I4vi68.692 (19)Cs1iv—I3—Cs1x101.445 (19)
I1i—Cs1—I4vi137.740 (14)Cs1i—I4—Cs1xi141.597 (15)
I1i—Cs1—I4v128.656 (19)Cs1x—I4—Cs1xi93.95 (3)
I3v—Cs1—I2170.57 (2)Cs1x—I4—Cs1i100.481 (15)
I3iv—Cs1—I267.593 (17)I4vii—I4—Cs1xi66.88 (3)
I3iv—Cs1—I2i145.029 (14)I4vii—I4—Cs1x112.11 (4)
I3iii—Cs1—I2125.96 (3)I4vii—I4—Cs1i74.72 (2)
I3iii—Cs1—I2i80.063 (12)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y+3/2, z+1/2; (vi) x+1, y, z; (vii) x, y+2, z+1; (viii) x, y+3/2, z1/2; (ix) x+1, y1/2, z+3/2; (x) x1, y+3/2, z1/2; (xi) x1, y, z.
dicesium octaiodide (CsI4_0p43GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 4.717 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 10.1323 (13) ÅCell parameters from 1544 reflections
b = 8.88899 (15) Åθ = 2.2–20.8°
c = 11.0453 (4) ŵ = 4.04 mm1
β = 114.957 (9)°T = 296 K
V = 901.92 (14) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1137 independent reflections
Radiation source: undulator, ID15B, ESRF1016 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.019
Detector resolution: 13.3333 pixels mm-1θmax = 20.0°, θmin = 2.2°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.362, Tmax = 1.000l = 1616
2140 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.99 e Å3
1137 reflectionsΔρmin = 0.77 e Å3
46 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38162 (11)0.70932 (5)0.39270 (4)0.0449 (5)
Cs10.77696 (13)0.87545 (5)0.69514 (4)0.0533 (6)
I10.56057 (15)0.90216 (6)0.32020 (5)0.0519 (6)
I30.17247 (13)0.51192 (5)0.45101 (5)0.0521 (5)
I40.05067 (13)0.85662 (6)0.49563 (5)0.0515 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0580 (14)0.0376 (3)0.0407 (2)0.0044 (3)0.0224 (4)0.00185 (12)
Cs10.0655 (17)0.0487 (3)0.0459 (3)0.0066 (3)0.0236 (5)0.00552 (13)
I10.0584 (18)0.0514 (3)0.0510 (3)0.0015 (4)0.0280 (5)0.00371 (16)
I30.0636 (15)0.0374 (3)0.0594 (3)0.0014 (3)0.0299 (5)0.00439 (15)
I40.0594 (17)0.0431 (3)0.0502 (3)0.0086 (3)0.0215 (5)0.00236 (14)
Geometric parameters (Å, º) top
I2—Cs1i3.9787 (8)Cs1—I3iii3.9272 (8)
I2—Cs14.2537 (14)Cs1—I3iv3.9359 (16)
I2—I12.8447 (13)Cs1—I3v3.9140 (7)
I2—I33.0227 (12)Cs1—I4iv3.8981 (10)
Cs1—I1i3.8914 (17)Cs1—I4vi4.2110 (14)
Cs1—I13.7884 (9)Cs1—I4i4.0334 (11)
Cs1—I1ii3.9192 (13)I4—I4vii2.7648 (14)
Cs1i—I2—Cs191.09 (2)I3v—Cs1—I1ii72.555 (19)
I1—I2—Cs160.73 (2)I3iii—Cs1—I3iv104.37 (3)
I1—I2—Cs1i67.18 (3)I3v—Cs1—I3iii134.217 (16)
I1—I2—I3175.73 (4)I3v—Cs1—I3iv62.58 (3)
I3—I2—Cs1123.146 (19)I3iii—Cs1—I4i98.20 (2)
I3—I2—Cs1i110.07 (3)I3v—Cs1—I4i115.82 (2)
I2i—Cs1—I288.91 (2)I3iii—Cs1—I4vi61.38 (2)
I2i—Cs1—I4vi101.340 (19)I3iv—Cs1—I4i71.99 (2)
I2i—Cs1—I4i62.88 (2)I3v—Cs1—I4vi134.20 (4)
I1ii—Cs1—I2i116.21 (3)I3iv—Cs1—I4vi71.94 (3)
I1i—Cs1—I2i42.360 (18)I4iv—Cs1—I2125.51 (2)
I1—Cs1—I240.92 (2)I4vi—Cs1—I2100.668 (19)
I1i—Cs1—I267.86 (3)I4i—Cs1—I2105.461 (17)
I1ii—Cs1—I264.96 (2)I4iv—Cs1—I2i140.137 (18)
I1—Cs1—I2i71.784 (16)I4iv—Cs1—I1ii70.70 (3)
I1—Cs1—I1i80.09 (3)I4iv—Cs1—I3v64.369 (18)
I1i—Cs1—I1ii73.93 (2)I4iv—Cs1—I3iii73.539 (18)
I1—Cs1—I1ii105.84 (4)I4iv—Cs1—I3iv51.70 (2)
I1ii—Cs1—I3iv117.30 (2)I4iv—Cs1—I4i116.61 (3)
I1ii—Cs1—I3iii77.42 (2)I4i—Cs1—I4vi39.11 (2)
I1i—Cs1—I3iii133.80 (4)I4iv—Cs1—I4vi92.03 (3)
I1—Cs1—I3iv135.50 (3)I2—I1—Cs178.36 (2)
I1—Cs1—I3v147.53 (4)I2—I1—Cs1i70.46 (4)
I1i—Cs1—I3iv120.79 (2)I2—I1—Cs1viii103.75 (2)
I1—Cs1—I3iii73.818 (17)Cs1—I1—Cs1viii101.19 (3)
I1i—Cs1—I3v68.19 (2)Cs1—I1—Cs1i99.91 (3)
I1i—Cs1—I4iv127.04 (2)Cs1i—I1—Cs1viii156.43 (3)
I1—Cs1—I4i64.56 (2)I2—I3—Cs1ix107.00 (2)
I1ii—Cs1—I4i170.35 (3)I2—I3—Cs1x125.77 (3)
I1i—Cs1—I4vi139.300 (16)I2—I3—Cs1iii101.34 (3)
I1ii—Cs1—I4vi138.530 (18)Cs1x—I3—Cs1ix117.42 (3)
I1—Cs1—I4iv147.10 (2)Cs1iii—I3—Cs1ix101.41 (3)
I1i—Cs1—I4i104.10 (2)Cs1x—I3—Cs1iii98.852 (12)
I1—Cs1—I4vi68.63 (3)Cs1ix—I4—Cs1xi94.45 (4)
I3v—Cs1—I2i79.936 (16)Cs1i—I4—Cs1xi140.89 (2)
I3iv—Cs1—I2171.24 (3)Cs1ix—I4—Cs1i100.194 (19)
I3iv—Cs1—I2i97.08 (2)I4vii—I4—Cs1xi66.97 (4)
I3v—Cs1—I2125.10 (4)I4vii—I4—Cs1ix112.11 (5)
I3iii—Cs1—I2i145.329 (16)I4vii—I4—Cs1i73.91 (3)
I3iii—Cs1—I267.40 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+3/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y, z; (vii) x, y+2, z+1; (viii) x, y+3/2, z1/2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x1, y, z.
dicesium octaiodide (CsI4_0p91GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 4.905 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.997 (3) ÅCell parameters from 1172 reflections
b = 8.8025 (3) Åθ = 2.2–20.8°
c = 10.9003 (8) ŵ = 4.20 mm1
β = 115.28 (2)°T = 296 K
V = 867.3 (3) Å3Plate, dark red
Z = 4
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1090 independent reflections
Radiation source: undulator, ID15B, ESRF975 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.015
Detector resolution: 13.3333 pixels mm-1θmax = 20.0°, θmin = 2.2°
phi scanh = 76
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1212
Tmin = 0.617, Tmax = 1.000l = 1616
2040 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.92 e Å3
1090 reflectionsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38329 (14)0.71059 (6)0.39350 (5)0.0404 (6)
Cs10.77791 (16)0.87646 (6)0.69386 (5)0.0475 (6)
I10.56108 (18)0.90461 (7)0.31697 (6)0.0470 (6)
I30.17332 (16)0.50911 (7)0.45182 (6)0.0451 (6)
I40.05123 (16)0.85512 (7)0.49652 (6)0.0446 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0438 (17)0.0423 (3)0.0379 (3)0.0042 (3)0.0202 (5)0.00180 (14)
Cs10.0511 (19)0.0510 (3)0.0406 (3)0.0055 (3)0.0196 (5)0.00409 (15)
I10.047 (2)0.0542 (4)0.0450 (3)0.0015 (4)0.0244 (6)0.00334 (18)
I30.0450 (18)0.0422 (3)0.0527 (3)0.0005 (4)0.0252 (6)0.00424 (17)
I40.0412 (19)0.0461 (3)0.0461 (3)0.0072 (3)0.0183 (6)0.00251 (16)
Geometric parameters (Å, º) top
I2—Cs1i3.9251 (9)Cs1—I3iii3.8652 (9)
I2—Cs14.1692 (19)Cs1—I3iv3.880 (2)
I2—I12.8351 (16)Cs1—I3v3.8613 (8)
I2—I33.0158 (14)Cs1—I4vi4.1409 (18)
Cs1—Cs1i5.780 (3)Cs1—I4iv3.8479 (14)
Cs1—I1i3.856 (2)Cs1—I4i3.9793 (13)
Cs1—I13.7459 (12)I4—I4vii2.7617 (16)
Cs1—I1ii3.8864 (15)
Cs1i—I2—Cs191.09 (3)I3iii—Cs1—I1ii76.68 (2)
I1—I2—Cs161.20 (3)I3v—Cs1—I1ii72.42 (2)
I1—I2—Cs1i67.34 (4)I3iv—Cs1—I1ii117.44 (3)
I1—I2—I3175.20 (4)I3iii—Cs1—I3iv104.92 (3)
I3—I2—Cs1123.42 (2)I3v—Cs1—I3iv62.75 (4)
I3—I2—Cs1i110.19 (4)I3v—Cs1—I3iii133.811 (19)
I2i—Cs1—I288.91 (3)I3iv—Cs1—I4vi72.19 (3)
I2—Cs1—Cs1i42.76 (2)I3iv—Cs1—I4i72.09 (3)
I2i—Cs1—Cs1i46.151 (18)I3iii—Cs1—I4i98.60 (3)
I2i—Cs1—I4i63.05 (3)I3iii—Cs1—I4vi61.30 (2)
I2i—Cs1—I4vi102.10 (2)I3v—Cs1—I4i116.30 (3)
I1ii—Cs1—I2i116.20 (4)I3v—Cs1—I4vi134.73 (5)
I1ii—Cs1—I264.41 (3)I4iv—Cs1—I2125.11 (3)
I1—Cs1—I2i71.779 (19)I4i—Cs1—I2105.74 (2)
I1i—Cs1—I268.07 (3)I4iv—Cs1—I2i140.02 (2)
I1i—Cs1—I2i42.72 (2)I4vi—Cs1—I2100.90 (3)
I1—Cs1—I241.55 (3)I4iv—Cs1—Cs1i159.26 (4)
I1—Cs1—Cs1i41.22 (3)I4vi—Cs1—Cs1i106.19 (2)
I1ii—Cs1—Cs1i89.33 (4)I4i—Cs1—Cs1i83.57 (3)
I1i—Cs1—Cs1i39.80 (2)I4iv—Cs1—I1i125.73 (3)
I1—Cs1—I1i81.02 (3)I4iv—Cs1—I1ii70.32 (3)
I1i—Cs1—I1ii73.52 (3)I4iv—Cs1—I3v64.05 (2)
I1—Cs1—I1ii105.90 (4)I4iv—Cs1—I3iii73.69 (2)
I1i—Cs1—I3v67.26 (3)I4iv—Cs1—I3iv52.08 (3)
I1i—Cs1—I3iv120.16 (3)I4i—Cs1—I4vi39.70 (2)
I1—Cs1—I3iv135.31 (4)I4iv—Cs1—I4i117.12 (4)
I1—Cs1—I3v147.54 (4)I4iv—Cs1—I4vi92.11 (4)
I1i—Cs1—I3iii133.60 (4)I2—I1—Cs1i69.94 (4)
I1—Cs1—I3iii73.916 (19)I2—I1—Cs1viii103.31 (3)
I1i—Cs1—I4i104.75 (3)I2—I1—Cs177.25 (3)
I1—Cs1—I4vi68.56 (3)Cs1—I1—Cs1viii100.94 (4)
I1i—Cs1—I4vi140.62 (2)Cs1—I1—Cs1i98.98 (3)
I1—Cs1—I4i64.21 (3)Cs1i—I1—Cs1viii156.92 (3)
I1ii—Cs1—I4i170.05 (3)I2—I3—Cs1ix125.92 (4)
I1—Cs1—I4iv147.33 (3)I2—I3—Cs1x106.26 (3)
I1ii—Cs1—I4vi137.69 (2)I2—I3—Cs1iii102.04 (4)
I3iii—Cs1—I2i145.51 (2)Cs1ix—I3—Cs1x117.25 (4)
I3v—Cs1—I2i79.98 (2)Cs1ix—I3—Cs1iii99.275 (15)
I3iv—Cs1—I2171.71 (3)Cs1iii—I3—Cs1x101.45 (3)
I3v—Cs1—I2124.36 (5)Cs1i—I4—Cs1xi140.30 (2)
I3iv—Cs1—I2i96.95 (3)Cs1x—I4—Cs1xi94.87 (4)
I3iii—Cs1—I267.23 (3)Cs1x—I4—Cs1i99.97 (2)
I3iii—Cs1—Cs1i106.29 (3)I4vii—I4—Cs1xi66.99 (4)
I3iv—Cs1—Cs1i142.75 (2)I4vii—I4—Cs1x112.14 (6)
I3v—Cs1—Cs1i106.79 (4)I4vii—I4—Cs1i73.30 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+3/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y, z; (vii) x, y+2, z+1; (viii) x, y+3/2, z1/2; (ix) x+1, y1/2, z+3/2; (x) x1, y+3/2, z1/2; (xi) x1, y, z.
dicesium octaiodide (CsI4_1p15GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.004 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.934 (2) ÅCell parameters from 1195 reflections
b = 8.7538 (2) Åθ = 2.8–21.0°
c = 10.8339 (6) ŵ = 4.28 mm1
β = 115.517 (14)°T = 296 K
V = 850.2 (2) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1069 independent reflections
Radiation source: undulator, ID15B, ESRF966 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.020
Detector resolution: 13.3333 pixels mm-1θmax = 20.0°, θmin = 2.2°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.499, Tmax = 1.000l = 1616
1961 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.63 e Å3
1069 reflectionsΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38421 (11)0.71097 (4)0.39399 (4)0.0475 (5)
Cs10.77817 (12)0.87731 (5)0.69329 (4)0.0533 (5)
I10.56125 (14)0.90554 (5)0.31547 (5)0.0526 (5)
I30.17355 (13)0.50757 (5)0.45210 (5)0.0519 (5)
I40.05150 (12)0.85435 (5)0.49702 (4)0.0515 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0596 (14)0.0471 (2)0.0366 (2)0.0034 (3)0.0213 (4)0.00183 (11)
Cs10.0647 (15)0.0547 (3)0.0390 (2)0.0051 (2)0.0210 (4)0.00359 (11)
I10.0593 (15)0.0586 (3)0.0420 (2)0.0019 (3)0.0240 (5)0.00306 (14)
I30.0611 (14)0.0464 (3)0.0501 (3)0.0004 (3)0.0257 (4)0.00352 (12)
I40.0578 (15)0.0499 (3)0.0443 (2)0.0065 (3)0.0197 (4)0.00214 (12)
Geometric parameters (Å, º) top
I2—Cs1i3.8950 (7)Cs1—I3iii3.8493 (16)
I2—Cs14.1253 (15)Cs1—I3iv3.8343 (6)
I2—I12.8297 (12)Cs1—I3v3.8358 (7)
I2—I33.0135 (12)Cs1—I4vi4.1121 (15)
Cs1—Cs1i5.723 (2)Cs1—I4iii3.8230 (11)
Cs1—I1i3.8362 (17)Cs1—I4i3.9545 (10)
Cs1—I13.7229 (9)I4—I4vii2.7587 (13)
Cs1—I1ii3.8709 (12)
Cs1i—I2—Cs191.01 (2)I3v—Cs1—I1ii76.412 (18)
I1—I2—Cs1i67.43 (3)I3v—Cs1—I1i133.56 (3)
I1—I2—Cs161.43 (3)I3iv—Cs1—I1i66.84 (3)
I1—I2—I3174.84 (3)I3iv—Cs1—I3v133.539 (15)
I3—I2—Cs1123.601 (19)I3iv—Cs1—I3iii62.89 (3)
I3—I2—Cs1i110.19 (3)I3v—Cs1—I3iii105.08 (3)
I2i—Cs1—I288.99 (2)I3v—Cs1—I4vi61.150 (19)
I2—Cs1—Cs1i42.878 (17)I3iv—Cs1—I4i116.67 (2)
I2i—Cs1—Cs1i46.110 (14)I3v—Cs1—I4i98.65 (2)
I2i—Cs1—I4i63.21 (2)I3iii—Cs1—I4i72.10 (2)
I2i—Cs1—I4vi102.497 (18)I3iii—Cs1—I4vi72.27 (3)
I1ii—Cs1—I264.13 (2)I3iv—Cs1—I4vi135.01 (4)
I1i—Cs1—I268.24 (3)I4i—Cs1—I2105.902 (18)
I1—Cs1—I2i71.859 (16)I4iii—Cs1—I2124.81 (2)
I1—Cs1—I241.88 (2)I4vi—Cs1—I2100.98 (2)
I1i—Cs1—I2i42.931 (18)I4iii—Cs1—I2i140.004 (16)
I1ii—Cs1—I2i116.20 (3)I4iii—Cs1—Cs1i158.88 (4)
I1i—Cs1—Cs1i40.052 (16)I4i—Cs1—Cs1i83.73 (2)
I1—Cs1—Cs1i41.53 (2)I4vi—Cs1—Cs1i106.532 (18)
I1ii—Cs1—Cs1i89.19 (3)I4iii—Cs1—I1ii70.12 (3)
I1i—Cs1—I1ii73.29 (2)I4iii—Cs1—I1i125.10 (2)
I1—Cs1—I1ii105.94 (3)I4iii—Cs1—I3iii52.29 (2)
I1—Cs1—I1i81.58 (3)I4iii—Cs1—I3iv63.860 (18)
I1i—Cs1—I3iii119.90 (2)I4iii—Cs1—I3v73.707 (17)
I1—Cs1—I3iii135.17 (3)I4iii—Cs1—I4vi92.11 (3)
I1—Cs1—I3iv147.69 (3)I4i—Cs1—I4vi39.937 (18)
I1—Cs1—I3v73.879 (15)I4iii—Cs1—I4i117.33 (3)
I1—Cs1—I4i64.05 (2)I2—I1—Cs1viii103.15 (2)
I1i—Cs1—I4vi141.317 (17)I2—I1—Cs176.69 (2)
I1—Cs1—I4vi68.48 (3)I2—I1—Cs1i69.64 (3)
I1i—Cs1—I4i105.17 (2)Cs1—I1—Cs1viii100.93 (3)
I1—Cs1—I4iii147.32 (2)Cs1—I1—Cs1i98.42 (3)
I1ii—Cs1—I4i169.91 (2)Cs1i—I1—Cs1viii157.13 (3)
I1ii—Cs1—I4vi137.258 (17)I2—I3—Cs1ix106.00 (2)
I3v—Cs1—I267.13 (2)I2—I3—Cs1x125.92 (3)
I3iii—Cs1—I2i96.92 (2)I2—I3—Cs1v102.25 (3)
I3iv—Cs1—I2i80.098 (15)Cs1x—I3—Cs1v99.581 (11)
I3iii—Cs1—I2171.82 (3)Cs1v—I3—Cs1ix101.52 (2)
I3v—Cs1—I2i145.590 (16)Cs1x—I3—Cs1ix117.11 (3)
I3iv—Cs1—I2124.01 (4)Cs1i—I4—Cs1xi140.064 (19)
I3iv—Cs1—Cs1i106.63 (3)Cs1ix—I4—Cs1xi95.08 (4)
I3iii—Cs1—Cs1i142.700 (18)Cs1ix—I4—Cs1i99.852 (19)
I3v—Cs1—Cs1i106.34 (2)I4vii—I4—Cs1xi66.95 (4)
I3iv—Cs1—I1ii72.265 (19)I4vii—I4—Cs1ix112.17 (5)
I3iii—Cs1—I1ii117.52 (2)I4vii—I4—Cs1i73.11 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y+2, z+1; (viii) x, y+3/2, z1/2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x1, y, z.
dicesium octaiodide (CsI4_1p65GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.131 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.842 (3) ÅCell parameters from 1443 reflections
b = 8.7061 (3) Åθ = 2.4–21.2°
c = 10.7364 (10) ŵ = 4.39 mm1
β = 115.68 (2)°T = 296 K
V = 829.1 (3) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1051 independent reflections
Radiation source: undulator, ID15B, ESRF964 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.016
Detector resolution: 13.3333 pixels mm-1θmax = 20.0°, θmin = 2.2°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.219, Tmax = 1.000l = 1616
1939 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.126P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171(Δ/σ)max < 0.001
S = 1.16Δρmax = 1.52 e Å3
1051 reflectionsΔρmin = 1.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.3851 (2)0.71207 (8)0.39450 (7)0.0372 (9)
Cs10.7789 (2)0.87791 (8)0.69276 (7)0.0400 (9)
I10.5616 (3)0.90747 (9)0.31366 (8)0.0403 (9)
I30.1738 (2)0.50610 (9)0.45230 (9)0.0406 (9)
I41.0515 (2)0.64647 (9)0.99757 (8)0.0412 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.050 (3)0.0322 (4)0.0349 (4)0.0028 (4)0.0240 (8)0.00152 (19)
Cs10.048 (3)0.0397 (5)0.0361 (4)0.0043 (4)0.0222 (8)0.0030 (2)
I10.046 (3)0.0432 (5)0.0392 (5)0.0016 (6)0.0260 (9)0.0027 (2)
I30.051 (3)0.0315 (5)0.0467 (5)0.0002 (5)0.0278 (8)0.0036 (2)
I40.051 (3)0.0343 (5)0.0421 (5)0.0057 (5)0.0236 (9)0.0022 (2)
Geometric parameters (Å, º) top
I2—Cs1i3.8620 (13)Cs1—I3iii3.809 (3)
I2—Cs14.075 (3)Cs1—I3iv3.8008 (10)
I2—I12.823 (2)Cs1—I3v3.8011 (12)
I2—I33.008 (2)Cs1—I4vi4.063 (2)
Cs1—Cs1i5.665 (4)Cs1—I43.7893 (19)
Cs1—I1i3.811 (3)Cs1—I4vii3.9228 (18)
Cs1—I13.6963 (16)I4—I4viii2.753 (2)
Cs1—I1ii3.852 (2)
Cs1i—I2—Cs191.05 (4)I3iii—Cs1—I1i119.59 (4)
I1—I2—Cs1i67.46 (5)I3v—Cs1—I1i133.37 (6)
I1—I2—Cs161.69 (4)I3iii—Cs1—I1ii117.65 (3)
I1—I2—I3174.44 (6)I3iv—Cs1—I3v133.28 (2)
I3—I2—Cs1123.81 (3)I3iv—Cs1—I3iii62.98 (5)
I3—I2—Cs1i110.33 (6)I3v—Cs1—I3iii105.40 (5)
I2i—Cs1—I288.95 (4)I3iv—Cs1—I4vii116.90 (3)
I2—Cs1—Cs1i42.97 (3)I3iii—Cs1—I4vi72.46 (5)
I2i—Cs1—Cs1i45.98 (3)I3iii—Cs1—I4vii72.14 (4)
I2i—Cs1—I4vii63.27 (4)I3v—Cs1—I4vii98.94 (4)
I2i—Cs1—I4vi102.89 (3)I3v—Cs1—I4vi61.13 (3)
I1ii—Cs1—I263.80 (4)I3iv—Cs1—I4vi135.32 (6)
I1i—Cs1—I268.29 (5)I4vii—Cs1—I2106.04 (3)
I1—Cs1—I2i71.76 (3)I4—Cs1—I2124.52 (4)
I1—Cs1—I242.26 (4)I4vi—Cs1—I2101.06 (4)
I1i—Cs1—I2i43.17 (3)I4—Cs1—I2i140.00 (3)
I1ii—Cs1—I2i116.32 (6)I4—Cs1—Cs1i158.41 (6)
I1—Cs1—Cs1i41.78 (4)I4vii—Cs1—Cs1i83.81 (3)
I1ii—Cs1—Cs1i89.12 (6)I4vi—Cs1—Cs1i106.86 (3)
I1i—Cs1—Cs1i40.25 (3)I4—Cs1—I1i124.35 (4)
I1i—Cs1—I1ii73.15 (4)I4—Cs1—I1ii69.79 (5)
I1—Cs1—I1ii105.98 (6)I4—Cs1—I3iii52.62 (4)
I1—Cs1—I1i82.03 (5)I4—Cs1—I3iv63.70 (3)
I1—Cs1—I3iv147.64 (6)I4—Cs1—I3v73.71 (3)
I1—Cs1—I3iii135.01 (5)I4—Cs1—I4vi92.24 (6)
I1—Cs1—I3v74.05 (3)I4vii—Cs1—I4vi40.28 (3)
I1—Cs1—I4vii63.80 (4)I4—Cs1—I4vii117.71 (5)
I1i—Cs1—I4vi142.02 (3)I2—I1—Cs1vi102.73 (4)
I1—Cs1—I4vi68.40 (5)I2—I1—Cs176.05 (4)
I1i—Cs1—I4vii105.53 (4)I2—I1—Cs1i69.37 (6)
I1—Cs1—I4147.49 (4)Cs1—I1—Cs1vi100.69 (6)
I1ii—Cs1—I4vii169.68 (4)Cs1—I1—Cs1i97.97 (5)
I1ii—Cs1—I4vi136.65 (3)Cs1i—I1—Cs1vi157.27 (5)
I3iv—Cs1—I2123.62 (6)I2—I3—Cs1ix105.59 (4)
I3iii—Cs1—I2i96.84 (4)I2—I3—Cs1x125.92 (6)
I3iv—Cs1—I2i80.13 (3)I2—I3—Cs1v102.79 (5)
I3iii—Cs1—I2172.10 (5)Cs1x—I3—Cs1v99.73 (2)
I3v—Cs1—I2i145.70 (3)Cs1v—I3—Cs1ix101.59 (4)
I3v—Cs1—I267.05 (4)Cs1x—I3—Cs1ix117.02 (5)
I3iv—Cs1—Cs1i106.34 (5)Cs1xi—I4—Cs1ii139.72 (3)
I3iii—Cs1—Cs1i142.53 (3)Cs1—I4—Cs1ii95.43 (6)
I3v—Cs1—Cs1i106.42 (4)Cs1—I4—Cs1xi99.73 (3)
I3iv—Cs1—I1ii72.32 (3)I4viii—I4—Cs1ii67.12 (6)
I3iv—Cs1—I1i66.36 (4)I4viii—I4—Cs1112.35 (8)
I3v—Cs1—I1ii75.83 (3)I4viii—I4—Cs1xi72.59 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_1p97GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.204 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.788 (2) ÅCell parameters from 1228 reflections
b = 8.6889 (3) Åθ = 2.5–20.8°
c = 10.6600 (7) ŵ = 4.45 mm1
β = 115.607 (17)°T = 296 K
V = 817.6 (2) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
827 independent reflections
Radiation source: undulator, ID15B, ESRF768 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.022
Detector resolution: 13.3333 pixels mm-1θmax = 17.1°, θmin = 2.2°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.643, Tmax = 1.000l = 1515
1592 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.56 e Å3
827 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38551 (12)0.71304 (5)0.39475 (4)0.0382 (5)
Cs10.77861 (12)0.87804 (5)0.69228 (4)0.0409 (5)
I10.56253 (14)0.90873 (6)0.31262 (5)0.0415 (5)
I30.17396 (13)0.50523 (5)0.45220 (5)0.0406 (5)
I41.05135 (12)0.64705 (5)0.99782 (5)0.0398 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0470 (14)0.0360 (3)0.0309 (2)0.0029 (3)0.0162 (4)0.00179 (12)
Cs10.0460 (15)0.0423 (3)0.0318 (2)0.0041 (2)0.0145 (4)0.00289 (12)
I10.0450 (16)0.0459 (3)0.0344 (2)0.0018 (3)0.0181 (5)0.00239 (15)
I30.0449 (14)0.0358 (3)0.0416 (3)0.0009 (3)0.0193 (5)0.00317 (14)
I40.0407 (15)0.0384 (3)0.0374 (3)0.0050 (3)0.0141 (5)0.00227 (14)
Geometric parameters (Å, º) top
I2—Cs1i3.8442 (8)Cs1—I3iii3.7965 (17)
I2—Cs14.0462 (16)Cs1—I3iv3.7787 (6)
I2—I12.8235 (12)Cs1—I3v3.7810 (7)
I2—I33.0032 (12)Cs1—I4vi4.0319 (15)
Cs1—Cs1i5.632 (2)Cs1—I43.7746 (11)
Cs1—I1i3.7995 (17)Cs1—I4vii3.9058 (10)
Cs1—I13.6776 (9)I4—I4viii2.7538 (13)
Cs1—I1ii3.8305 (12)
Cs1i—I2—Cs191.05 (2)I3iii—Cs1—I1i119.49 (2)
I1—I2—Cs1i67.48 (3)I3v—Cs1—I1i133.30 (4)
I1—I2—Cs161.74 (3)I3iii—Cs1—I1ii117.75 (2)
I1—I2—I3174.25 (3)I3iv—Cs1—I3v133.051 (15)
I3—I2—Cs1123.99 (2)I3iv—Cs1—I3iii62.95 (3)
I3—I2—Cs1i110.60 (4)I3v—Cs1—I3iii105.47 (3)
I2i—Cs1—I288.95 (2)I3iv—Cs1—I4vii116.75 (2)
I2—Cs1—Cs1i43.036 (18)I3iii—Cs1—I4vi72.37 (3)
I2i—Cs1—Cs1i45.914 (15)I3iii—Cs1—I4vii71.96 (3)
I2i—Cs1—I4vii63.19 (2)I3v—Cs1—I4vii99.26 (2)
I2i—Cs1—I4vi103.08 (2)I3v—Cs1—I4vi61.170 (19)
I1ii—Cs1—I263.66 (2)I3iv—Cs1—I4vi135.22 (4)
I1i—Cs1—I268.26 (3)I4vii—Cs1—I2106.230 (19)
I1—Cs1—I2i71.688 (16)I4—Cs1—I2124.49 (2)
I1—Cs1—I242.55 (2)I4vi—Cs1—I2101.22 (2)
I1i—Cs1—I2i43.350 (19)I4—Cs1—I2i139.966 (16)
I1ii—Cs1—I2i116.64 (3)I4—Cs1—Cs1i158.35 (3)
I1—Cs1—Cs1i41.95 (2)I4vii—Cs1—Cs1i83.86 (2)
I1ii—Cs1—Cs1i89.27 (3)I4vi—Cs1—Cs1i107.12 (2)
I1i—Cs1—Cs1i40.319 (17)I4—Cs1—I1i124.11 (2)
I1i—Cs1—I1ii73.30 (2)I4—Cs1—I1ii69.64 (3)
I1—Cs1—I1ii106.11 (3)I4—Cs1—I3iii52.74 (2)
I1—Cs1—I1i82.27 (3)I4—Cs1—I3iv63.616 (19)
I1—Cs1—I3iv147.72 (3)I4—Cs1—I3v73.596 (18)
I1—Cs1—I3iii134.73 (3)I4—Cs1—I4vi92.08 (3)
I1—Cs1—I3v74.279 (16)I4vii—Cs1—I4vi40.559 (19)
I1—Cs1—I4vii63.71 (2)I4—Cs1—I4vii117.70 (3)
I1i—Cs1—I4vi142.432 (18)I2—I1—Cs1vi102.35 (2)
I1—Cs1—I4vi68.39 (3)I2—I1—Cs175.71 (2)
I1i—Cs1—I4vii105.67 (2)I2—I1—Cs1i69.17 (3)
I1—Cs1—I4147.57 (2)Cs1—I1—Cs1vi100.56 (3)
I1ii—Cs1—I4vii169.68 (2)Cs1—I1—Cs1i97.73 (3)
I1ii—Cs1—I4vi136.152 (18)Cs1i—I1—Cs1vi157.20 (3)
I3iv—Cs1—I2123.56 (4)I2—I3—Cs1ix105.41 (3)
I3iii—Cs1—I2i96.72 (2)I2—I3—Cs1x125.71 (3)
I3iv—Cs1—I2i80.160 (17)I2—I3—Cs1v103.27 (3)
I3iii—Cs1—I2172.23 (3)Cs1x—I3—Cs1v99.640 (12)
I3v—Cs1—I2i145.879 (17)Cs1v—I3—Cs1ix101.77 (2)
I3v—Cs1—I267.12 (2)Cs1x—I3—Cs1ix117.05 (3)
I3iv—Cs1—Cs1i106.29 (3)Cs1xi—I4—Cs1ii139.440 (19)
I3iii—Cs1—Cs1i142.35 (2)Cs1—I4—Cs1ii95.38 (4)
I3v—Cs1—Cs1i106.60 (2)Cs1—I4—Cs1xi99.882 (19)
I3iv—Cs1—I1ii72.581 (19)I4viii—I4—Cs1ii67.26 (4)
I3iv—Cs1—I1i66.26 (3)I4viii—I4—Cs1112.38 (5)
I3v—Cs1—I1ii75.30 (2)I4viii—I4—Cs1xi72.18 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_2p32GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.304 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.7195 (12) ÅCell parameters from 1368 reflections
b = 8.6486 (2) Åθ = 2.2–21.4°
c = 10.5900 (4) ŵ = 4.54 mm1
β = 115.709 (9)°T = 296 K
V = 802.07 (12) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1023 independent reflections
Radiation source: undulator, ID15B, ESRF950 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.014
Detector resolution: 13.3333 pixels mm-1θmax = 21.3°, θmin = 2.2°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.895, Tmax = 1.000l = 1615
1880 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.68 e Å3
1023 reflectionsΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38622 (9)0.71360 (3)0.39521 (3)0.0295 (3)
Cs10.77864 (9)0.87866 (4)0.69178 (3)0.0332 (3)
I10.56313 (10)0.90966 (4)0.31141 (3)0.0331 (4)
I30.17400 (9)0.50392 (4)0.45229 (4)0.0324 (3)
I41.05177 (9)0.64776 (4)0.99818 (3)0.0320 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0325 (10)0.02798 (17)0.02840 (15)0.00235 (17)0.0137 (3)0.00168 (8)
Cs10.0358 (10)0.03355 (18)0.02884 (15)0.00332 (18)0.0126 (3)0.00235 (8)
I10.0322 (11)0.0374 (2)0.03105 (17)0.0019 (2)0.0150 (3)0.00226 (10)
I30.0331 (10)0.02709 (18)0.03836 (18)0.0007 (2)0.0168 (3)0.00292 (9)
I40.0303 (11)0.02941 (19)0.03465 (17)0.00532 (18)0.0125 (3)0.00232 (9)
Geometric parameters (Å, º) top
I2—Cs1i3.8172 (6)Cs1—I3iii3.7697 (11)
I2—Cs14.0071 (10)Cs1—I3iv3.7533 (4)
I2—I12.8184 (9)Cs1—I3v3.7547 (5)
I2—I32.9984 (8)Cs1—I4vi4.0032 (10)
Cs1—Cs1i5.5816 (14)Cs1—I43.7537 (7)
Cs1—I1i3.7803 (12)Cs1—I4vii3.8803 (7)
Cs1—I13.6558 (6)I4—I4viii2.7532 (9)
Cs1—I1ii3.8095 (8)
Cs1i—I2—Cs190.987 (16)I3iii—Cs1—I1ii117.770 (14)
I1—I2—Cs161.911 (18)I3iv—Cs1—I1i66.024 (18)
I1—I2—Cs1i67.53 (2)I3iii—Cs1—I1i119.267 (15)
I1—I2—I3173.92 (2)I3iv—Cs1—I3iii62.95 (2)
I3—I2—Cs1i110.73 (3)I3iv—Cs1—I3v132.782 (11)
I3—I2—Cs1124.167 (13)I3v—Cs1—I3iii105.608 (19)
I2i—Cs1—I289.013 (16)I3iii—Cs1—I4vii71.968 (18)
I2—Cs1—Cs1i43.140 (12)I3iv—Cs1—I4vii116.928 (15)
I2i—Cs1—Cs1i45.872 (11)I3iv—Cs1—I463.437 (13)
I2i—Cs1—I4vi103.376 (14)I3iii—Cs1—I4vi72.440 (19)
I2i—Cs1—I4vii63.196 (15)I3iv—Cs1—I4vi135.33 (3)
I1—Cs1—I242.854 (15)I3v—Cs1—I4vi61.062 (14)
I1—Cs1—I2i71.727 (11)I3v—Cs1—I4vii99.402 (17)
I1i—Cs1—I2i43.547 (13)I4vii—Cs1—I2106.339 (13)
I1i—Cs1—I268.381 (19)I4—Cs1—I2i139.952 (11)
I1ii—Cs1—I263.494 (15)I4—Cs1—I2124.316 (15)
I1ii—Cs1—I2i116.82 (2)I4vi—Cs1—I2101.273 (15)
I1—Cs1—Cs1i42.208 (15)I4—Cs1—Cs1i158.16 (3)
I1ii—Cs1—Cs1i89.32 (2)I4vi—Cs1—Cs1i107.370 (14)
I1i—Cs1—Cs1i40.519 (12)I4vii—Cs1—Cs1i83.890 (14)
I1—Cs1—I1ii106.23 (2)I4—Cs1—I1ii69.452 (18)
I1—Cs1—I1i82.727 (18)I4—Cs1—I1i123.680 (16)
I1i—Cs1—I1ii73.271 (15)I4—Cs1—I3iii52.883 (15)
I1—Cs1—I3v74.308 (11)I4—Cs1—I3v73.563 (12)
I1—Cs1—I3iv147.93 (2)I4—Cs1—I4vi92.00 (2)
I1—Cs1—I3iii134.55 (2)I4—Cs1—I4vii117.84 (2)
I1—Cs1—I4147.543 (15)I4vii—Cs1—I4vi40.844 (14)
I1ii—Cs1—I4vi135.678 (13)I2—I1—Cs175.235 (16)
I1i—Cs1—I4vi142.984 (12)I2—I1—Cs1vi102.092 (17)
I1—Cs1—I4vii63.513 (15)I2—I1—Cs1i68.92 (2)
I1—Cs1—I4vi68.294 (19)Cs1—I1—Cs1vi100.57 (2)
I1i—Cs1—I4vii105.912 (14)Cs1—I1—Cs1i97.273 (18)
I1ii—Cs1—I4vii169.574 (15)Cs1i—I1—Cs1vi157.197 (19)
I3iv—Cs1—I2123.39 (3)I2—I3—Cs1v103.58 (2)
I3v—Cs1—I2i145.964 (12)I2—I3—Cs1ix105.161 (17)
I3iv—Cs1—I2i80.297 (12)I2—I3—Cs1x125.57 (2)
I3v—Cs1—I267.067 (16)Cs1x—I3—Cs1ix117.05 (2)
I3iii—Cs1—I2172.342 (19)Cs1v—I3—Cs1ix101.873 (17)
I3iii—Cs1—I2i96.643 (16)Cs1x—I3—Cs1v99.815 (9)
I3iv—Cs1—Cs1i106.25 (2)Cs1—I4—Cs1ii95.49 (2)
I3iii—Cs1—Cs1i142.242 (13)Cs1xi—I4—Cs1ii139.156 (14)
I3v—Cs1—Cs1i106.678 (17)Cs1—I4—Cs1xi99.852 (13)
I3v—Cs1—I1i133.26 (3)I4viii—I4—Cs1ii67.18 (3)
I3v—Cs1—I1ii74.950 (14)I4viii—I4—Cs1112.35 (3)
I3iv—Cs1—I1ii72.577 (13)I4viii—I4—Cs1xi71.97 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_2p74GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.430 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.6370 (13) ÅCell parameters from 1369 reflections
b = 8.6017 (2) Åθ = 1.9–21.5°
c = 10.4967 (4) ŵ = 4.65 mm1
β = 115.788 (9)°T = 296 K
V = 783.46 (12) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1027 independent reflections
Radiation source: undulator, ID15B, ESRF967 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.020
Detector resolution: 13.3333 pixels mm-1θmax = 21.5°, θmin = 1.9°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.725, Tmax = 1.000l = 1615
1897 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.81 e Å3
1027 reflectionsΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38700 (9)0.71457 (3)0.39579 (3)0.0274 (3)
Cs10.77848 (9)0.87929 (3)0.69139 (3)0.0314 (3)
I10.56362 (10)0.91120 (4)0.31005 (3)0.0307 (3)
I30.17388 (9)0.50231 (4)0.45208 (3)0.0299 (3)
I41.05213 (9)0.64846 (4)0.99866 (3)0.0300 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0293 (9)0.02730 (17)0.02658 (15)0.00179 (16)0.0130 (3)0.00166 (8)
Cs10.0348 (9)0.03185 (17)0.02660 (15)0.00319 (17)0.0125 (3)0.00209 (8)
I10.0292 (10)0.03618 (19)0.02832 (16)0.00201 (19)0.0139 (3)0.00184 (9)
I30.0298 (9)0.02613 (18)0.03540 (18)0.00071 (17)0.0156 (3)0.00270 (8)
I40.0284 (10)0.02818 (18)0.03220 (17)0.00441 (17)0.0120 (3)0.00204 (8)
Geometric parameters (Å, º) top
I2—Cs1i3.7836 (5)Cs1—I3iii3.7380 (11)
I2—Cs13.9602 (10)Cs1—I3iv3.7221 (5)
I2—I12.8108 (9)Cs1—I3v3.7204 (4)
I2—I32.9928 (9)Cs1—I4vi3.9682 (10)
Cs1—Cs1i5.5227 (14)Cs1—I43.7282 (7)
Cs1—I1i3.7515 (11)Cs1—I4vii3.8521 (7)
Cs1—I13.6295 (6)I4—I4viii2.7492 (9)
Cs1—I1ii3.7850 (8)
Cs1i—I2—Cs190.960 (16)I3v—Cs1—I1i65.863 (17)
I1—I2—Cs162.121 (18)I3v—Cs1—I1ii72.693 (13)
I1—I2—Cs1i67.491 (19)I3iv—Cs1—I1i133.23 (2)
I1—I2—I3173.46 (2)I3iii—Cs1—I1ii117.927 (13)
I3—I2—Cs1i110.97 (3)I3v—Cs1—I3iii62.98 (2)
I3—I2—Cs1124.421 (13)I3v—Cs1—I3iv132.442 (10)
I2i—Cs1—I289.040 (16)I3iv—Cs1—I3iii105.697 (19)
I2i—Cs1—Cs1i45.804 (10)I3v—Cs1—I4vi135.35 (2)
I2—Cs1—Cs1i43.236 (12)I3iii—Cs1—I4vii71.858 (17)
I2i—Cs1—I1ii117.12 (2)I3iv—Cs1—I4vii99.548 (16)
I2i—Cs1—I4vi103.646 (14)I3v—Cs1—I4vii117.086 (14)
I2—Cs1—I4vi101.356 (15)I3v—Cs1—I463.251 (12)
I2i—Cs1—I4vii63.176 (15)I3iv—Cs1—I4vi60.946 (14)
I1i—Cs1—I2i43.802 (13)I3iv—Cs1—I473.443 (12)
I1—Cs1—I2i71.655 (11)I3iii—Cs1—I4vi72.402 (19)
I1ii—Cs1—I263.293 (15)I4—Cs1—I2i140.001 (11)
I1i—Cs1—I268.454 (19)I4vii—Cs1—I2106.451 (13)
I1—Cs1—I243.199 (15)I4—Cs1—I2124.160 (15)
I1i—Cs1—Cs1i40.730 (11)I4vi—Cs1—Cs1i107.627 (13)
I1—Cs1—Cs1i42.408 (15)I4vii—Cs1—Cs1i83.910 (14)
I1ii—Cs1—Cs1i89.43 (2)I4—Cs1—Cs1i158.04 (2)
I1—Cs1—I1ii106.35 (2)I4—Cs1—I1i123.297 (16)
I1—Cs1—I1i83.138 (19)I4—Cs1—I1ii69.272 (17)
I1i—Cs1—I1ii73.313 (15)I4—Cs1—I3iii53.104 (15)
I1—Cs1—I3iii134.23 (2)I4—Cs1—I4vi91.84 (2)
I1—Cs1—I3iv74.460 (11)I4—Cs1—I4vii117.94 (2)
I1—Cs1—I3v148.15 (2)I4vii—Cs1—I4vi41.131 (13)
I1ii—Cs1—I4vi135.080 (12)I2—I1—Cs1i68.71 (2)
I1ii—Cs1—I4vii169.408 (14)I2—I1—Cs1vi101.671 (16)
I1i—Cs1—I4vi143.575 (12)I2—I1—Cs174.679 (16)
I1i—Cs1—I4vii106.190 (15)Cs1—I1—Cs1vi100.47 (2)
I1—Cs1—I4vi68.230 (19)Cs1—I1—Cs1i96.862 (19)
I1—Cs1—I4147.546 (16)Cs1i—I1—Cs1vi157.133 (18)
I1—Cs1—I4vii63.281 (15)I2—I3—Cs1ix125.25 (2)
I3v—Cs1—I2123.27 (3)I2—I3—Cs1x104.942 (17)
I3iii—Cs1—I2i96.526 (15)I2—I3—Cs1iv104.01 (2)
I3iv—Cs1—I2i146.058 (11)Cs1ix—I3—Cs1x117.02 (2)
I3iii—Cs1—I2172.442 (19)Cs1ix—I3—Cs1iv99.974 (8)
I3v—Cs1—I2i80.517 (12)Cs1iv—I3—Cs1x102.122 (17)
I3iv—Cs1—I267.084 (16)Cs1xi—I4—Cs1ii138.869 (13)
I3v—Cs1—Cs1i106.29 (2)Cs1—I4—Cs1ii95.52 (2)
I3iv—Cs1—Cs1i106.807 (16)Cs1—I4—Cs1xi99.888 (13)
I3iii—Cs1—Cs1i142.064 (13)I4viii—I4—Cs1ii67.17 (3)
I3iii—Cs1—I1i119.095 (15)I4viii—I4—Cs1112.30 (3)
I3iv—Cs1—I1ii74.479 (14)I4viii—I4—Cs1xi71.70 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x+1, y1/2, z+3/2; (x) x1, y+3/2, z1/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_3p05GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.463 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.6171 (13) ÅCell parameters from 1374 reflections
b = 8.5889 (2) Åθ = 1.9–21.6°
c = 10.4726 (4) ŵ = 4.68 mm1
β = 115.81 (1)°T = 296 K
V = 778.75 (13) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1028 independent reflections
Radiation source: undulator, ID15B, ESRF971 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.021
Detector resolution: 13.3333 pixels mm-1θmax = 21.6°, θmin = 1.9°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.702, Tmax = 1.000l = 1615
1893 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.13Δρmax = 1.15 e Å3
1028 reflectionsΔρmin = 1.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38716 (10)0.71480 (4)0.39595 (4)0.0274 (4)
Cs10.77851 (11)0.87947 (4)0.69126 (4)0.0311 (4)
I10.56387 (12)0.91154 (5)0.30974 (4)0.0301 (4)
I30.17398 (11)0.50188 (4)0.45203 (4)0.0296 (4)
I41.05219 (11)0.64871 (4)0.99876 (4)0.0300 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0302 (11)0.0271 (2)0.02646 (19)0.00165 (19)0.0139 (3)0.00160 (9)
Cs10.0353 (11)0.0314 (2)0.0265 (2)0.0028 (2)0.0134 (3)0.00199 (9)
I10.0289 (13)0.0358 (2)0.0282 (2)0.0021 (2)0.0148 (4)0.00173 (11)
I30.0301 (11)0.0259 (2)0.0350 (2)0.0008 (2)0.0163 (4)0.00250 (10)
I40.0299 (12)0.0278 (2)0.0320 (2)0.0044 (2)0.0131 (4)0.00211 (10)
Geometric parameters (Å, º) top
I2—Cs1i3.7748 (6)Cs1—I3iii3.7306 (13)
I2—Cs13.9489 (12)Cs1—I3iv3.7129 (6)
I2—I12.8097 (10)Cs1—I3v3.7126 (5)
I2—I32.9901 (10)Cs1—I4vi3.9587 (12)
Cs1—Cs1i5.5085 (17)Cs1—I43.7210 (8)
Cs1—I1i3.7462 (13)Cs1—I4vii3.8444 (9)
Cs1—I13.6220 (7)I4—I4viii2.7490 (11)
Cs1—I1ii3.7786 (10)
Cs1i—I2—Cs190.962 (19)I3v—Cs1—I1i65.80 (2)
I1—I2—Cs162.14 (2)I3v—Cs1—I1ii72.686 (16)
I1—I2—Cs1i67.52 (2)I3iv—Cs1—I1i133.18 (3)
I1—I2—I3173.35 (3)I3iii—Cs1—I1ii117.962 (16)
I3—I2—Cs1i111.03 (3)I3v—Cs1—I3iii63.03 (3)
I3—I2—Cs1124.500 (16)I3v—Cs1—I3iv132.345 (13)
I2i—Cs1—I289.038 (19)I3iv—Cs1—I3iii105.74 (2)
I2i—Cs1—Cs1i45.789 (13)I3v—Cs1—I4vi135.39 (3)
I2—Cs1—Cs1i43.249 (15)I3iii—Cs1—I4vii71.82 (2)
I2i—Cs1—I1ii117.18 (3)I3iv—Cs1—I4vii99.62 (2)
I2i—Cs1—I4vi103.735 (17)I3v—Cs1—I4vii117.142 (18)
I2—Cs1—I4vi101.395 (17)I3v—Cs1—I463.206 (15)
I2i—Cs1—I4vii63.175 (17)I3iv—Cs1—I4vi60.932 (18)
I1i—Cs1—I2i43.871 (16)I3iv—Cs1—I473.425 (14)
I1—Cs1—I2i71.646 (13)I3iii—Cs1—I4vi72.39 (2)
I1ii—Cs1—I263.233 (18)I4—Cs1—I2i140.007 (13)
I1i—Cs1—I268.44 (2)I4vii—Cs1—I2106.503 (15)
I1—Cs1—I243.300 (18)I4—Cs1—I2124.115 (17)
I1i—Cs1—Cs1i40.765 (14)I4vi—Cs1—Cs1i107.718 (16)
I1—Cs1—Cs1i42.481 (17)I4vii—Cs1—Cs1i83.939 (16)
I1ii—Cs1—Cs1i89.43 (3)I4—Cs1—Cs1i157.98 (3)
I1—Cs1—I1ii106.39 (3)I4—Cs1—I1i123.183 (19)
I1—Cs1—I1i83.25 (2)I4—Cs1—I1ii69.22 (2)
I1i—Cs1—I1ii73.304 (18)I4—Cs1—I3iii53.160 (18)
I1—Cs1—I3iii134.15 (3)I4—Cs1—I4vi91.81 (3)
I1—Cs1—I3iv74.490 (13)I4—Cs1—I4vii117.97 (3)
I1—Cs1—I3v148.19 (3)I4vii—Cs1—I4vi41.223 (16)
I1ii—Cs1—I4vi134.925 (15)I2—I1—Cs1i68.61 (3)
I1ii—Cs1—I4vii169.381 (17)I2—I1—Cs1vi101.595 (19)
I1i—Cs1—I4vi143.741 (14)I2—I1—Cs174.56 (2)
I1i—Cs1—I4vii106.269 (17)Cs1—I1—Cs1vi100.46 (3)
I1—Cs1—I4vi68.21 (2)Cs1—I1—Cs1i96.75 (2)
I1—Cs1—I4147.549 (19)Cs1i—I1—Cs1vi157.10 (2)
I1—Cs1—I4vii63.234 (18)I2—I3—Cs1ix125.19 (3)
I3v—Cs1—I2123.18 (3)I2—I3—Cs1x104.88 (2)
I3iii—Cs1—I2i96.507 (18)I2—I3—Cs1iv104.16 (3)
I3iv—Cs1—I2i146.084 (14)Cs1ix—I3—Cs1x116.97 (3)
I3iii—Cs1—I2172.48 (2)Cs1ix—I3—Cs1iv100.018 (10)
I3v—Cs1—I2i80.566 (14)Cs1iv—I3—Cs1x102.17 (2)
I3iv—Cs1—I267.081 (19)Cs1xi—I4—Cs1ii138.778 (16)
I3v—Cs1—Cs1i106.26 (3)Cs1—I4—Cs1ii95.55 (3)
I3iv—Cs1—Cs1i106.83 (2)Cs1—I4—Cs1xi99.894 (15)
I3iii—Cs1—Cs1i142.033 (16)I4viii—I4—Cs1ii67.16 (3)
I3iii—Cs1—I1i119.069 (17)I4viii—I4—Cs1112.30 (4)
I3iv—Cs1—I1ii74.344 (17)I4viii—I4—Cs1xi71.62 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x+1, y1/2, z+3/2; (x) x1, y+3/2, z1/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_3p33GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.515 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.5973 (15) ÅCell parameters from 1200 reflections
b = 8.5648 (2) Åθ = 1.9–21.2°
c = 10.4284 (4) ŵ = 4.72 mm1
β = 115.854 (11)°T = 296 K
V = 771.40 (14) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
1002 independent reflections
Radiation source: undulator, ID15B, ESRF926 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.023
Detector resolution: 13.3333 pixels mm-1θmax = 21.6°, θmin = 1.9°
phi scanh = 76
Absorption correction: multi-scan
CrysAlisPro 1.171.40.84a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.624, Tmax = 1.000l = 1516
1785 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0707P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.18 e Å3
1002 reflectionsΔρmin = 1.06 e Å3
46 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38782 (14)0.71531 (5)0.39627 (5)0.0251 (5)
Cs10.77876 (14)0.87979 (6)0.69114 (5)0.0282 (5)
I10.56428 (16)0.91217 (7)0.30905 (5)0.0281 (5)
I30.17429 (15)0.50118 (6)0.45199 (6)0.0276 (5)
I41.05251 (14)0.64913 (6)0.99901 (5)0.0274 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0292 (15)0.0236 (3)0.0253 (3)0.0020 (2)0.0146 (4)0.00142 (12)
Cs10.0326 (15)0.0277 (3)0.0250 (2)0.0031 (3)0.0132 (4)0.00203 (12)
I10.0289 (16)0.0324 (3)0.0267 (3)0.0018 (3)0.0155 (5)0.00160 (14)
I30.0306 (15)0.0222 (3)0.0336 (3)0.0003 (3)0.0175 (5)0.00275 (13)
I40.0280 (16)0.0243 (3)0.0309 (3)0.0044 (3)0.0136 (5)0.00189 (14)
Geometric parameters (Å, º) top
I2—Cs1i3.7605 (9)Cs1—I3iii3.7206 (16)
I2—Cs13.9313 (16)Cs1—I3iv3.6975 (7)
I2—I12.8073 (14)Cs1—I3v3.6965 (8)
I2—I32.9899 (14)Cs1—I4vi3.9459 (16)
Cs1—Cs1i5.492 (2)Cs1—I43.7089 (11)
Cs1—I1i3.7427 (18)Cs1—I4vii3.8309 (12)
Cs1—I13.6107 (9)I4—I4viii2.7497 (14)
Cs1—I1ii3.7697 (14)
Cs1i—I2—Cs191.09 (3)I3v—Cs1—I1i133.01 (4)
I1—I2—Cs162.19 (3)I3v—Cs1—I1ii74.11 (2)
I1—I2—Cs1i67.69 (3)I3iv—Cs1—I1i65.65 (3)
I1—I2—I3173.11 (3)I3iii—Cs1—I1ii118.13 (2)
I3—I2—Cs1i110.96 (4)I3v—Cs1—I3iii105.78 (3)
I3—I2—Cs1124.68 (2)I3v—Cs1—I3iv132.206 (17)
I2i—Cs1—I288.91 (2)I3iv—Cs1—I3iii63.22 (4)
I2i—Cs1—Cs1i45.704 (17)I3v—Cs1—I4vi60.93 (2)
I2—Cs1—Cs1i43.207 (18)I3iii—Cs1—I4vii71.74 (3)
I2i—Cs1—I1ii117.12 (4)I3iv—Cs1—I4vii117.27 (2)
I2i—Cs1—I4vi103.98 (2)I3v—Cs1—I4vii99.73 (3)
I2—Cs1—I4vi101.54 (2)I3v—Cs1—I473.399 (19)
I2i—Cs1—I4vii63.27 (2)I3iv—Cs1—I4vi135.47 (4)
I1i—Cs1—I2i43.94 (2)I3iv—Cs1—I463.20 (2)
I1—Cs1—I2i71.588 (18)I3iii—Cs1—I4vi72.27 (3)
I1ii—Cs1—I263.05 (2)I4—Cs1—I2i140.068 (18)
I1i—Cs1—I268.34 (3)I4vii—Cs1—I2106.591 (19)
I1—Cs1—I243.45 (2)I4—Cs1—I2124.08 (2)
I1i—Cs1—Cs1i40.776 (18)I4vi—Cs1—Cs1i107.98 (2)
I1—Cs1—Cs1i42.61 (2)I4vii—Cs1—Cs1i84.06 (2)
I1ii—Cs1—Cs1i89.30 (4)I4—Cs1—Cs1i157.85 (4)
I1—Cs1—I1ii106.34 (4)I4—Cs1—I1i123.02 (3)
I1—Cs1—I1i83.38 (3)I4—Cs1—I1ii69.25 (3)
I1i—Cs1—I1ii73.18 (2)I4—Cs1—I3iii53.23 (2)
I1—Cs1—I3iii134.00 (4)I4—Cs1—I4vi91.66 (4)
I1—Cs1—I3iv148.18 (4)I4—Cs1—I4vii117.97 (3)
I1—Cs1—I3v74.539 (18)I4vii—Cs1—I4vi41.38 (2)
I1ii—Cs1—I4vi134.68 (2)I2—I1—Cs1i68.37 (4)
I1ii—Cs1—I4vii169.26 (2)I2—I1—Cs1vi101.52 (3)
I1i—Cs1—I4vi144.090 (19)I2—I1—Cs174.37 (3)
I1i—Cs1—I4vii106.46 (2)Cs1—I1—Cs1vi100.33 (3)
I1—Cs1—I4vi68.28 (3)Cs1—I1—Cs1i96.62 (3)
I1—Cs1—I4147.55 (3)Cs1i—I1—Cs1vi157.07 (3)
I1—Cs1—I4vii63.18 (2)I2—I3—Cs1v104.39 (4)
I3v—Cs1—I267.09 (3)I2—I3—Cs1ix104.90 (3)
I3iii—Cs1—I2i96.60 (2)I2—I3—Cs1x125.11 (4)
I3iv—Cs1—I2i80.620 (19)Cs1v—I3—Cs1ix102.23 (3)
I3iii—Cs1—I2172.52 (3)Cs1v—I3—Cs1x100.104 (13)
I3v—Cs1—I2i146.090 (19)Cs1x—I3—Cs1ix116.78 (4)
I3iv—Cs1—I2122.95 (4)Cs1xi—I4—Cs1ii138.62 (2)
I3v—Cs1—Cs1i106.83 (3)Cs1—I4—Cs1ii95.50 (4)
I3iv—Cs1—Cs1i106.12 (4)Cs1—I4—Cs1xi99.93 (2)
I3iii—Cs1—Cs1i142.04 (2)I4viii—I4—Cs1ii67.07 (4)
I3iii—Cs1—I1i119.13 (2)I4viii—I4—Cs1112.20 (5)
I3iv—Cs1—I1ii72.69 (2)I4viii—I4—Cs1xi71.55 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_4p19GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.706 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.4705 (13) ÅCell parameters from 1356 reflections
b = 8.5022 (2) Åθ = 1.9–21.4°
c = 10.2962 (4) ŵ = 4.88 mm1
β = 115.934 (10)°T = 296 K
V = 745.56 (12) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
993 independent reflections
Radiation source: undulator, ID15B, ESRF952 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.013
Detector resolution: 13.3333 pixels mm-1θmax = 21.4°, θmin = 1.9°
phi scanh = 76
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.865, Tmax = 1.000l = 1516
1843 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.10Δρmax = 1.13 e Å3
993 reflectionsΔρmin = 1.33 e Å3
46 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38828 (9)0.71686 (3)0.39699 (3)0.0240 (3)
Cs10.77890 (8)0.88062 (3)0.69062 (3)0.0264 (3)
I10.56529 (9)0.91428 (4)0.30726 (3)0.0263 (3)
I30.17415 (9)0.49921 (3)0.45143 (3)0.0254 (3)
I41.05258 (9)0.65026 (4)0.99955 (3)0.0259 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0260 (9)0.02289 (17)0.02394 (15)0.00147 (15)0.0117 (3)0.00156 (7)
Cs10.0288 (9)0.02621 (17)0.02311 (15)0.00239 (15)0.0104 (3)0.00161 (7)
I10.0254 (9)0.03033 (18)0.02451 (16)0.00208 (18)0.0121 (3)0.00127 (8)
I30.0253 (9)0.02137 (18)0.03084 (17)0.00040 (17)0.0136 (3)0.00227 (8)
I40.0253 (9)0.02277 (18)0.02885 (16)0.00385 (16)0.0112 (3)0.00183 (8)
Geometric parameters (Å, º) top
I2—Cs1i3.7126 (5)Cs1—I3iii3.6707 (10)
I2—Cs13.8706 (10)Cs1—I3iv3.6557 (4)
I2—I12.7993 (8)Cs1—I3v3.6516 (5)
I2—I32.9741 (8)Cs1—I43.6688 (7)
Cs1—Cs1i5.4128 (14)Cs1—I4vi3.7907 (7)
Cs1—I13.5736 (6)Cs1—I4vii3.8880 (9)
Cs1—I1i3.7054 (11)I4—I4viii2.7438 (8)
Cs1—I1ii3.7344 (8)
Cs1i—I2—Cs191.064 (16)I3v—Cs1—I1i132.85 (2)
I1—I2—Cs162.377 (17)I3iii—Cs1—I1ii118.302 (13)
I1—I2—Cs1i67.691 (19)I3iii—Cs1—I1i118.878 (15)
I1—I2—I3172.486 (19)I3iv—Cs1—I1ii72.850 (13)
I3—I2—Cs1i111.46 (3)I3v—Cs1—I3iii105.982 (19)
I3—I2—Cs1125.043 (13)I3v—Cs1—I3iv131.704 (10)
I2i—Cs1—I288.937 (16)I3iv—Cs1—I3iii63.27 (2)
I2i—Cs1—Cs1i45.640 (11)I3v—Cs1—I4vi100.105 (16)
I2—Cs1—Cs1i43.297 (12)I3iv—Cs1—I4vi117.444 (14)
I2i—Cs1—I1ii117.62 (2)I3iv—Cs1—I4vii135.62 (2)
I2i—Cs1—I4vi63.139 (14)I3v—Cs1—I473.234 (12)
I2i—Cs1—I4vii104.309 (15)I3v—Cs1—I4vii60.840 (14)
I2—Cs1—I4vii101.620 (14)I3iv—Cs1—I462.926 (13)
I1i—Cs1—I2i44.341 (13)I3iii—Cs1—I4vi71.613 (17)
I1ii—Cs1—I262.777 (14)I3iii—Cs1—I4vii72.351 (19)
I1i—Cs1—I268.354 (19)I4—Cs1—I2i140.108 (11)
I1—Cs1—I2i71.491 (11)I4vi—Cs1—I2106.773 (13)
I1—Cs1—I243.952 (14)I4—Cs1—I2123.824 (14)
I1i—Cs1—Cs1i41.034 (11)I4vii—Cs1—Cs1i108.273 (13)
I1—Cs1—Cs1i42.900 (14)I4vi—Cs1—Cs1i84.056 (14)
I1ii—Cs1—Cs1i89.48 (2)I4—Cs1—Cs1i157.56 (2)
I1—Cs1—I1ii106.52 (2)I4—Cs1—I1i122.403 (15)
I1—Cs1—I1i83.934 (18)I4—Cs1—I1ii68.865 (17)
I1i—Cs1—I1ii73.285 (15)I4—Cs1—I3iii53.602 (15)
I1—Cs1—I3iii133.58 (2)I4—Cs1—I4vi118.25 (2)
I1—Cs1—I3iv148.43 (2)I4vi—Cs1—I4vii41.848 (13)
I1—Cs1—I3v74.793 (11)I4—Cs1—I4vii91.61 (2)
I1i—Cs1—I4vi106.775 (14)I2—I1—Cs1i67.97 (2)
I1i—Cs1—I4vii144.847 (12)I2—I1—Cs1vii100.975 (16)
I1—Cs1—I4vi62.863 (15)I2—I1—Cs173.671 (16)
I1—Cs1—I4147.608 (15)Cs1—I1—Cs1i96.067 (18)
I1ii—Cs1—I4vii133.799 (12)Cs1i—I1—Cs1vii156.861 (18)
I1ii—Cs1—I4vi169.048 (13)Cs1—I1—Cs1vii100.19 (2)
I1—Cs1—I4vii68.108 (18)I2—I3—Cs1v105.21 (2)
I3v—Cs1—I267.122 (15)I2—I3—Cs1ix104.488 (18)
I3iv—Cs1—I2122.68 (3)I2—I3—Cs1x124.70 (2)
I3v—Cs1—I2i146.262 (12)Cs1v—I3—Cs1ix102.531 (16)
I3iv—Cs1—I2i80.887 (12)Cs1v—I3—Cs1x100.220 (8)
I3iii—Cs1—I2172.763 (18)Cs1x—I3—Cs1ix116.73 (2)
I3iii—Cs1—I2i96.388 (16)Cs1xi—I4—Cs1ii138.152 (13)
I3v—Cs1—Cs1i107.001 (16)Cs1—I4—Cs1xi99.928 (12)
I3iv—Cs1—Cs1i106.11 (2)Cs1—I4—Cs1ii95.75 (2)
I3iii—Cs1—Cs1i141.785 (13)I4viii—I4—Cs1ii67.18 (2)
I3iv—Cs1—I1i65.397 (18)I4viii—I4—Cs1xi70.97 (2)
I3v—Cs1—I1ii73.323 (14)I4viii—I4—Cs1112.35 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x+2, y+1/2, z+3/2; (vii) x, y+3/2, z1/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_4p71GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.806 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.4109 (11) ÅCell parameters from 1318 reflections
b = 8.4696 (1) Åθ = 1.9–21.5°
c = 10.2258 (3) ŵ = 4.97 mm1
β = 115.972 (9)°T = 296 K
V = 732.75 (10) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
951 independent reflections
Radiation source: undulator, ID15B, ESRF908 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.015
phi scanθmax = 21.5°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 76
Tmin = 0.006, Tmax = 1.000k = 1211
1753 measured reflectionsl = 1515
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0905P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.28Δρmax = 1.30 e Å3
951 reflectionsΔρmin = 1.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38857 (15)0.71772 (6)0.39740 (5)0.0202 (6)
Cs10.77912 (15)0.88112 (6)0.69044 (5)0.0236 (5)
I10.56555 (17)0.91539 (7)0.30624 (6)0.0231 (6)
I30.17409 (16)0.49815 (6)0.45113 (6)0.0224 (6)
I41.05279 (16)0.65089 (6)0.99980 (6)0.0234 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0164 (17)0.0225 (3)0.0233 (3)0.0012 (3)0.0102 (5)0.00150 (12)
Cs10.0230 (16)0.0253 (3)0.0223 (3)0.0026 (3)0.0096 (5)0.00150 (12)
I10.0185 (18)0.0295 (4)0.0237 (3)0.0021 (3)0.0114 (5)0.00106 (13)
I30.0184 (17)0.0212 (3)0.0292 (3)0.0006 (3)0.0120 (5)0.00203 (13)
I40.0202 (17)0.0223 (4)0.0275 (3)0.0040 (3)0.0103 (5)0.00194 (13)
Geometric parameters (Å, º) top
I2—Cs1i3.6878 (9)Cs1—I3iii3.6285 (8)
I2—Cs13.8415 (15)Cs1—I3iv3.6328 (7)
I2—I12.7939 (14)Cs1—I3v3.6454 (16)
I2—I32.9674 (14)Cs1—I4vi3.8607 (15)
Cs1—Cs1i5.376 (2)Cs1—I43.6478 (11)
Cs1—I1i3.6863 (18)Cs1—I4vii3.7687 (12)
Cs1—I13.5557 (9)I4—I4viii2.7430 (15)
Cs1—I1ii3.7192 (13)
Cs1i—I2—Cs191.10 (3)I3iv—Cs1—I1i65.26 (3)
I1—I2—Cs162.47 (3)I3iv—Cs1—I1ii72.94 (2)
I1—I2—Cs1i67.71 (3)I3iii—Cs1—I1i132.73 (4)
I1—I2—I3172.11 (3)I3v—Cs1—I1ii118.47 (2)
I3—I2—Cs1i111.67 (4)I3iii—Cs1—I3iv131.438 (18)
I3—I2—Cs1125.26 (2)I3iv—Cs1—I3v63.35 (4)
I2i—Cs1—I288.90 (3)I3iii—Cs1—I3v106.08 (3)
I2i—Cs1—Cs1i45.595 (18)I3v—Cs1—I4vi72.35 (3)
I2—Cs1—Cs1i43.301 (19)I3iii—Cs1—I473.13 (2)
I2i—Cs1—I1ii117.80 (4)I3iv—Cs1—I4vi135.70 (4)
I2i—Cs1—I4vi104.51 (2)I3iii—Cs1—I4vii100.32 (3)
I2—Cs1—I4vi101.70 (2)I3v—Cs1—I4vii71.54 (3)
I2i—Cs1—I4vii63.08 (2)I3iv—Cs1—I4vii117.55 (2)
I1i—Cs1—I2i44.53 (2)I3iv—Cs1—I462.83 (2)
I1—Cs1—I2i71.405 (19)I3v—Cs1—I453.79 (2)
I1ii—Cs1—I262.57 (2)I3iii—Cs1—I4vi60.79 (3)
I1i—Cs1—I268.31 (3)I4—Cs1—I2i140.176 (19)
I1—Cs1—I244.17 (2)I4—Cs1—I2123.70 (2)
I1—Cs1—Cs1i43.01 (2)I4vii—Cs1—I2106.87 (2)
I1i—Cs1—Cs1i41.142 (19)I4—Cs1—Cs1i157.41 (4)
I1ii—Cs1—Cs1i89.47 (4)I4vi—Cs1—Cs1i108.47 (2)
I1—Cs1—I1ii106.51 (4)I4vii—Cs1—Cs1i84.08 (2)
I1—Cs1—I1i84.15 (3)I4—Cs1—I1ii68.76 (3)
I1i—Cs1—I1ii73.29 (2)I4—Cs1—I1i122.13 (2)
I1—Cs1—I3iv148.50 (4)I4—Cs1—I4vii118.37 (3)
I1—Cs1—I3v133.39 (4)I4—Cs1—I4vi91.52 (4)
I1—Cs1—I3iii74.935 (18)I4vii—Cs1—I4vi42.12 (2)
I1ii—Cs1—I4vi133.34 (2)I2—I1—Cs1i67.76 (4)
I1—Cs1—I4147.63 (3)I2—I1—Cs1vi100.71 (3)
I1ii—Cs1—I4vii168.88 (2)I2—I1—Cs173.35 (3)
I1i—Cs1—I4vii106.93 (2)Cs1—I1—Cs1vi100.01 (4)
I1i—Cs1—I4vi145.26 (2)Cs1—I1—Cs1i95.85 (3)
I1—Cs1—I4vi68.10 (3)Cs1i—I1—Cs1vi156.78 (3)
I1—Cs1—I4vii62.75 (3)I2—I3—Cs1iii105.65 (4)
I3iii—Cs1—I267.15 (3)I2—I3—Cs1ix104.31 (3)
I3v—Cs1—I2i96.33 (3)I2—I3—Cs1x124.48 (4)
I3iv—Cs1—I2i81.039 (19)Cs1iii—I3—Cs1ix102.69 (3)
I3v—Cs1—I2172.89 (3)Cs1iii—I3—Cs1x100.295 (13)
I3iii—Cs1—I2i146.33 (2)Cs1x—I3—Cs1ix116.65 (4)
I3iv—Cs1—I2122.49 (4)Cs1xi—I4—Cs1ii137.88 (2)
I3iii—Cs1—Cs1i107.06 (3)Cs1—I4—Cs1ii95.83 (4)
I3iv—Cs1—Cs1i106.08 (4)Cs1—I4—Cs1xi99.96 (2)
I3v—Cs1—Cs1i141.69 (2)I4viii—I4—Cs1ii67.15 (4)
I3iii—Cs1—I1ii72.91 (2)I4viii—I4—Cs1112.38 (6)
I3v—Cs1—I1i118.79 (2)I4viii—I4—Cs1xi70.73 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+3/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_5p42GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 5.902 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.3544 (14) ÅCell parameters from 1303 reflections
b = 8.4389 (2) Åθ = 1.9–21.6°
c = 10.1587 (4) ŵ = 5.05 mm1
β = 115.998 (11)°T = 296 K
V = 720.79 (13) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
935 independent reflections
Radiation source: undulator, ID15B, ESRF896 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.013
Detector resolution: 13.3333 pixels mm-1θmax = 21.6°, θmin = 2.6°
phi scanh = 67
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1211
Tmin = 0.551, Tmax = 1.000l = 1515
1710 measured reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.68 e Å3
935 reflectionsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38913 (9)0.71854 (3)0.39784 (3)0.0242 (3)
Cs10.77903 (9)0.88148 (3)0.69026 (3)0.0265 (3)
I10.56621 (10)0.91642 (4)0.30535 (3)0.0265 (3)
I30.17419 (10)0.49716 (3)0.45078 (4)0.0257 (3)
I41.05287 (9)0.65138 (4)1.00013 (3)0.0258 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0283 (9)0.02118 (18)0.02252 (17)0.00130 (16)0.0107 (3)0.00149 (8)
Cs10.0320 (9)0.02404 (18)0.02125 (16)0.00198 (15)0.0096 (3)0.00131 (7)
I10.0289 (10)0.0283 (2)0.02244 (18)0.00225 (19)0.0112 (3)0.00084 (8)
I30.0286 (10)0.01998 (19)0.02803 (18)0.00023 (18)0.0120 (3)0.00202 (8)
I40.0278 (9)0.02089 (19)0.02663 (18)0.00354 (17)0.0101 (3)0.00181 (8)
Geometric parameters (Å, º) top
I2—Cs1i3.6653 (5)Cs1—I3iii3.6062 (5)
I2—Cs13.8104 (10)Cs1—I3iv3.6115 (4)
I2—I12.7891 (8)Cs1—I3v3.6250 (11)
I2—I32.9614 (9)Cs1—I4vi3.8350 (10)
Cs1—Cs1i5.3390 (15)Cs1—I43.6294 (8)
Cs1—I1i3.6696 (11)Cs1—I4vii3.7507 (8)
Cs1—I13.5377 (6)I4—I4viii2.7393 (9)
Cs1—I1ii3.7001 (8)
Cs1i—I2—Cs191.130 (18)I3iv—Cs1—I1i65.158 (19)
I1—I2—Cs1i67.73 (2)I3iii—Cs1—I1ii72.503 (15)
I1—I2—Cs162.596 (18)I3iv—Cs1—I1ii73.049 (14)
I1—I2—I3171.732 (18)I3v—Cs1—I1ii118.617 (14)
I3—I2—Cs1125.457 (14)I3iii—Cs1—I3v106.14 (2)
I3—I2—Cs1i111.86 (3)I3iii—Cs1—I3iv131.194 (11)
I2i—Cs1—I288.870 (17)I3iv—Cs1—I3v63.45 (2)
I2—Cs1—Cs1i43.345 (13)I3iv—Cs1—I4vi135.73 (3)
I2i—Cs1—Cs1i45.525 (11)I3iii—Cs1—I4vii100.479 (17)
I2i—Cs1—I1ii118.04 (2)I3iv—Cs1—I462.729 (14)
I2i—Cs1—I1i44.699 (13)I3v—Cs1—I4vi72.28 (2)
I2—Cs1—I4vi101.753 (16)I3v—Cs1—I453.967 (16)
I2i—Cs1—I4vi104.687 (15)I3iv—Cs1—I4vii117.638 (15)
I2i—Cs1—I4vii63.058 (15)I3v—Cs1—I4vii71.403 (18)
I1ii—Cs1—I262.449 (15)I3iii—Cs1—I473.029 (13)
I1—Cs1—I244.421 (15)I3iii—Cs1—I4vi60.767 (15)
I1—Cs1—I2i71.339 (12)I4—Cs1—I2i140.235 (11)
I1i—Cs1—I268.31 (2)I4—Cs1—I2123.614 (16)
I1ii—Cs1—Cs1i89.58 (2)I4vii—Cs1—I2106.948 (14)
I1—Cs1—Cs1i43.164 (15)I4—Cs1—Cs1i157.34 (2)
I1i—Cs1—Cs1i41.260 (12)I4vi—Cs1—Cs1i108.628 (15)
I1—Cs1—I1ii106.61 (2)I4vii—Cs1—Cs1i84.087 (15)
I1—Cs1—I1i84.424 (19)I4—Cs1—I1ii68.616 (18)
I1i—Cs1—I1ii73.362 (16)I4—Cs1—I1i121.900 (16)
I1—Cs1—I3iii75.060 (11)I4—Cs1—I4vii118.43 (2)
I1—Cs1—I3v133.09 (2)I4—Cs1—I4vi91.42 (2)
I1—Cs1—I3iv148.64 (2)I4vii—Cs1—I4vi42.320 (14)
I1ii—Cs1—I4vii168.755 (14)I2—I1—Cs1i67.57 (2)
I1i—Cs1—I4vii107.106 (15)I2—I1—Cs1vi100.424 (17)
I1i—Cs1—I4vi145.630 (12)I2—I1—Cs172.983 (17)
I1—Cs1—I4147.621 (16)Cs1—I1—Cs1vi99.94 (2)
I1ii—Cs1—I4vi132.901 (13)Cs1—I1—Cs1i95.58 (2)
I1—Cs1—I4vi68.029 (19)Cs1i—I1—Cs1vi156.618 (19)
I1—Cs1—I4vii62.576 (16)I2—I3—Cs1iii106.05 (2)
I3iii—Cs1—I267.163 (17)I2—I3—Cs1ix104.206 (19)
I3iii—Cs1—I2i146.389 (13)I2—I3—Cs1x124.23 (2)
I3v—Cs1—I2i96.271 (17)Cs1iii—I3—Cs1ix102.871 (18)
I3v—Cs1—I2172.93 (2)Cs1iii—I3—Cs1x100.344 (8)
I3iv—Cs1—I2i81.181 (12)Cs1x—I3—Cs1ix116.55 (2)
I3iv—Cs1—I2122.39 (3)Cs1xi—I4—Cs1ii137.681 (14)
I3iii—Cs1—Cs1i107.143 (17)Cs1—I4—Cs1ii95.86 (3)
I3iv—Cs1—Cs1i106.08 (2)Cs1—I4—Cs1xi100.002 (13)
I3v—Cs1—Cs1i141.560 (14)I4viii—I4—Cs1ii67.20 (3)
I3v—Cs1—I1i118.751 (16)I4viii—I4—Cs1112.39 (3)
I3iii—Cs1—I1i132.64 (3)I4viii—I4—Cs1xi70.48 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+3/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
dicesium octaiodide (CsI4_5p91GPa) top
Crystal data top
CsI4F(000) = 1068
Mr = 640.51Dx = 6.006 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.41077 Å
a = 9.2978 (12) ÅCell parameters from 1294 reflections
b = 8.4056 (2) Åθ = 1.9–21.1°
c = 10.0857 (4) ŵ = 5.14 mm1
β = 116.015 (9)°T = 296 K
V = 708.37 (11) Å3Plate, dark red
Z = 40.04 × 0.02 × 0.01 mm
Data collection top
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images
diffractometer
860 reflections with I > 2σ(I)
Radiation source: undulator, ID15B, ESRFRint = 0.025
Synchrotron monochromatorθmax = 21.3°, θmin = 1.9°
Detector resolution: 13.3333 pixels mm-1h = 75
phi scank = 1211
1604 measured reflectionsl = 1515
899 independent reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0316P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.58 e Å3
899 reflectionsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.38972 (9)0.71948 (3)0.39838 (3)0.0216 (3)
Cs10.77902 (8)0.88193 (3)0.69010 (3)0.0229 (2)
I10.56683 (9)0.91747 (4)0.30441 (3)0.0236 (3)
I30.17419 (9)0.49604 (3)0.45035 (3)0.0226 (3)
I41.05296 (8)0.65198 (3)1.00041 (3)0.0230 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0229 (8)0.02000 (15)0.02196 (14)0.00121 (15)0.0098 (2)0.00136 (7)
Cs10.0242 (7)0.02259 (15)0.02038 (13)0.00160 (14)0.0083 (2)0.00115 (7)
I10.0226 (9)0.02693 (16)0.02159 (15)0.00242 (17)0.0100 (3)0.00070 (8)
I30.0222 (8)0.01899 (15)0.02699 (15)0.00044 (16)0.0111 (3)0.00192 (7)
I40.0223 (8)0.01960 (16)0.02585 (15)0.00303 (16)0.0094 (3)0.00168 (7)
Geometric parameters (Å, º) top
I2—Cs1i3.6408 (5)Cs1—I3iii3.5819 (4)
I2—Cs13.7789 (9)Cs1—I3iv3.5883 (4)
I2—I12.7836 (8)Cs1—I3v3.6030 (10)
I2—I32.9562 (8)Cs1—I4vi3.8083 (9)
Cs1—Cs1i5.3021 (13)Cs1—I43.6092 (7)
Cs1—I1i3.6527 (10)Cs1—I4vii3.7307 (7)
Cs1—I13.5186 (5)I4—I4viii2.7369 (8)
Cs1—I1ii3.6811 (7)
Cs1i—I2—Cs191.200 (16)I3iv—Cs1—I1i65.078 (16)
I1—I2—Cs1i67.792 (18)I3iii—Cs1—I1ii72.074 (13)
I1—I2—Cs162.703 (17)I3iv—Cs1—I1ii73.158 (12)
I1—I2—I3171.278 (17)I3v—Cs1—I1ii118.806 (13)
I3—I2—Cs1125.720 (13)I3iii—Cs1—I3v106.181 (18)
I3—I2—Cs1i112.05 (3)I3iii—Cs1—I3iv130.906 (9)
I2i—Cs1—I288.801 (15)I3iv—Cs1—I3v63.56 (2)
I2—Cs1—Cs1i43.355 (11)I3iv—Cs1—I4vi135.75 (2)
I2i—Cs1—Cs1i45.445 (11)I3iii—Cs1—I4vii100.666 (15)
I2i—Cs1—I1ii118.25 (2)I3iv—Cs1—I462.622 (12)
I2i—Cs1—I1i44.873 (13)I3v—Cs1—I4vi72.196 (18)
I2—Cs1—I4vi101.837 (14)I3v—Cs1—I454.156 (14)
I2i—Cs1—I4vi104.893 (14)I3iv—Cs1—I4vii117.731 (13)
I2i—Cs1—I4vii63.039 (14)I3v—Cs1—I4vii71.240 (16)
I1ii—Cs1—I262.284 (13)I3iii—Cs1—I472.901 (12)
I1—Cs1—I244.669 (14)I3iii—Cs1—I4vi60.723 (13)
I1—Cs1—I2i71.247 (11)I4—Cs1—I2i140.330 (10)
I1i—Cs1—I268.262 (18)I4—Cs1—I2123.524 (14)
I1ii—Cs1—Cs1i89.63 (2)I4vii—Cs1—I2107.058 (12)
I1—Cs1—Cs1i43.311 (13)I4—Cs1—Cs1i157.25 (2)
I1i—Cs1—Cs1i41.358 (11)I4vi—Cs1—Cs1i108.825 (12)
I1—Cs1—I1ii106.66 (2)I4vii—Cs1—Cs1i84.131 (14)
I1—Cs1—I1i84.669 (17)I4—Cs1—I1ii68.506 (16)
I1i—Cs1—I1ii73.413 (14)I4—Cs1—I1i121.682 (15)
I1—Cs1—I3iii75.202 (10)I4—Cs1—I4vii118.48 (2)
I1—Cs1—I3v132.79 (2)I4—Cs1—I4vi91.29 (2)
I1—Cs1—I3iv148.78 (2)I4vii—Cs1—I4vi42.557 (12)
I1ii—Cs1—I4vii168.612 (12)I2—I1—Cs1i67.34 (2)
I1i—Cs1—I4vii107.291 (13)I2—I1—Cs1vi100.152 (15)
I1i—Cs1—I4vi146.032 (11)I2—I1—Cs172.628 (15)
I1—Cs1—I4147.606 (14)Cs1—I1—Cs1vi99.820 (19)
I1ii—Cs1—I4vi132.423 (12)Cs1—I1—Cs1i95.331 (18)
I1—Cs1—I4vi67.992 (17)Cs1i—I1—Cs1vi156.442 (17)
I1—Cs1—I4vii62.443 (14)I2—I3—Cs1iii106.50 (2)
I3iii—Cs1—I267.208 (15)I2—I3—Cs1ix104.120 (17)
I3iii—Cs1—I2i146.444 (12)I2—I3—Cs1x123.91 (2)
I3v—Cs1—I2i96.240 (15)Cs1iii—I3—Cs1ix103.082 (16)
I3v—Cs1—I2172.993 (18)Cs1iii—I3—Cs1x100.407 (8)
I3iv—Cs1—I2i81.368 (11)Cs1x—I3—Cs1ix116.44 (2)
I3iv—Cs1—I2122.25 (2)Cs1xi—I4—Cs1ii137.443 (12)
I3iii—Cs1—Cs1i107.225 (15)Cs1—I4—Cs1ii95.89 (2)
I3iv—Cs1—Cs1i106.10 (2)Cs1—I4—Cs1xi100.073 (12)
I3v—Cs1—Cs1i141.449 (12)I4viii—I4—Cs1ii67.21 (2)
I3v—Cs1—I1i118.735 (15)I4viii—I4—Cs1112.41 (3)
I3iii—Cs1—I1i132.52 (2)I4viii—I4—Cs1xi70.235 (19)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+3/2, z+1/2; (vi) x, y+3/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+2, y+1, z+2; (ix) x1, y+3/2, z1/2; (x) x+1, y1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds