Download citation
Download citation
link to html
1,2,3-Trimethyl­pyridinium aqua­trichloridocuprate(II), (C8H12N)[CuCl3(H2O)], (I), 3,4-dimethyl­pyridinium aqua­tri­chlor­ido­cuprate(II), (C7H10N)[CuCl3(H2O)], (II), and 2,3-di­methyl­pyridinium aqua­trichloridocuprate(II), (C7H10N)[CuCl3(H2O)], (III), exhibit the same fundamental structure, with (I) and (II) isomorphous and with the unit-cell constants of (III) similar to the reduced unit-cell constants of (I) and (II). The distorted square-planar [CuCl3(H2O)] complex [mirror symmetric in (I) and (II)] forms two semicoordinate Cu...Cl bonds to a neighboring complex to produce a dimer with 2/m symmetry [only inversion symmetry in (III)]. The semicoordinate Cu...Cl bond length of the dimer shows significant elongation at 295 K compared with that at 100 K, while the coordinate Cu—Cl bond lengths are slightly contracted at 295 K compared with those at 100 K. The inorganic dimers are linked by eight hydrogen bonds to four neighboring dimers to establish a checkerboard network layer in the ab plane, with voids between the dimers that accommodate, on both sides, inversion-related organic cation pairs. The organic cations are required by mirror-plane symmetry to be disordered in (I) and (II). The organic cations and [CuCl3(H2O)] complexes are nearly coplanar and tilted out of the layer plane to establish a hybrid organic–inorganic layer structure parallel to (202) [(11\overline{2}) in (III)], with hydrate columns (defined by water mol­ecules) and hydro­phobic columns (defined by methyl groups) parallel to each other [and along the 21 axes in (I) and (II)]. In 1,1-dimethyl­piperidinium aqua­trichloridocuprate(II), (C7H16N)[CuCl3(H2O)], (IV), the bulkier organic cation prevents semicoordinate bonding between complexes, which are hydrogen bonded side-to-side in zigzag chains that place water mol­ecules in columns along half of the 21 axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111017306/bm3105sup1.cif
Contains datablocks global, I100K, I295K, II100K, II295K, III100K, III295K, IV100K, IV295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105I100Ksup2.hkl
Contains datablock I100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105I295Ksup3.hkl
Contains datablock I295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105II100Ksup4.hkl
Contains datablock II100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105II295Ksup5.hkl
Contains datablock II295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105III100Ksup6.hkl
Contains datablock III100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105III295Ksup7.hkl
Contains datablock III295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105IV100Ksup8.hkl
Contains datablock IV100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111017306/bm3105IV295Ksup9.hkl
Contains datablock IV295K

CCDC references: 833398; 833399; 833400; 833401; 833402; 833403; 833404; 833405

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I100K) 1,2,3-trimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C8H12N)[CuCl3(H2O)]F(000) = 628
Mr = 310.09Dx = 1.766 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.4606 (4) ÅCell parameters from 1598 reflections
b = 9.2495 (3) Åθ = 1.0–28.7°
c = 8.4159 (2) ŵ = 2.53 mm1
β = 104.270 (2)°T = 100 K
V = 1166.36 (6) Å3Prism, green
Z = 40.25 × 0.17 × 0.09 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1593 independent reflections
Radiation source: Enraf–Nonius FR5901457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 9 pixels mm-1θmax = 28.7°, θmin = 4.1°
CCD rotation images, thick slices scansh = 2020
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.610, Tmax = 0.704l = 1111
3004 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0269P)2 + 2.6013P]
where P = (Fo2 + 2Fc2)/3
1593 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62472 (2)0.00000.07136 (4)0.01320 (10)
Cl10.51695 (4)0.00000.20952 (8)0.01731 (14)
Cl20.65216 (3)0.24150 (5)0.11326 (6)0.01701 (12)
O10.71634 (14)0.00000.0592 (3)0.0192 (4)
H10.747 (2)0.072 (3)0.055 (5)0.071 (12)*
N10.90280 (11)0.12887 (19)0.3490 (2)0.0147 (3)0.50
C110.87151 (14)0.2698 (2)0.3998 (3)0.0211 (4)
H11A0.80810.27770.35700.032*
H11B0.90070.34740.35780.032*
H11C0.88560.27510.51730.032*
C20.87097 (18)0.00000.3946 (3)0.0163 (5)
C210.8020 (2)0.00000.4912 (4)0.0319 (8)
H21A0.74730.03940.42570.048*0.50
H21B0.79190.09730.52220.048*0.50
H21C0.82240.05780.58800.048*0.50
C30.90280 (11)0.12887 (19)0.3490 (2)0.0147 (3)0.50
C50.99660 (18)0.00000.2101 (3)0.0162 (5)
H51.03880.00000.14810.019*
C60.96499 (12)0.1285 (2)0.2567 (2)0.0155 (4)
H60.98580.21570.22540.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01393 (17)0.01022 (16)0.01738 (17)0.0000.00753 (12)0.000
Cl10.0194 (3)0.0120 (3)0.0245 (3)0.0000.0130 (2)0.000
Cl20.0176 (2)0.0120 (2)0.0236 (2)0.00235 (16)0.00905 (17)0.00223 (16)
O10.0212 (10)0.0114 (9)0.0304 (11)0.0000.0164 (9)0.000
N10.0148 (7)0.0148 (8)0.0142 (7)0.0013 (6)0.0028 (6)0.0016 (6)
C110.0236 (10)0.0156 (9)0.0242 (10)0.0043 (8)0.0058 (8)0.0022 (8)
C20.0155 (12)0.0186 (13)0.0146 (12)0.0000.0033 (10)0.000
C210.0189 (14)0.050 (2)0.0302 (17)0.0000.0121 (12)0.000
C30.0148 (7)0.0148 (8)0.0142 (7)0.0013 (6)0.0028 (6)0.0016 (6)
C50.0180 (12)0.0167 (13)0.0148 (12)0.0000.0057 (10)0.000
C60.0166 (8)0.0167 (9)0.0135 (8)0.0015 (7)0.0043 (6)0.0015 (7)
Geometric parameters (Å, º) top
Cu1—Cl12.2547 (7)C11—H11B0.9600
Cu1—Cl1i2.7988 (8)C11—H11C0.9600
Cu1—Cl22.2848 (5)C2—C211.492 (4)
Cu1—O11.995 (2)C21—H21A0.9600
O1—H10.812 (10)C21—H21B0.9600
N1—C61.377 (3)C21—H21C0.9600
N1—C21.380 (2)C5—C61.378 (2)
N1—C111.489 (3)C5—H50.9300
C11—H11A0.9600C6—H60.9300
Cl1—Cu1—Cl1i84.93 (2)H11A—C11—H11C109.5
Cl1—Cu1—Cl293.044 (14)H11B—C11—H11C109.5
Cl1i—Cu1—Cl2101.961 (14)N1—C2—C3ii119.5 (2)
Cl2—Cu1—Cl2ii155.74 (3)N1—C2—C21120.25 (12)
Cl1—Cu1—O1177.73 (7)C2—C21—H21A109.5
Cl1i—Cu1—O192.80 (7)C2—C21—H21B109.5
Cl2—Cu1—O187.421 (19)H21A—C21—H21B109.5
Cu1—Cl1—Cu1i95.07 (2)C2—C21—H21C109.5
Cu1—O1—H1117 (3)H21A—C21—H21C109.5
H1—O1—H1ii111 (5)H21B—C21—H21C109.5
C6—N1—C2120.13 (18)N1—C6—C5120.51 (19)
C6—N1—C11119.03 (17)N1—C6—H6119.7
C2—N1—C11120.84 (18)C5—C6—H6119.7
N1—C11—H11A109.5C6—C5—C6ii119.2 (2)
N1—C11—H11B109.5C6—C5—H5120.4
H11A—C11—H11B109.5C6ii—C5—H5120.4
N1—C11—H11C109.5
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(I295K) 1,2,3-trimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C8H12N)[CuCl3(H2O)]F(000) = 628
Mr = 310.09Dx = 1.718 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.6883 (19) ÅCell parameters from 1303 reflections
b = 9.2405 (10) Åθ = 2.9–27.5°
c = 8.5073 (10) ŵ = 2.46 mm1
β = 103.521 (9)°T = 295 K
V = 1199.1 (2) Å3Prism, green
Z = 40.30 × 0.13 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1440 independent reflections
Graphite monochromator1184 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.023
CCD scansθmax = 27.5°, θmin = 4.6°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2020
Tmin = 0.631, Tmax = 0.875k = 1111
2595 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0491P)2 + 2.7746P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1440 reflectionsΔρmax = 1.24 e Å3
79 parametersΔρmin = 0.97 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62810 (4)0.00000.08032 (7)0.0401 (3)
Cl10.51917 (10)0.00000.2104 (2)0.0570 (4)
Cl20.65301 (6)0.24171 (9)0.11533 (12)0.0485 (3)
O10.7185 (3)0.00000.0509 (7)0.0621 (11)
H10.748 (3)0.074 (4)0.042 (8)0.12 (2)*
N10.9031 (2)0.1282 (3)0.3485 (4)0.0399 (7)0.50
C110.8720 (3)0.2699 (5)0.3979 (5)0.0567 (10)
H11A0.80930.27480.36290.085*
H11B0.89760.34710.34910.085*
H11C0.88900.27890.51340.085*
C20.8715 (3)0.00000.3936 (6)0.0403 (10)
C210.8033 (4)0.00000.4903 (8)0.0653 (17)
H21A0.74610.00000.41860.098*
H21B0.81000.08480.55720.098*0.50
H21C0.81000.08480.55720.098*0.50
C30.9031 (2)0.1282 (3)0.3485 (4)0.0399 (7)0.50
C50.9956 (3)0.00000.2117 (6)0.0455 (11)
H51.03730.00000.15000.055*
C60.9644 (2)0.1276 (4)0.2577 (4)0.0418 (8)
H60.98510.21490.22700.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0484 (4)0.0279 (3)0.0506 (4)0.0000.0249 (3)0.000
Cl10.0708 (9)0.0329 (6)0.0830 (10)0.0000.0500 (8)0.000
Cl20.0514 (5)0.0314 (4)0.0688 (6)0.0066 (3)0.0264 (4)0.0058 (4)
O10.072 (3)0.034 (2)0.098 (3)0.0000.055 (3)0.000
N10.0391 (15)0.0377 (16)0.0405 (15)0.0039 (12)0.0046 (12)0.0009 (12)
C110.059 (2)0.042 (2)0.071 (3)0.0103 (17)0.017 (2)0.0049 (18)
C20.037 (2)0.044 (3)0.040 (2)0.0000.0083 (19)0.000
C210.050 (3)0.084 (5)0.070 (4)0.0000.031 (3)0.000
C30.0391 (15)0.0377 (16)0.0405 (15)0.0039 (12)0.0046 (12)0.0009 (12)
C50.046 (3)0.051 (3)0.042 (3)0.0000.015 (2)0.000
C60.0447 (18)0.0396 (18)0.0413 (17)0.0016 (14)0.0100 (14)0.0058 (14)
Geometric parameters (Å, º) top
Cu1—Cl12.2428 (14)C11—H11C0.9600
Cu1—Cl1i2.964 (2)C2—C211.493 (6)
Cu1—Cl22.2750 (9)C21—H21A0.9600
Cu1—O11.999 (4)C21—H21B0.9600
O1—H10.817 (10)C21—H21C0.9600
N1—C61.367 (5)C5—C61.368 (4)
N1—C21.373 (4)C5—H50.9300
N1—C111.491 (4)C5—C6ii1.368 (4)
C11—H11A0.9600C6—H60.9300
C11—H11B0.9600
Cl1—Cu1—Cl1i82.91 (6)H11A—C11—H11C109.5
Cl1—Cu1—Cl293.60 (3)H11B—C11—H11C109.5
Cl1i—Cu1—Cl2100.71 (3)N1—C2—C3ii119.3 (4)
Cl2—Cu1—Cl2ii158.09 (6)N1—C2—C21120.4 (2)
Cl1—Cu1—O1175.81 (15)C2—C21—H21A109.5
Cl1i—Cu1—O192.90 (17)C2—C21—H21B109.5
Cl2—Cu1—O187.16 (4)C2—C21—H21C109.5
Cu1—Cl1—Cu1i97.09 (6)H21A—C21—H21B109.5
Cu1—O1—H1114 (5)H21A—C21—H21C109.5
H1ii—O1—H1112 (9)H21B—C21—H21C109.5
C6—N1—C2120.1 (3)C6—C5—C6ii119.0 (5)
C6—N1—C11118.8 (3)C6—C5—H5120.5
C2—N1—C11121.0 (3)C6ii—C5—H5120.5
N1—C11—H11A109.5N1—C6—C5120.7 (3)
N1—C11—H11B109.5N1—C6—H6119.6
H11A—C11—H11B109.5C5—C6—H6119.6
N1—C11—H11C109.5
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(II100K) 3,4-dimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C7H10N)[CuCl3(H2O)]F(000) = 596
Mr = 296.07Dx = 1.755 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.1429 (4) ÅCell parameters from 1885 reflections
b = 8.8854 (2) Åθ = 2.9–31.0°
c = 8.5918 (2) ŵ = 2.63 mm1
β = 104.262 (2)°T = 100 K
V = 1120.40 (5) Å3Prism, colourless
Z = 40.17 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1880 independent reflections
Graphite monochromator1663 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.017
CCD scansθmax = 31.0°, θmin = 4.8°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2121
Tmin = 0.716, Tmax = 0.884k = 1212
3544 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.1109P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1880 reflectionsΔρmax = 0.59 e Å3
77 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.623684 (16)0.00000.07381 (3)0.01520 (9)
Cl10.51196 (3)0.00000.20814 (6)0.01870 (11)
Cl20.65045 (3)0.25027 (4)0.11677 (4)0.02146 (10)
O10.71314 (12)0.00000.0590 (2)0.0233 (3)
H1W0.7393 (15)0.070 (3)0.059 (3)0.044 (7)*
N10.9621 (3)0.1477 (5)0.2585 (4)0.0216 (9)*0.50
H10.98310.23070.23100.026*0.50
C20.9002 (3)0.1543 (5)0.3431 (4)0.0225 (8)*0.50
H20.88010.24800.36850.027*0.50
C30.86505 (16)0.0276 (3)0.3942 (3)0.0183 (6)*0.50
C310.7959 (2)0.0368 (4)0.4921 (4)0.0308 (9)0.50
H31A0.79200.13870.52710.046*0.50
H31B0.73760.00560.42800.046*0.50
H31C0.81390.02780.58400.046*0.50
C40.8966 (2)0.1106 (5)0.3556 (4)0.0206 (8)*0.50
C410.8654 (2)0.2564 (4)0.4122 (4)0.0239 (6)0.50
H41A0.88030.25780.52750.036*0.50
H41B0.80070.26590.37170.036*0.50
H41C0.89530.33870.37380.036*0.50
C50.9625 (3)0.1131 (6)0.2582 (6)0.0254 (11)*0.50
H50.98310.20400.22670.030*0.50
C60.99350 (16)0.0195 (4)0.2138 (3)0.0202 (6)*0.50
H61.03640.02050.15270.024*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01466 (13)0.01282 (13)0.01963 (14)0.0000.00708 (9)0.000
Cl10.0182 (2)0.0179 (2)0.0224 (2)0.0000.00945 (17)0.000
Cl20.02428 (18)0.01570 (16)0.02784 (19)0.00520 (13)0.01296 (14)0.00434 (13)
O10.0244 (8)0.0130 (7)0.0380 (9)0.0000.0179 (7)0.000
C310.0297 (15)0.030 (2)0.0359 (17)0.0067 (12)0.0150 (13)0.0003 (12)
C410.0259 (15)0.0187 (14)0.0282 (15)0.0038 (11)0.0086 (12)0.0003 (11)
Geometric parameters (Å, º) top
Cu1—Cl12.2708 (5)C31—H31B0.9600
Cu1—Cl1i2.7632 (6)C31—H31C0.9600
Cu1—Cl22.2742 (3)C3—C41.387 (5)
Cu1—O11.9747 (16)C4—C411.500 (5)
O1—H1W0.74 (2)C41—H41A0.9600
N1—C21.321 (5)C41—H41B0.9600
N1—C61.327 (5)C41—H41C0.9600
N1—H10.8600C4—C51.451 (6)
C2—H20.9300C5—H50.9300
C2—C31.364 (5)C5—C61.357 (6)
C3—C311.498 (4)C6—H60.9300
C31—H31A0.9600
Cl1—Cu1—Cl1i87.684 (18)N1—C2—H2119.1
Cl1—Cu1—Cl292.453 (11)C3—C2—H2119.1
Cl1i—Cu1—Cl2101.920 (12)C2—C3—C4118.0 (2)
Cl2—Cu1—Cl2ii155.83 (2)C2—C3—C31121.2 (3)
Cl1—Cu1—O1175.44 (6)C4—C3—C31120.8 (3)
Cl1i—Cu1—O187.76 (6)C3—C4—C5118.5 (4)
Cl2—Cu1—O188.489 (15)C3—C4—C41122.1 (3)
Cu1—Cl1—Cu1i92.316 (18)C5—C4—C41119.4 (4)
Cu1—O1—H1W116.2 (19)C4—C5—C6118.9 (4)
H1W—O1—H1Wii115 (4)C4—C5—H5120.5
C2—N1—C6123.4 (4)C6—C5—H5120.5
C2—N1—H1118.3N1—C6—C5119.3 (3)
C6—N1—H1118.3C5—C6—H6120.3
N1—C2—C3121.7 (4)N1—C6—H6120.3
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(II295K) 3,4-dimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C7H10N)[CuCl3(H2O)]F(000) = 596
Mr = 296.07Dx = 1.7 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.3144 (4) ÅCell parameters from 1723 reflections
b = 8.8708 (2) Åθ = 2.9–29.6°
c = 8.7761 (2) ŵ = 2.54 mm1
β = 103.967 (2)°T = 295 K
V = 1156.99 (5) Å3Prism, green
Z = 40.17 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1724 independent reflections
Graphite monochromator1485 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.013
CCD scansθmax = 29.6°, θmin = 4.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2121
Tmin = 0.727, Tmax = 0.880k = 1212
3244 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.045P)2 + 1.2996P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1724 reflectionsΔρmax = 0.71 e Å3
77 parametersΔρmin = 0.57 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.62501 (2)0.00000.07768 (4)0.03999 (16)
Cl10.51275 (6)0.00000.20481 (11)0.0517 (2)
Cl20.65076 (4)0.25070 (6)0.11599 (8)0.05229 (19)
O10.71364 (19)0.00000.0534 (4)0.0653 (8)
H1W0.7439 (12)0.0757 (6)0.049 (4)0.078*
C30.8656 (3)0.00000.3902 (5)0.0706 (13)0.50
C310.7961 (4)0.00000.4863 (8)0.126 (3)0.50
H31A0.78090.10200.50570.190*0.13
H31B0.74310.05200.42980.190*0.13
H31C0.82000.05010.58450.190*0.13
H31D0.78180.10200.50760.190*0.13
H31E0.81960.05200.58350.190*0.13
H31F0.74270.05010.42890.190*0.13
C40.8991 (2)0.1290 (4)0.3472 (3)0.0686 (8)0.50
C410.8674 (4)0.2581 (6)0.4090 (7)0.0603 (13)0.50
H41A0.89320.34630.37390.090*0.25
H41B0.88430.25390.52160.090*0.25
H41C0.80300.26260.37380.090*0.25
H41D0.82710.22890.47230.090*0.25
H41E0.83610.32130.32460.090*0.25
H41F0.91730.31250.47240.090*0.25
C50.96291 (18)0.1310 (3)0.2574 (3)0.0630 (6)0.50
H50.98370.22210.22730.076*0.50
C60.9940 (3)0.00000.2150 (4)0.0608 (9)0.50
H61.03260.00000.14780.073*0.50
C3A0.8656 (3)0.00000.3902 (5)0.0706 (13)0.50
C31A0.7961 (4)0.00000.4863 (8)0.126 (3)0.50
H31G0.78120.10200.50640.190*0.13
H31H0.74300.05130.42950.190*0.13
H31I0.81990.05070.58420.190*0.13
H31J0.78150.10200.50700.190*0.13
H31K0.81970.05130.58380.190*0.13
H31L0.74280.05070.42920.190*0.13
C2A0.8991 (2)0.1290 (4)0.3472 (3)0.0686 (8)0.50
H2A0.87900.22020.37850.082*0.50
N1A0.96291 (18)0.1310 (3)0.2574 (3)0.0630 (6)0.50
H1A0.98210.21520.22960.076*0.50
C6A0.9940 (3)0.00000.2150 (4)0.0608 (9)0.50
H6A1.03260.00000.14780.073*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0396 (2)0.0303 (2)0.0556 (3)0.0000.02215 (17)0.000
Cl10.0548 (4)0.0398 (4)0.0711 (5)0.0000.0357 (4)0.000
Cl20.0558 (3)0.0343 (3)0.0752 (4)0.0086 (2)0.0323 (3)0.0081 (2)
O10.0662 (16)0.0355 (11)0.114 (2)0.0000.0598 (17)0.000
C30.048 (2)0.111 (4)0.0500 (19)0.0000.0077 (16)0.000
C310.072 (3)0.220 (10)0.100 (4)0.0000.046 (3)0.000
C40.0525 (14)0.089 (2)0.0611 (15)0.0114 (15)0.0068 (12)0.0189 (15)
C410.061 (3)0.044 (3)0.077 (3)0.013 (2)0.018 (3)0.003 (2)
C50.0617 (14)0.0673 (16)0.0594 (13)0.0042 (12)0.0135 (11)0.0038 (11)
C60.057 (2)0.079 (3)0.0491 (18)0.0000.0178 (16)0.000
C3A0.048 (2)0.111 (4)0.0500 (19)0.0000.0077 (16)0.000
C31A0.072 (3)0.220 (10)0.100 (4)0.0000.046 (3)0.000
C2A0.0525 (14)0.089 (2)0.0611 (15)0.0114 (15)0.0068 (12)0.0189 (15)
N1A0.0617 (14)0.0673 (16)0.0594 (13)0.0042 (12)0.0135 (11)0.0038 (11)
C6A0.057 (2)0.079 (3)0.0491 (18)0.0000.0178 (16)0.000
Geometric parameters (Å, º) top
Cu1—Cl12.2642 (8)C31—H31F0.96
Cu1—Cl1i2.8412 (11)C4—C51.396 (4)
Cu1—Cl22.2694 (5)C4—C411.403 (6)
Cu1—O11.980 (2)C41—H41A0.96
O1—H1W0.812 (9)C41—H41B0.96
C3—C41.345 (4)C41—H41C0.96
C3—C311.509 (7)C41—H41D0.96
C31—H31A0.96C41—H41E0.96
C31—H31B0.96C41—H41F0.96
C31—H31C0.96C5—C61.342 (3)
C31—H31D0.96C5—H50.93
C31—H31E0.96C6—H60.93
Cl1—Cu1—Cl1i86.43 (3)H31E—C31—H31F109.5
Cl1—Cu1—Cl293.006 (17)C3—C4—C5122.4 (3)
Cl1i—Cu1—Cl2101.25 (2)C3—C4—C41113.3 (4)
Cl2—Cu1—Cl2ii157.01 (4)C5—C4—C41124.2 (4)
Cl1—Cu1—O1174.23 (11)C4—C41—H41A109.5
Cl1i—Cu1—O187.80 (11)C4—C41—H41B109.5
Cl2—Cu1—O188.12 (3)H41A—C41—H41B109.5
Cu1—Cl1—Cu1i93.57 (3)C4—C41—H41C109.5
Cu1—O1—H1W116.1 (19)H41A—C41—H41C109.5
H1Wii—O1—H1W112 (2)H41B—C41—H41C109.5
C4—C3—C31121.7 (2)C4—C41—H41D109.5
C3—C31—H31A109.5C4—C41—H41E109.5
C3—C31—H31B109.5H41D—C41—H41E109.5
H31A—C31—H31B109.5C4—C41—H41F109.5
C3—C31—H31C109.5H41D—C41—H41F109.5
H31A—C31—H31C109.5H41E—C41—H41F109.5
H31B—C31—H31C109.5C6—C5—C4119.3 (3)
C3—C31—H31D109.5C6—C5—H5120.3
C3—C31—H31E109.5C4—C5—H5120.3
H31D—C31—H31E109.5C5—C6—H6119.9
C3—C31—H31F109.5C5—C6—N1Aii119.9 (4)
H31D—C31—H31F109.5
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(III100K) 2,3-dimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C7H10N)[CuCl3(H2O)]Z = 2
Mr = 296.07F(000) = 298
Triclinic, P1Dx = 1.757 Mg m3
a = 8.8088 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7803 (4) ÅCell parameters from 2526 reflections
c = 8.7570 (4) Åθ = 2.9–27.5°
α = 74.101 (3)°µ = 2.63 mm1
β = 76.513 (4)°T = 100 K
γ = 59.895 (7)°Plate, green
V = 559.77 (6) Å30.23 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2554 independent reflections
Graphite monochromator2349 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.024
CCD scansθmax = 27.5°, θmin = 4.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.589, Tmax = 0.826k = 1111
4879 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0417P)2 + 2.7302P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 1.13 e Å3
2 restraintsΔρmin = 0.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37325 (6)0.87179 (7)0.07850 (6)0.01891 (16)
Cl10.48941 (12)0.97670 (13)0.20498 (12)0.0211 (2)
Cl20.09563 (13)1.10156 (14)0.11538 (13)0.0224 (2)
Cl30.58548 (13)0.58494 (13)0.13918 (13)0.0234 (2)
O10.2852 (4)0.7928 (4)0.0571 (4)0.0245 (6)
H1WA0.340 (8)0.686 (3)0.062 (8)0.047 (19)*
H1WB0.178 (2)0.831 (11)0.053 (10)0.07 (2)*
N10.1125 (5)0.6884 (5)0.2725 (4)0.0224 (7)
H10.22160.75430.25650.027*
C20.0458 (6)0.7410 (6)0.3596 (5)0.0221 (8)
C210.1638 (6)0.9092 (6)0.4227 (6)0.0290 (10)
H21A0.16900.88360.53700.043*
H21B0.28020.95930.39290.043*
H21C0.11850.99330.37880.043*
C30.1318 (6)0.6342 (6)0.3863 (5)0.0217 (8)
C310.2119 (6)0.6902 (7)0.4810 (6)0.0292 (10)
H31A0.13860.71580.58020.044*
H31B0.22050.79540.42080.044*
H31C0.32770.59490.50230.044*
C40.2295 (6)0.4792 (6)0.3223 (6)0.0243 (9)
H40.34770.40690.33910.029*
C50.1549 (6)0.4296 (6)0.2339 (5)0.0248 (9)
H50.22140.32460.19270.030*
C60.0186 (6)0.5385 (6)0.2088 (5)0.0236 (9)
H60.07120.50960.14840.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0156 (3)0.0205 (3)0.0246 (3)0.0105 (2)0.00274 (18)0.00538 (19)
Cl10.0171 (4)0.0240 (5)0.0265 (5)0.0111 (4)0.0030 (3)0.0076 (4)
Cl20.0160 (4)0.0236 (5)0.0293 (5)0.0091 (4)0.0033 (4)0.0074 (4)
Cl30.0199 (5)0.0208 (5)0.0311 (5)0.0088 (4)0.0063 (4)0.0060 (4)
O10.0189 (15)0.0231 (16)0.0346 (17)0.0088 (13)0.0071 (13)0.0086 (13)
N10.0171 (16)0.0261 (18)0.0245 (18)0.0116 (15)0.0008 (13)0.0035 (14)
C20.025 (2)0.025 (2)0.020 (2)0.0159 (18)0.0000 (16)0.0024 (16)
C210.029 (2)0.026 (2)0.029 (2)0.0099 (19)0.0015 (18)0.0077 (18)
C30.021 (2)0.027 (2)0.020 (2)0.0165 (18)0.0023 (15)0.0003 (16)
C310.031 (2)0.036 (3)0.029 (2)0.021 (2)0.0052 (18)0.0064 (19)
C40.0182 (19)0.027 (2)0.029 (2)0.0126 (17)0.0027 (16)0.0031 (17)
C50.024 (2)0.023 (2)0.026 (2)0.0123 (18)0.0036 (16)0.0063 (17)
C60.026 (2)0.031 (2)0.0184 (19)0.0183 (19)0.0000 (16)0.0039 (16)
Geometric parameters (Å, º) top
Cu1—Cl12.2705 (11)C21—H21B0.96
Cu1—Cl1i2.7928 (12)C21—H21C0.96
Cu1—Cl22.2790 (11)C3—C311.507 (6)
Cu1—Cl32.2644 (11)C31—H31A0.96
Cu1—O11.978 (3)C31—H31B0.96
O1—H1WA0.818 (10)C31—H31C0.96
O1—H1WB0.820 (10)C3—C41.387 (6)
N1—C21.347 (6)C4—H40.93
N1—C61.349 (6)C4—C51.390 (6)
N1—H10.86C5—H50.93
C2—C31.400 (6)C5—C61.369 (6)
C2—C211.485 (6)C6—H60.93
C21—H21A0.96
Cl1—Cu1—Cl1i85.90 (4)C2—C21—H21C109.5
Cl1—Cu1—Cl292.68 (4)H21A—C21—H21C109.5
Cl1i—Cu1—Cl2101.15 (4)H21B—C21—H21C109.5
Cl1—Cu1—Cl392.99 (4)N1—C2—C3118.3 (4)
Cl1i—Cu1—Cl3105.74 (4)C2—C3—C4118.2 (4)
Cl2—Cu1—Cl3152.84 (5)C2—C3—C31119.9 (4)
Cl1—Cu1—O1172.77 (10)C4—C3—C31121.9 (4)
Cl1i—Cu1—O186.87 (10)C3—C31—H31A109.5
Cl2—Cu1—O188.97 (10)C3—C31—H31B109.5
Cl3—Cu1—O188.72 (10)H31A—C31—H31B109.5
Cu1—Cl1—Cu1i94.10 (4)C3—C31—H31C109.5
Cu1—O1—H1WA116 (5)H31A—C31—H31C109.5
Cu1—O1—H1WB119 (6)H31B—C31—H31C109.5
H1WA—O1—H1WB111 (7)C3—C4—C5121.5 (4)
C2—N1—C6124.1 (4)C3—C4—H4119.3
C2—N1—H1118C5—C4—H4119.3
C6—N1—H1118C4—C5—C6118.6 (4)
N1—C2—C21118.6 (4)C4—C5—H5120.7
C3—C2—C21123.1 (4)C6—C5—H5120.7
C2—C21—H21A109.5C5—C6—N1119.3 (4)
C2—C21—H21B109.5C5—C6—H6120.3
H21A—C21—H21B109.5N1—C6—H6120.3
Symmetry code: (i) x+1, y+2, z.
(III295K) 2,3-dimethylpyridinium aquatrichloridocuprate(II) top
Crystal data top
(C7H10N)[CuCl3(H2O)]Z = 2
Mr = 296.07F(000) = 298
Triclinic, P1Dx = 1.706 Mg m3
a = 8.8369 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8282 (4) ÅCell parameters from 2580 reflections
c = 8.9410 (4) Åθ = 2.9–27.5°
α = 74.628 (3)°µ = 2.55 mm1
β = 77.056 (4)°T = 295 K
γ = 59.517 (7)°Plate, green
V = 576.23 (5) Å30.23 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2586 independent reflections
Graphite monochromator2179 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.025
CCD scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.607, Tmax = 0.823k = 1111
4951 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.7064P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2584 reflectionsΔρmax = 1.06 e Å3
130 parametersΔρmin = 0.49 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37233 (6)0.86950 (6)0.08312 (6)0.04088 (19)
Cl10.49005 (13)0.97491 (14)0.20327 (13)0.0499 (3)
Cl20.09581 (12)1.09943 (14)0.11704 (14)0.0504 (3)
Cl30.58822 (13)0.58419 (13)0.13681 (14)0.0529 (3)
O10.2844 (4)0.7915 (4)0.0506 (5)0.0598 (8)
H1WA0.350 (8)0.689 (4)0.065 (9)0.11 (3)*
H1WB0.178 (3)0.834 (11)0.054 (11)0.13 (3)*
N10.1097 (5)0.6883 (5)0.2719 (4)0.0478 (8)
H10.21870.75460.25500.057*
C20.0449 (6)0.7399 (6)0.3592 (5)0.0456 (9)
C210.1663 (8)0.9078 (7)0.4206 (6)0.0658 (13)
H21A0.17610.88220.53260.099*
H21B0.28060.95910.38640.099*
H21C0.12040.99070.38270.099*
C30.1313 (5)0.6334 (6)0.3880 (5)0.0466 (9)
C310.2102 (8)0.6870 (9)0.4837 (7)0.0711 (14)
H31A0.12900.72790.57330.107*
H31B0.23360.78140.42170.107*
H31C0.31860.58600.51700.107*
C40.2287 (6)0.4792 (6)0.3251 (6)0.0542 (10)
H40.34650.40600.34320.065*
C50.1568 (6)0.4306 (6)0.2364 (6)0.0535 (10)
H50.22440.32560.19600.064*
C60.0150 (6)0.5394 (6)0.2093 (5)0.0509 (10)
H60.06630.51120.14810.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0316 (3)0.0385 (3)0.0555 (3)0.0145 (2)0.00812 (19)0.0150 (2)
Cl10.0361 (5)0.0489 (5)0.0691 (6)0.0148 (4)0.0105 (4)0.0253 (5)
Cl20.0310 (4)0.0487 (5)0.0720 (7)0.0127 (4)0.0077 (4)0.0230 (5)
Cl30.0440 (5)0.0394 (5)0.0741 (7)0.0122 (4)0.0181 (5)0.0152 (4)
O10.0417 (17)0.0473 (18)0.096 (3)0.0118 (14)0.0225 (16)0.0290 (17)
N10.0383 (17)0.0518 (19)0.0510 (19)0.0182 (15)0.0075 (14)0.0102 (15)
C20.050 (2)0.047 (2)0.041 (2)0.0252 (18)0.0029 (16)0.0079 (16)
C210.071 (3)0.055 (3)0.064 (3)0.022 (2)0.001 (2)0.022 (2)
C30.046 (2)0.055 (2)0.046 (2)0.0303 (19)0.0039 (17)0.0056 (17)
C310.078 (4)0.092 (4)0.067 (3)0.055 (3)0.017 (3)0.013 (3)
C40.039 (2)0.053 (2)0.068 (3)0.0217 (19)0.0057 (19)0.007 (2)
C50.048 (2)0.049 (2)0.061 (3)0.0228 (19)0.0080 (19)0.0189 (19)
C60.052 (2)0.059 (2)0.046 (2)0.028 (2)0.0019 (18)0.0146 (18)
Geometric parameters (Å, º) top
Cu1—Cl12.2617 (10)C21—H21C0.96
Cu1—Cl1i2.8910 (13)C2—C31.393 (6)
Cu1—Cl22.2683 (10)C3—C311.503 (6)
Cu1—Cl32.2601 (11)C31—H31A0.96
Cu1—O11.976 (3)C31—H31B0.96
O1—H1WA0.818 (10)C31—H31C0.96
O1—H1WB0.820 (10)C3—C41.382 (6)
N1—C21.341 (5)C4—H40.93
N1—C61.343 (6)C4—C51.378 (7)
N1—H10.86C5—H50.93
C2—C211.485 (6)C5—C61.360 (7)
C21—H21A0.96C6—H60.93
C21—H21B0.96
Cl1—Cu1—Cl1i85.20 (4)H21A—C21—H21B109.5
Cl1—Cu1—Cl293.06 (4)C2—C21—H21C109.5
Cl1i—Cu1—Cl2100.49 (4)H21A—C21—H21C109.5
Cl1—Cu1—Cl393.37 (4)H21B—C21—H21C109.5
Cl1i—Cu1—Cl3104.83 (4)C2—C3—C4117.5 (4)
Cl1—Cu1—O1171.62 (11)C2—C3—C31120.4 (4)
Cl1i—Cu1—O186.43 (13)C4—C3—C31122.0 (4)
Cl2—Cu1—O188.78 (10)C3—C31—H31A109.5
Cl2—Cu1—Cl3154.30 (5)C3—C31—H31B109.5
Cl3—Cu1—O188.45 (10)H31A—C31—H31B109.5
Cu1—Cl1—Cu1i94.80 (4)C3—C31—H31C109.5
Cu1—O1—H1WA114 (6)H31A—C31—H31C109.5
Cu1—O1—H1WB121 (7)H31B—C31—H31C109.5
H1WA—O1—H1WB119 (8)C3—C4—C5122.1 (4)
C2—N1—C6124.1 (4)C3—C4—H4119
C2—N1—H1117.9C5—C4—H4119
C6—N1—H1117.9C4—C5—C6118.5 (4)
N1—C2—C3118.5 (4)C4—C5—H5120.7
N1—C2—C21117.8 (4)C6—C5—H5120.7
C3—C2—C21123.6 (4)C5—C6—N1119.2 (4)
C2—C21—H21A109.5C5—C6—H6120.4
C2—C21—H21B109.5N1—C6—H6120.4
Symmetry code: (i) x+1, y+2, z.
(IV100K) 1,1-dimethylpiperidinium aquatrichloridocuprate(II) top
Crystal data top
(C7H16N)[CuCl3(H2O)]F(000) = 620
Mr = 302.11Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1958 (3) ÅCell parameters from 3373 reflections
b = 7.6080 (3) Åθ = 2.9–28.7°
c = 16.3281 (5) ŵ = 2.38 mm1
β = 102.927 (2)°T = 100 K
V = 1234.46 (7) Å3Prism, light green
Z = 40.37 × 0.13 × 0.07 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3187 independent reflections
Graphite monochromator2587 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.032
CCD scansθmax = 28.7°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.665, Tmax = 0.771k = 1010
6071 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.028P)2 + 1.5628P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3187 reflectionsΔρmax = 0.63 e Å3
129 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.65605 (3)0.18404 (4)0.833661 (18)0.01801 (11)
Cl10.85108 (6)0.04526 (9)0.86647 (4)0.02514 (16)
Cl20.53156 (6)0.01194 (8)0.89694 (4)0.02023 (15)
Cl30.72649 (6)0.46282 (9)0.83378 (4)0.02148 (15)
O10.5024 (2)0.2259 (4)0.73833 (14)0.0339 (5)
H1A0.494 (4)0.302 (5)0.708 (2)0.038 (11)*
H1B0.449 (3)0.152 (5)0.724 (2)0.026 (9)*
N10.1981 (2)0.1533 (3)0.38540 (13)0.0182 (4)
C110.2039 (3)0.2419 (4)0.46839 (16)0.0233 (6)
H11A0.12210.30620.46600.035*
H11B0.27900.32120.48030.035*
H11C0.21430.15470.51190.035*
C120.1816 (3)0.2945 (4)0.31940 (16)0.0236 (6)
H12A0.17650.24160.26540.035*
H12B0.25740.37280.33210.035*
H12C0.10060.35930.31860.035*
C20.0790 (3)0.0304 (4)0.36326 (17)0.0232 (6)
H2A0.06790.00690.30530.028*
H2B0.00170.09320.36800.028*
C30.0946 (3)0.1307 (4)0.41932 (17)0.0261 (6)
H3A0.01840.20840.40040.031*
H3B0.09500.09510.47640.031*
C40.2247 (3)0.2297 (4)0.41824 (18)0.0279 (6)
H4A0.23530.32690.45760.033*
H4B0.22030.27720.36260.033*
C50.3449 (3)0.1058 (4)0.44224 (17)0.0241 (6)
H5A0.35490.06880.50020.029*
H5B0.42620.16760.43770.029*
C60.3269 (3)0.0547 (4)0.38555 (17)0.0222 (6)
H6A0.40270.13320.40400.027*
H6B0.32670.01790.32860.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02042 (17)0.01887 (19)0.01496 (16)0.00048 (13)0.00441 (11)0.00092 (12)
Cl10.0230 (3)0.0243 (3)0.0290 (3)0.0031 (3)0.0077 (3)0.0027 (3)
Cl20.0238 (3)0.0218 (3)0.0161 (3)0.0014 (2)0.0065 (2)0.0013 (2)
Cl30.0222 (3)0.0196 (3)0.0213 (3)0.0010 (2)0.0019 (2)0.0018 (2)
O10.0336 (12)0.0326 (13)0.0280 (12)0.0141 (10)0.0091 (9)0.0151 (10)
N10.0188 (10)0.0199 (11)0.0158 (10)0.0013 (9)0.0038 (8)0.0010 (8)
C110.0312 (14)0.0221 (14)0.0168 (12)0.0010 (11)0.0056 (11)0.0033 (10)
C120.0270 (14)0.0245 (15)0.0192 (12)0.0020 (11)0.0053 (10)0.0056 (11)
C20.0194 (12)0.0261 (15)0.0225 (13)0.0053 (11)0.0011 (10)0.0026 (11)
C30.0298 (14)0.0236 (15)0.0252 (13)0.0074 (12)0.0069 (11)0.0011 (11)
C40.0412 (16)0.0192 (14)0.0237 (14)0.0006 (12)0.0082 (12)0.0003 (11)
C50.0275 (14)0.0233 (14)0.0220 (13)0.0046 (11)0.0068 (11)0.0018 (11)
C60.0200 (12)0.0252 (15)0.0223 (13)0.0016 (11)0.0069 (10)0.0001 (11)
Geometric parameters (Å, º) top
Cu1—Cl12.2089 (7)C12—H12C0.9600
Cu1—Cl22.2315 (7)C2—C31.517 (4)
Cu1—Cl32.2391 (7)C2—H2A0.9700
Cu1—O11.971 (2)C2—H2B0.9700
O1—H1A0.75 (4)C3—C41.529 (4)
O1—H1B0.78 (4)C3—H3A0.9700
N1—C111.503 (3)C3—H3B0.9700
N1—C121.504 (3)C4—C51.526 (4)
N1—C21.511 (3)C4—H4A0.9700
N1—C61.512 (3)C4—H4B0.9700
C11—H11A0.9600C5—C61.519 (4)
C11—H11B0.9600C5—H5A0.9700
C11—H11C0.9600C5—H5B0.9700
C12—H12A0.9600C6—H6A0.9700
C12—H12B0.9600C6—H6B0.9700
Cl1—Cu1—Cl2100.47 (3)C3—C2—H2A109.1
Cl1—Cu1—Cl3100.45 (3)N1—C2—H2B109.1
Cl1—Cu1—O1141.42 (8)C3—C2—H2B109.1
Cl2—Cu1—Cl3140.44 (3)H2A—C2—H2B107.8
Cl2—Cu1—O191.53 (7)C2—C3—C4111.4 (2)
Cl3—Cu1—O192.62 (8)C2—C3—H3A109.3
Cu1—O1—H1A127 (3)C4—C3—H3A109.3
Cu1—O1—H1B119 (2)C2—C3—H3B109.3
H1A—O1—H1B113 (4)C4—C3—H3B109.3
C11—N1—C12107.6 (2)H3A—C3—H3B108.0
C11—N1—C2111.1 (2)C5—C4—C3110.0 (2)
C12—N1—C2108.41 (19)C5—C4—H4A109.7
C11—N1—C6111.2 (2)C3—C4—H4A109.7
C12—N1—C6108.25 (19)C5—C4—H4B109.7
C2—N1—C6110.1 (2)C3—C4—H4B109.7
N1—C11—H11A109.5H4A—C4—H4B108.2
N1—C11—H11B109.5C6—C5—C4111.0 (2)
H11A—C11—H11B109.5C6—C5—H5A109.4
N1—C11—H11C109.5C4—C5—H5A109.4
H11A—C11—H11C109.5C6—C5—H5B109.4
H11B—C11—H11C109.5C4—C5—H5B109.4
N1—C12—H12A109.5H5A—C5—H5B108.0
N1—C12—H12B109.5N1—C6—C5112.8 (2)
H12A—C12—H12B109.5N1—C6—H6A109.0
N1—C12—H12C109.5C5—C6—H6A109.0
H12A—C12—H12C109.5N1—C6—H6B109.0
H12B—C12—H12C109.5C5—C6—H6B109.0
N1—C2—C3112.7 (2)H6A—C6—H6B107.8
N1—C2—H2A109.1
(IV295K) 1,1-dimethylpiperidinium aquatrichloridocuprate(II) top
Crystal data top
(C7H16N)[CuCl3(H2O)]F(000) = 620
Mr = 302.11Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3459 (2) ÅCell parameters from 3112 reflections
b = 7.6409 (2) Åθ = 2.9–27.5°
c = 16.5616 (4) ŵ = 2.31 mm1
β = 103.746 (2)°T = 295 K
V = 1271.73 (5) Å3Needle, light green
Z = 40.37 × 0.13 × 0.07 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2909 independent reflections
Graphite monochromator2414 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.023
CCD scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.680, Tmax = 0.783k = 99
5547 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.7546P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2909 reflectionsΔρmax = 0.45 e Å3
128 parametersΔρmin = 0.39 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.65598 (3)0.18278 (4)0.833461 (18)0.03636 (12)
Cl10.84784 (7)0.04347 (10)0.86492 (5)0.0587 (2)
Cl20.53476 (6)0.01213 (8)0.89585 (4)0.04381 (16)
Cl30.72611 (6)0.45902 (8)0.83182 (4)0.04893 (18)
O10.5028 (2)0.2222 (3)0.73764 (15)0.0735 (7)
H1A0.495 (4)0.298 (4)0.7025 (18)0.079 (9)*
H1B0.451 (3)0.143 (3)0.721 (2)0.079 (9)*
N10.19597 (18)0.1540 (3)0.38669 (13)0.0382 (4)
C110.2018 (3)0.2402 (4)0.46817 (19)0.0574 (7)
H11A0.20970.15260.51060.086*
H11B0.12190.30660.46490.086*
H11C0.27740.31680.48150.086*
C120.1799 (3)0.2947 (4)0.32229 (19)0.0566 (7)
H12A0.25540.37150.33530.085*
H12B0.10040.36010.32150.085*
H12C0.17350.24270.26870.085*
C20.0795 (3)0.0318 (4)0.36321 (19)0.0529 (7)
H2A0.00060.09340.36740.063*
H2B0.06890.00380.30580.063*
C30.0949 (3)0.1283 (4)0.4170 (2)0.0656 (8)
H3A0.01960.20550.39720.079*
H3B0.09550.09440.47360.079*
C40.2229 (4)0.2258 (4)0.4165 (2)0.0696 (9)
H4A0.23350.32350.45500.083*
H4B0.21830.27200.36140.083*
C50.3404 (3)0.1047 (4)0.4413 (2)0.0601 (8)
H5A0.35100.06980.49890.072*
H5B0.42060.16580.43680.072*
C60.3223 (3)0.0556 (4)0.38695 (19)0.0508 (6)
H6A0.32140.02070.33050.061*
H6B0.39760.13310.40610.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03393 (17)0.03631 (18)0.03798 (18)0.00080 (11)0.00683 (11)0.00187 (11)
Cl10.0423 (3)0.0554 (4)0.0789 (5)0.0119 (3)0.0156 (3)0.0091 (4)
Cl20.0457 (3)0.0460 (3)0.0411 (3)0.0057 (3)0.0129 (2)0.0029 (3)
Cl30.0411 (3)0.0381 (3)0.0610 (4)0.0041 (2)0.0009 (3)0.0064 (3)
O10.0631 (13)0.0702 (15)0.0668 (15)0.0333 (12)0.0252 (11)0.0325 (12)
N10.0337 (10)0.0360 (10)0.0437 (11)0.0005 (8)0.0068 (8)0.0006 (8)
C110.073 (2)0.0489 (16)0.0478 (16)0.0022 (15)0.0103 (14)0.0079 (13)
C120.0595 (17)0.0523 (17)0.0572 (18)0.0033 (13)0.0122 (14)0.0134 (13)
C20.0345 (12)0.0552 (16)0.0641 (18)0.0081 (11)0.0021 (12)0.0024 (14)
C30.0657 (19)0.0522 (17)0.079 (2)0.0222 (15)0.0172 (16)0.0047 (16)
C40.101 (3)0.0385 (15)0.068 (2)0.0041 (16)0.0170 (19)0.0019 (14)
C50.0573 (17)0.0551 (17)0.0663 (19)0.0189 (14)0.0115 (14)0.0059 (15)
C60.0381 (13)0.0535 (16)0.0627 (17)0.0053 (12)0.0159 (12)0.0037 (13)
Geometric parameters (Å, º) top
Cu1—Cl12.2030 (7)C12—H12C0.96
Cu1—Cl22.2263 (7)C2—H2A0.97
Cu1—Cl32.2342 (7)C2—H2B0.97
Cu1—O11.981 (2)C2—C31.500 (4)
O1—H1A0.812 (10)C3—H3A0.97
O1—H1B0.814 (10)C3—H3B0.97
N1—C111.490 (3)C3—C41.521 (5)
N1—C121.495 (3)C4—H4A0.97
N1—C21.501 (3)C4—H4B0.97
N1—C61.507 (3)C4—C51.506 (5)
C11—H11A0.96C5—H5A0.97
C11—H11B0.96C5—H5B0.97
C11—H11C0.96C5—C61.505 (4)
C12—H12A0.96C6—H6A0.97
C12—H12B0.96C6—H6B0.97
Cl1—Cu1—Cl2100.52 (3)C3—C2—H2A109
Cl1—Cu1—Cl3100.51 (3)N1—C2—H2B109
Cl2—Cu1—Cl3141.20 (3)C3—C2—H2B109
Cl1—Cu1—O1140.10 (10)H2A—C2—H2B107.8
Cl2—Cu1—O191.68 (7)C2—C3—C4111.5 (3)
Cl3—Cu1—O192.69 (7)C2—C3—H3A109.3
Cu1—O1—H1A127 (3)C4—C3—H3A109.3
Cu1—O1—H1B120 (3)C2—C3—H3B109.3
H1A—O1—H1B111 (4)C4—C3—H3B109.3
C2—N1—C11111.5 (2)H3A—C3—H3B108
C2—N1—C12108.4 (2)C3—C4—C5110.2 (3)
C6—N1—C11111.7 (2)C3—C4—H4A109.6
C6—N1—C12108.1 (2)C5—C4—H4A109.6
C11—N1—C12107.6 (2)C3—C4—H4B109.6
C2—N1—C6109.4 (2)C5—C4—H4B109.6
N1—C11—H11A109.5H4A—C4—H4B108.1
N1—C11—H11B109.5C4—C5—C6111.0 (3)
H11A—C11—H11B109.5C4—C5—H5A109.4
N1—C11—H11C109.5C6—C5—H5A109.4
H11A—C11—H11C109.5C4—C5—H5B109.4
H11B—C11—H11C109.5C6—C5—H5B109.4
N1—C12—H12A109.5H5A—C5—H5B108
N1—C12—H12B109.5C5—C6—N1113.1 (2)
H12A—C12—H12B109.5C5—C6—H6A109
N1—C12—H12C109.5N1—C6—H6A109
H12A—C12—H12C109.5C5—C6—H6B109
H12B—C12—H12C109.5N1—C6—H6B109
N1—C2—C3112.9 (2)H6A—C6—H6B107.8
N1—C2—H2A109
Known geometries and aggregation motifs for [CuCl3(H2O)]- complexes top
Counter-ionCSD refcodeGeometryAggregation motif
SalicylideneguanylhydraziniumaGEMJISmm2 distorted trigonal–bipyramidalMonobridged and hydrogen-bonded chains
1,4-DimethylpiperaziniumbKESYOWPlanar1(1/2,1/2,180°)(-1/2,-1/2,180°) dibridged stacks
2-AminopyrimidiniumbKESYUCPlanar1(1/2,1/2) dibridged stacks
ChloroimidazoliumcKOTDOMPlanar1(1/2,1/2,180°) dibridged stacks
bis{[2-(N,N-Dipicolylamino)acylglycine ethyl ester]chlorocopper(II)}dQOMTUHTetrahedralIsolated
Hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosaneeREGVOPFlattened tetrahedralChains of hydrogen-bonded dimers monobridged to CuCl42-
Dibenzyl-4,4'-bipyridiniumfVITSASFlattened tetrahedralRibbons from monobridging to CuCl42- and CuCl2-
4,5-Diazoniafluoren-9-onegWETFACmm2 distorted trigonal–bipyramidalHerringbone ribbons from hydrogen and coordinate bonds to lattice Cl
1,3-XylylenediammoniumhXISPAQPlanar1(1/2,1/2,180°)(-1/,-1/2,180°) dibridged stacks
2-Chlorido- or 2-bromido-2-imidazoliniumiHEPQUA, HEPQUA01 for 2-bromidoPlanar1(1/2,1/2,180°) stacks
1,2,3-Trimethyl-, 2,3- or 3,4-dimethylpyridiniumjmm2 distorted trigonal–bipyramidalHydrogen-bonded network of dibridged dimers
N,N-dimethylpiperidiniumjFlattened tetrahedralHydrogen-bonded chains
References: (a) Chumakov et al. (2006); (b) Manfredini et al. (1990); (c) Valle & Ettorre (1992); (d) Niklas et al. (2001); (e) Chekhlov (2005); (f) Scott & Willett (1991); (g) Menon et al. (1994); (h) Haddad et al. (2001); (i) Diaz et al. (1998); (j) this work.
Hydrogen-bond geometry (Å, °) for (I)–(IV) at 100 and 295 K top
CompoundTemperature (K)D—H···AD—HH···AD···AD—H···A
(I)100O1—H1···Cl2v0.82 (2)2.45 (3)3.242 (2)164 (2)
(I)295O1—H1···Cl2v0.82 (4)2.48 (5)3.252 (3)158 (3)
(II)100O1—H1W···Cl2v0.74 (2)2.45 (2)3.153 (1)160 (2)
(II)100N1—H1···Cl1vi0.862.448 (1)3.274 (4)161.1 (3)
(II)295O1—H1W···Cl2v0.820 (9)2.393 (15)3.171 (2)158.6 (5)
(II)295N1—H1···Cl1vii0.862.448 (1)3.274 (4)161.1 (3)
(III)100O1—H1WA···Cl3viii0.82 (6)2.38 (7)3.154 (3)159 (6)
(III)100O1—H1WB···Cl2ix0.82 (2)2.34 (4)3.129 (3)161 (2)
(III)100N1A—H11···Cl1x0.862.358 (1)3.209 (4)170.2 (2)
(III)295O1—H1WA···Cl3viii0.82 (8)2.43 (9)3.166 (4)150 (6)
(III)295O1—H1WB···Cl2ix0.82 (2)2.36 (5)3.142 (3)160 (2)
(III)295N1—H1···Cl1x0.862.367 (1)3.219 (4)171.1 (3)
(IV)100O1—H1A···Cl2x0.75 (4)2.32 (4)3.065 (3)173 (4)
(IV)100O1—H1B···Cl3xi0.78 (4)2.33 (3)3.100 (2)171 (3)
(IV)295O1—H1A···Cl2x0.82 (3)2.27 (3)3.088 (2)178 (3)
(IV)295O1—H1B···Cl3xi0.82 (3)2.31 (3)3.112 (2)169 (3)
Symmetry codes: (v) -x + 3/2, -y + 1/2, -z; (vi) x + 1/2, y - 1/2, z; (vii) x + 1/2, y + 1/2, z; (viii) -x + 1, -y + 1, -z; (ix) -x, -y + 2, -z; (x) x - 1, y, z; (xi) -x + 1, -y - 1, -z + 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds