Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two isomorphous title compounds, [1,5,9-tris­(2-aminoeth­oxy)-3,7,11-trihy­droxy-3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexa­oxa-13-oxoniatricyclo­[7.3.1.05,13]trideca­ne]­co­balt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octa­hedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Mol­ecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111041072/bm3109sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041072/bm3109Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041072/bm3109IIsup3.hkl
Contains datablock II

CCDC references: 855946; 855947

Comment top

[AUTHOR: Extensive changes to text below - please check.] In recent decades, borate materials have been extensively studied because of their rich structural chemistry and potential applications, especially in mineralogy, nonlinear optics and photoluminescence (Christ & Clark, 1977; Heller, 1986; Becker, 1998; Burns, 1995; Grice et al., 1999; Chen et al., 1995; Sasaki et al., 2000; Lin et al., 2007). The synthesis of new inorganic–organic hybrid compounds is a relatively new research area, which has been growing rapidly in recent years. In the search for useful inorganic–organic borate materials, the synthesis and structure of the metallo-organically templated borates have been investigated: examples include [Cu(en)2][B7O13H3]n (en is ethylenediamine; Sung et al., 2000), [Mn(C10H18N6)][B5O6(OH)4]2 (Zhang et al., 2004), [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 (Liu et al., 2006), [Zn(dien)2][B5O6(OH)4]2 and [B5O7(OH)3Zn(tren)] [dien is diethylenetriamine and tren is tris(2-aminoethyl)amine; Wang et al., 2005], [Ag(py)2]2[B10O14(OH)4] (py is pyridine; Wang et al., 2008), [Zn(C2H3O2)(C6H18N4)][B5O6(OH)4] (Wu et al., 2009) and [Cd(TETA)(C2H3O2)][B5O6(OH)4] (TETA is triethylenetetramine; Yang et al., 2011). These compounds usually contain isolated or layered boron polyanion hosts and interstitial transition metal complex cations. We describe herein the synthesis and crystal structures of two novel inorganic–organic hybrid borates, M{B6O7(OH)3[O(CH2)2NH2]3} [M = CoII, (I), or NiII, (II)].

Compounds (I) and (II) (see Scheme) were obtained under mild solvothermal conditions. Both compounds crystallize in the cubic system (space group Pa3) and they are isomorphous (Figs. 1a and 1b). Each compound consists of an inorganic–organic hybrid anion {B6O7(OH)3[O(CH2)2NH2]3}2- and an MII cation residing on a crystallographic threefold axis. The MII cation is octahedrally coordinated by three N atoms from the organic component, and three O atoms covalently linking the B—O cluster and organic component (Figs. 1a and 1b). The three M—N bond lengths [2.1309 (15) Å for (I) and 2.080 (3) Å for (II)] are equivalent by symmetry. The N—M—N angles are 100.11 (6)° for (I) and 98.7 (13)° for (II). The three M—O bond lengths are equivalent by symmetry, viz. 2.1359 (12) Å for (I) and 2.102 (3) Å for (II). These structural differences between (I) and (II) may be attributed to the different ionic radii of the CoII and NiII cations. [##AUTHOR: Please specify these ionic radii and provide a reference for them]

The hexaborate anion (see Scheme), B6O7(OH)62-, found in aksaite, mcallisterite and rivadavite (Hanic et al., 1971; Dal Negro et al., 1969, 1971;Dal Negro & Ungaretti, 1973), is a common fundamental building block in borates. The {B6O7(OH)3[O(CH2)2NH2]3}2- anion in (I) can be regarded as resulting from the dehydration reaction of three 2-aminoethanol molecules with the three hydroxy groups attached to the four-coordinate B atoms in B6O7(OH)62-, to form an isolated cage-like structure. The B—O cluster moiety in {B6O7(OH)3[O(CH2)2NH2]3}2- is composed of three trigonal BO3 units and three BO4 tetrahedra linked to each other. This B—O cluster is characterized by three [B3O3] rings linked by three shared BO4 tetrahedra and a central common O atom (O5) which lies on a crystallographic threefold axis. Each ring is produced by two shared BO4 tetrahedra and one trigonal BO3 unit. The trigonally coordinated B atoms have B—O distances in the range 1.355 (2)–1.379 (2) Å, similar to those observed in the hexaborate anion B6O7(OH)62- [B—O = 1.343 (6)–1.398 (1) Å; Genkina et al., 1976; Dal Negro et al., 1971]. The tetrahedral B atoms have longer B—O distances [1.436 (5)–1.5179 (16) Å], lengths that are also comparable with those reported for B6O7(OH)62- [B—O = 1.445 (5)–1.517 (2) Å; Genkina et al., 1976; Dal Negro et al., 1971]. The O—B—O angles of the trigonal BO3 units lie in the range 115.86 (15)–122.47 (15)° and those of the BO4 tetrahedra are in the range 105.35 (3)–113.0 (3)° (see Tables 1 and 3). The esterification of B6O7(OH)62- with 2-aminoethanol shows no substantial influence on the structure of the B—O cluster moiety. It is interesting to compare compound (I) with a 2-aminoethanol borate, i.e. [HOCH2CH2NH3][B5O6(OH)4].H2O, obtained from a 2-aminoethanol–boric acid solution containing a significant excess of boric acid (Schubert et al., 2008). In this example, 2-aminoethanol is protonated. However, under the present reaction conditions with a large excess of 2-aminoethanol, the free base 2-aminoethanol can react with the B—O cluster anion to form a borate ester analogue.

Molecules are connected via N—H···O and O—H···O hydrogen bonds in both (I) and (II) (Fig. 2), forming three-dimensional supramolecular networks. Hydrogen-bonding parameters for (I) and (II) are listed in Tables 2 and 4, respectively.

Related literature top

For related literature, see: Becker (1998); Burns (1995); Chen et al. (1995); Christ & Clark (1977); Dal Negro & Ungaretti (1973); Dal Negro, Sabelli & Ungaretti (1969); Dal Negro, Ungaretti & Sabelli (1971); Genkina et al. (1976); Grice et al. (1999); Hanic et al. (1971); Heller (1986); Lin et al. (2007); Liu et al. (2006); Sasaki et al. (2000); Schubert et al. (2008); Sung et al. (2000); Wang et al. (2005, 2008); Wu et al. (2009); Yang et al. (2011); Zhang et al. (2004).

Experimental top

Compounds (I) and (II) were prepared under mild solvothermal conditions. For the synthesis of (I), typically Co(CH3COO)2.4H2O (1 mmol, 248 mg), H3BO3 (6 mmol, 368 mg) and H2O (0.6 ml) were placed in a Teflon-lined autoclave and stirred at room temperature, then 2-aminoethanol (3 ml) was added and thorough mixing was carried out. The mixture was heated to 453 K for 3 d, and then cooled to room temperature at a rate of 5 K h-1. Pale-pink crystals of (I) were obtained. For the synthesis of (II), the same procedure was used, but using Ni(CH3COO)2.4H2O (1 mmol, 248 mg) in place of Co(CH3COO)2.4H2O to yield blue block-shaped crystals of (II).

Refinement top

All C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C or N). H atoms attached to O atoms were located in a difference Fourier map and refined using a riding model, with Uiso(H) = 1.2Ueq(O)

Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 45% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) y, z, x; (ii) z, x, y.]
[Figure 2] Fig. 2. A view of the packing structure of (I) down the a axis. Dashed lines indicate hydrogen bonds.
(I) [1,5,9-tris(2-aminoethoxy)-3,7,11-trihydroxy- 3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexaoxa-13- oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II) top
Crystal data top
[Co(C6H21B6N3O13)]Dx = 1.739 Mg m3
Mr = 467.05Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 25748 reflections
Hall symbol: -P 2ac 2ab 3θ = 3.3–25.0°
a = 15.2796 (18) ŵ = 1.04 mm1
V = 3567.3 (7) Å3T = 293 K
Z = 8Block, pale pink
F(000) = 19120.34 × 0.32 × 0.27 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1057 independent reflections
Radiation source: fine-focus sealed tube1025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1817
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.710, Tmax = 0.756l = 1818
25748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.702P]
where P = (Fo2 + 2Fc2)/3
1057 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Co(C6H21B6N3O13)]Z = 8
Mr = 467.05Mo Kα radiation
Cubic, Pa3µ = 1.04 mm1
a = 15.2796 (18) ÅT = 293 K
V = 3567.3 (7) Å30.34 × 0.32 × 0.27 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1057 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
1025 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.756Rint = 0.022
25748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.64 e Å3
1057 reflectionsΔρmin = 0.20 e Å3
91 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.131061 (13)0.131061 (13)0.131061 (13)0.02009 (15)
O10.32642 (7)0.12440 (6)0.30563 (7)0.0201 (2)
O20.26659 (7)0.11257 (7)0.15998 (7)0.0213 (2)
O30.38769 (6)0.21073 (7)0.19145 (7)0.0217 (3)
O40.31865 (8)0.10226 (8)0.45622 (7)0.0269 (3)
O50.24263 (6)0.24263 (6)0.24263 (6)0.0153 (3)
B10.30894 (10)0.17090 (10)0.22458 (10)0.0172 (3)
B20.28342 (12)0.14069 (10)0.38326 (11)0.0191 (3)
N10.17831 (10)0.09872 (10)0.00375 (9)0.0318 (3)
C10.31151 (11)0.07367 (11)0.08804 (10)0.0290 (4)
C20.27420 (12)0.10950 (13)0.00365 (11)0.0342 (4)
H1C0.30440.01060.08970.035*
H1D0.37350.08690.09160.035*
H2A0.28890.17100.00190.041*
H2B0.29930.07850.04580.041*
H40.3038 (15)0.1223 (14)0.4991 (15)0.041*
H1A0.16420.04310.00950.038*
H1B0.15390.13420.03650.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02009 (15)0.02009 (15)0.02009 (15)0.00191 (7)0.00191 (7)0.00191 (7)
O10.0227 (5)0.0206 (5)0.0169 (5)0.0053 (4)0.0001 (4)0.0018 (4)
O20.0222 (5)0.0241 (5)0.0177 (5)0.0025 (4)0.0008 (4)0.0053 (4)
O30.0161 (5)0.0232 (5)0.0258 (6)0.0024 (4)0.0022 (4)0.0040 (4)
O40.0341 (6)0.0315 (6)0.0151 (5)0.0096 (5)0.0006 (5)0.0022 (5)
O50.0153 (3)0.0153 (3)0.0153 (3)0.0012 (4)0.0012 (4)0.0012 (4)
B10.0165 (8)0.0174 (8)0.0176 (8)0.0029 (6)0.0001 (6)0.0005 (6)
B20.0226 (8)0.0169 (8)0.0177 (8)0.0019 (6)0.0008 (7)0.0004 (6)
N10.0392 (8)0.0343 (8)0.0220 (7)0.0054 (6)0.0066 (6)0.0048 (6)
C10.0302 (8)0.0319 (9)0.0250 (8)0.0087 (7)0.0017 (7)0.0099 (7)
C20.0409 (10)0.0406 (10)0.0211 (8)0.0025 (8)0.0071 (7)0.0034 (7)
Geometric parameters (Å, º) top
Co1—N12.1330 (14)O4—H40.76 (2)
Co1—O22.1363 (11)N1—C21.474 (2)
O1—B11.4525 (18)N1—H1A0.9000
O1—B21.379 (2)N1—H1B0.9000
O2—B11.4790 (19)C1—C21.512 (2)
O3—B11.4403 (18)C1—H1C0.9700
O3—B2i1.356 (2)C1—H1D0.9700
O4—B21.370 (2)C2—H2A0.9700
O5—B11.5179 (15)C2—H2B0.9700
O2—C11.4256 (18)
N1i—Co1—N1100.13 (5)O4—B2—O1115.81 (14)
N1—Co1—O280.20 (5)C2—N1—Co1108.15 (10)
N1ii—Co1—O291.95 (5)C2—N1—H1A110.1
N1ii—Co1—O2i167.63 (5)Co1—N1—H1A110.1
O2ii—Co1—O287.43 (4)C2—N1—H1B110.1
B1i—O5—B1118.17 (4)Co1—N1—H1B110.1
B2—O1—B1123.89 (12)H6—N1—H1B108.4
B2i—O3—B1120.35 (12)O2—C1—C2108.97 (13)
C1—O2—B1123.72 (11)O2—C1—H1C109.9
C1—O2—Co1111.24 (9)C2—C1—H1C109.9
B1—O2—Co1118.85 (8)O2—C1—H1D109.9
B2—O4—H4114.3 (17)C2—C1—H1D109.9
O1—B1—O2110.78 (12)H1—C1—H1D108.3
O1—B1—O5108.72 (11)N1—C2—C1109.46 (14)
O2—B1—O5105.33 (12)N1—C2—H2A109.8
O3—B1—O1110.66 (12)C1—C2—H2A109.8
O3—B1—O2112.68 (12)N1—C2—H2B109.8
O3—B1—O5108.44 (11)C1—C2—H2B109.8
O3ii—B2—O1122.45 (14)H3—C2—H2B108.2
O3ii—B2—O4121.74 (14)
Symmetry codes: (i) z, x, y; (ii) y, z, x.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1iii0.76 (2)2.07 (2)2.7982 (15)162 (2)
N1—H1B···O1iv0.902.333.1869 (17)159
N1—H1A···O4v0.902.303.1559 (19)160
Symmetry codes: (iii) z, x+1/2, y+1/2; (iv) y, z+1/2, x1/2; (v) x+1/2, y, z1/2.
(II) [1,5,9-tris(2-aminoethoxy)-3,7,11-trihydroxy- 3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexaoxa-13- oxoniatricyclo[7.3.1.05,13]tridecane]nickel(II) top
Crystal data top
[Ni(C6H21B6N3O13)]Dx = 1.758 Mg m3
Mr = 466.83Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 25821 reflections
Hall symbol: -P 2ac 2ab 3θ = 3.0–25.0°
a = 15.2217 (18) ŵ = 1.17 mm1
V = 3526.9 (7) Å3T = 293 K
Z = 8Block, blue
F(000) = 19200.14 × 0.14 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1042 independent reflections
Radiation source: fine-focus sealed tube885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1818
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.849, Tmax = 0.849l = 1817
25821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0353P)2 + 9.9478P]
where P = (Fo2 + 2Fc2)/3
1042 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C6H21B6N3O13)]Z = 8
Mr = 466.83Mo Kα radiation
Cubic, Pa3µ = 1.17 mm1
a = 15.2217 (18) ÅT = 293 K
V = 3526.9 (7) Å30.14 × 0.14 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1042 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
885 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.849Rint = 0.075
25821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.38 e Å3
1042 reflectionsΔρmin = 0.50 e Å3
91 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.13077 (3)0.13077 (3)0.13077 (3)0.0231 (3)
O10.32601 (16)0.12309 (15)0.30443 (15)0.0239 (6)
O20.26448 (16)0.11086 (16)0.15913 (15)0.0238 (6)
O30.38667 (15)0.20905 (16)0.18920 (16)0.0245 (6)
O40.31826 (18)0.10076 (18)0.45563 (17)0.0303 (6)
O50.24183 (14)0.24183 (14)0.24183 (14)0.0182 (9)
B10.3080 (3)0.1696 (3)0.2231 (3)0.0216 (9)
B20.2828 (3)0.1388 (3)0.3823 (3)0.0218 (8)
N10.1734 (2)0.1002 (2)0.0045 (2)0.0341 (8)
C10.3090 (3)0.0726 (3)0.0856 (2)0.0313 (9)
C20.2702 (3)0.1099 (3)0.0021 (3)0.0359 (10)
H1C0.30190.00930.08650.038*
H1D0.37120.08590.08850.038*
H2A0.28560.17150.00330.043*
H2B0.29370.07900.04840.043*
H40.302 (3)0.119 (3)0.502 (3)0.043*
H1A0.15820.04480.00910.041*
H1B0.14840.13670.03470.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0231 (3)0.0231 (3)0.0231 (3)0.00170 (18)0.00170 (18)0.00170 (18)
O10.0275 (13)0.0247 (13)0.0194 (12)0.0053 (10)0.0015 (10)0.0034 (10)
O20.0256 (13)0.0267 (13)0.0189 (12)0.0017 (10)0.0004 (10)0.0048 (10)
O30.0188 (12)0.0249 (13)0.0298 (14)0.0004 (10)0.0039 (10)0.0046 (11)
O40.0355 (15)0.0372 (15)0.0181 (13)0.0094 (12)0.0013 (12)0.0031 (12)
O50.0182 (9)0.0182 (9)0.0182 (9)0.0011 (10)0.0011 (10)0.0011 (10)
B10.0188 (19)0.022 (2)0.024 (2)0.0030 (16)0.0022 (16)0.0028 (16)
B20.0214 (19)0.025 (2)0.019 (2)0.0014 (16)0.0009 (16)0.0032 (16)
N10.040 (2)0.0354 (19)0.0267 (17)0.0030 (15)0.0058 (15)0.0002 (14)
C10.030 (2)0.036 (2)0.028 (2)0.0088 (17)0.0017 (16)0.0098 (17)
C20.037 (2)0.040 (2)0.030 (2)0.0005 (19)0.0052 (18)0.0021 (18)
Geometric parameters (Å, º) top
Ni1—N12.081 (3)O4—H40.79 (5)
Ni1—O22.102 (2)N1—C21.481 (5)
O1—B11.453 (4)N1—H1A0.9000
O1—B21.377 (5)N1—H1B0.9000
O2—B11.479 (4)C1—C21.513 (6)
O3—B11.435 (5)C1—H1C0.9700
O3—B2i1.361 (5)C1—H1D0.9700
O4—B21.369 (5)C2—H2A0.9700
O5—B11.518 (4)C2—H2B0.9700
O2—C11.432 (4)
N1—Ni1—N1i98.72 (12)O4—B2—O1116.1 (3)
N1ii—Ni1—O291.09 (11)C2—N1—Ni1108.2 (2)
N1i—Ni1—O2i81.68 (11)C2—N1—H1A110.1
N1ii—Ni1—O2i169.98 (12)Ni1—N1—H1A110.1
O2ii—Ni1—O288.30 (9)C2—N1—H1B110.1
B1—O1—B2124.0 (3)Ni1—N1—H1B110.1
B1i—O5—B1117.98 (10)H6—N1—H1B108.4
B2i—O3—B1120.4 (3)O2—C1—C2108.7 (3)
C1—O2—B1123.3 (3)O2—C1—H1C110.0
C1—O2—Ni1110.9 (2)C2—C1—H1C110.0
B1—O2—Ni1118.8 (2)O2—C1—H1D110.0
B2—O4—H4117 (3)C2—C1—H1D110.0
O1—B1—O2110.5 (3)H1—C1—H2D108.3
O1—B1—O5108.5 (3)N1—C2—C1109.2 (3)
O2—B1—O5105.3 (3)N1—C2—H2A109.8
O3—B1—O1110.7 (3)C1—C2—H2A109.8
O3—B1—O2113.0 (3)N1—C2—H2B109.8
O3—B1—O5108.6 (3)C1—C2—H2B109.8
O3ii—B2—O1122.3 (3)H3—C2—H2B108.3
O3ii—B2—O4121.6 (3)
Symmetry codes: (i) z, x, y; (ii) y, z, x.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1iii0.79 (5)2.03 (5)2.790 (3)161 (5)
N1—H1B···O1iv0.902.333.175 (4)156
N1—H1A···O4v0.902.313.151 (4)156
Symmetry codes: (iii) z, x+1/2, y+1/2; (iv) y, z+1/2, x1/2; (v) x+1/2, y, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C6H21B6N3O13)][Ni(C6H21B6N3O13)]
Mr467.05466.83
Crystal system, space groupCubic, Pa3Cubic, Pa3
Temperature (K)293293
a (Å)15.2796 (18) 15.2217 (18)
V3)3567.3 (7)3526.9 (7)
Z88
Radiation typeMo KαMo Kα
µ (mm1)1.041.17
Crystal size (mm)0.34 × 0.32 × 0.270.14 × 0.14 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.710, 0.7560.849, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
25748, 1057, 1025 25821, 1042, 885
Rint0.0220.075
(sin θ/λ)max1)0.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.11 0.044, 0.107, 1.14
No. of reflections10571042
No. of parameters9191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.200.38, 0.50

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
O1—B11.4525 (18)O3—B2i1.356 (2)
O1—B21.379 (2)O4—B21.370 (2)
O2—B11.4790 (19)O5—B11.5179 (15)
O3—B11.4403 (18)
N1—Co1—O280.20 (5)O3—B1—O1110.66 (12)
N1ii—Co1—O291.95 (5)O3—B1—O2112.68 (12)
N1ii—Co1—O2i167.63 (5)O3—B1—O5108.44 (11)
O2ii—Co1—O287.43 (4)O3ii—B2—O1122.45 (14)
O1—B1—O2110.78 (12)O3ii—B2—O4121.74 (14)
O1—B1—O5108.72 (11)O4—B2—O1115.81 (14)
O2—B1—O5105.33 (12)
Symmetry codes: (i) z, x, y; (ii) y, z, x.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1iii0.76 (2)2.07 (2)2.7982 (15)162 (2)
N1—H1B···O1iv0.902.333.1869 (17)158.6
N1—H1A···O4v0.902.303.1559 (19)159.6
Symmetry codes: (iii) z, x+1/2, y+1/2; (iv) y, z+1/2, x1/2; (v) x+1/2, y, z1/2.
Selected geometric parameters (Å, º) for (II) top
O1—B11.453 (4)O3—B2i1.361 (5)
O1—B21.377 (5)O4—B21.369 (5)
O2—B11.479 (4)O5—B11.518 (4)
O3—B11.435 (5)
N1ii—Ni1—O291.09 (11)O3—B1—O1110.7 (3)
N1i—Ni1—O2i81.68 (11)O3—B1—O2113.0 (3)
N1ii—Ni1—O2i169.98 (12)O3—B1—O5108.6 (3)
O2ii—Ni1—O288.30 (9)O3ii—B2—O1122.3 (3)
O1—B1—O2110.5 (3)O3ii—B2—O4121.6 (3)
O1—B1—O5108.5 (3)O4—B2—O1116.1 (3)
O2—B1—O5105.3 (3)
Symmetry codes: (i) z, x, y; (ii) y, z, x.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1iii0.79 (5)2.03 (5)2.790 (3)161 (5)
N1—H1B···O1iv0.902.333.175 (4)155.5
N1—H1A···O4v0.902.313.151 (4)156.2
Symmetry codes: (iii) z, x+1/2, y+1/2; (iv) y, z+1/2, x1/2; (v) x+1/2, y, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds