Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The unusual methyl­ene aziridine 6-tert-butyl-3-oxa-2-thia-1-aza­bicyclo­[5.1.0]oct-6-ene 2,2-dioxide, C9H15NO3S, was found to crystallize with two mol­ecules in the asymmetric unit. The structure was solved in both the approximately orthogonal and the oblique settings of space group No. 14, viz. P21/n and P21/c, respectively. A comparison of these results clearly displayed an increase in the correlation between coordinates in the ac plane for the oblique cell. The increase in the corresponding covariances makes a significant contribution to the standard uncertainties of derived parameters, e.g. bond lengths. Since there is yet no CIF definition for the full variance-covariance matrix, there are clear advantages to reporting the structure in the nonstandard space-group setting.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109046952/bm3085sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109046952/bm3085Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109046952/bm3085IIsup3.hkl
Contains datablock II

CCDC references: 757480; 763606

Comment top

The title compound, 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, and related methylene aziridines (Feast et al. 2009) were prepared during our ongoing study of nitrogen-containing 1,3-dipoles (Robertson et al., 2005; White, 2007) in order to probe their potential as 2-aminoallyl cation precursors (Prié et al., 2004).

The structure of the methylene aziridine was initially determined in the monoclinic space group P21/n, (I), with a cell of a = 13.8593 (3) Å, b = 10.5242 (2) Å, c = 14.8044 (4) Å and β = 92.0014 (7)° and two molecules in the asymmetric unit (Fig. 1).

The unusual bond angles at C7/C107 suggested it would be advisable to carry out a comparison with the structures in the Cambridge Structural Database (CSD; Version ?; Allen, 2002) using Mogul (Bruno et al., 2004). For comparison, Mogul uses a figure of merit Z (defined as the difference between observed value and the median divided by the standard deviation of the Mogul distribution). Typically, Z values greater than about 2–3 indicate that a bond length or angle are sufficiently unusual to warrant further investigation. Although (I) gave a Z value greater than 100 for the top eight queries, each of these had only one match in the CSD and the obvious C6—C7—C9/C106—C107—C109 angle had no hits at all. Indeed, more than one-third of the queries generated by CRYSTALS (Betteridge et al., 2003) had fewer than six hits in the CSD, suggesting the structure has little precedence in the literature. Examination of the molecular structure showed why this is the case, with the particularly unusual seven-membered ring (comprising three hetero-atoms and a double bond), fused with a three-membered ring, leading to an extremely strained geometry at atoms S1, C7 and N8 (and the analogous atoms S101,C107 and N108).

The two equivalent molecules have very similar conformations when overlayed (positional, bond and torsion r.m.s. deviations of 0.166, 0.007 Å and 3.542°). Both symmetry equivalents (referred to by the first atom in the residue, S1 and S101) form dimers around an inversion centre. These are held together by C—H···O interactions between chemically equivalent atoms (C9/C109 and O2/O102; Table 1). The dimers form layers parallel to the [101] plane containing exclusively either S1 or S101; in turn, these layers are connected together by further C—H···O interactions (Fig. 2).

Prior to publication, the CIF was verified with the online checking facility checkCIF, which gave the following alert:

PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c···. P21/n

`The reported monoclinic space-group is in a non-standard setting. Transformation to the conventional setting is indicated unless there is a good (scientific) reason not to do so.'

The cell obtained from the initial indexing was then transformed using the matrix A (Eqn. 1) and reprocessed (including integration, scaling and cell final refinement) to give the data in the space group P21/c, with a cell of a = 13.8594 (2) Å, b = 10.5243 (2) Å, c = 19.9230 (3) Å and β = 132.0439 (7)°, (II). The atomic coordinates from the original structure were transformed using (AT)-1 given in equation (2) and the structure re-refined:

A= (1 0 0, 0 1 0, 1 0 1), (1)

(A-1)T= (1 0 1, 0 1 0, 0 0 1). (2)

Comparison of (I) and (II) demonstrated that the bond lengths (and angles) were the same allowing for rounding error. This is as expected, since the structures are the same, merely in a different cell setting. However, it has long been known that refinements in oblique cells have increased correlation between selected parameters, potentially making refinements less stable (Dunitz, 1979). Thus, a large β value, would be expected to give increased correlation between parameters with respect to the a and c axes. In (I), the largest correlations are between the sulfur anisotropic displacement parameters (ADPs) and the scale factor (Table 2). However, although the correlations between the sulfur ADPs and the scale factor in (II) are a similar size, correlations between individual components of the ADPs are increased, for example, the largest correlation is 0.809 between U33(O14) and U13(O14), increased from -0.080. Correlations between the positional parameters are also affected; though the changes are smaller, the effects are visible by comparing the s.u. values calculated with and without covariances. Since only the variances are included in the CIF, this was easily achieved using PLATON (Spek, 2009). Table 3 shows the bond lengths with s.u. values for (I) and (II), and it is clear that the bond lengths are very similar in both cell settings whether determined by PLATON or CRYSTALS. [Unit cell and atomic parameters are held to full machine precision by the refinement software (CRYSTALS). Some of this precision is inevitably lost when these numbers are rounded by the `rule of 19' during the generation of the CIF.] The s.u. values for all the C—C and C—O bonds are also consistent for (I) and (II) calculated from the full variance–covariance matrix, and calculations using only the variances give a good estimate of the s.u. values for (I). However, the corresponding s.u. calculations for (II) are less reliable when the covariances are excluded. This effect is most apparent where the bond is predominantly parallel to the a axis (e.g. S101—N108, C104—C105 and C10—C13) and the s.u. values are nearly doubled.

In conclusion, analysis of this unusual methylene aziridine has demonstrated the effect of excluding the covariances from calculations of the s.u. values and shown how this effect is enhanced for monoclinic structures in a cell setting where β deviates significantly from 90°. Additionally, the increase in the correlation due to the oblique cell setting is apparent, and although there are no obvious consequences in this case, this could give rise to refinement difficulties for more complex structures.

Related literature top

For related literature, see: Allen (2002); Betteridge et al. (2003); Bruno et al. (2004); Dunitz (1979); Feast et al. (2009); Prié et al. (2004); Robertson et al. (2005); Spek (2003, 2009); Watkin (1994); White (2007).

Experimental top

The title compound was crystallized by evaporation from a saturated solution in diethyl ether. NMR (100 MHz, CDCl3): δC 27.9 [C(CH3)3], 28.0 ( CCH2), 35.3 (C(CH3)3), 40.2 (NCH2), 75.3 (OCH2), 114.9 (NCC), 126.4 (NCC). In the 1H NMR at room temperature, very broad peaks are found for the C5 methylene H atoms and a broad peak contains the signals for both the C9 methylene H atoms [δH (400 MHz, CDCl3, 298 K) 2.45 and 2.88 (2 × 1H, 2 × br s, OCH2CH2), 3.44 (2H, br s, NCH2)]. Once the temperature was reduced to 228 K four distinct signals resolved, indicating that conformational change at room temperature is slow on an NMR timescale. Complete data at 228 K: δH (500 MHz, CD2Cl2) 1.11 [9H, s, (CH3)3], 2.39 and 2.90 (1H, d, J = 14.3 Hz and 1H, app. t. J = 14.3 Hz, OCH2CH2), 3.45 and 3.53 (2 × 1H, 2 × br s, NCH2), 4.48–4.57 (2H, m, OCH2). IR (thin film): νmax 3075 (m), 2968 (s), 1468 (m), 1359 (s), 1296 (w), 1261 (w), 1183 (s) cm-1. High resolution mass spectrometry (ESI+): found 240.0670; C9H15NNaO3S (MNa+) requires 240.0665.

Refinement top

The H atoms were all located in a difference map, but were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. For both (I) and (II), a Chebychev polynomial weighting scheme was applied (Watkin, 1994; Prince, 1982).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I); Structure transformed from solution to I for (II). For both compounds, program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound, (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing, viewed down the b axis, showing the layers. (The residues containing atoms S1 and S101 are shown in green and blue, respectively, in the electronic version of the journal.) C—H···O interactions are shown as dotted lines.
(I) 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide top
Crystal data top
C9H15NO3SF(000) = 928
Mr = 217.29Dx = 1.338 Mg m3
Monoclinic, P21/nMelting point: 331 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.8593 (3) ÅCell parameters from 4693 reflections
b = 10.5242 (2) Åθ = 5–27°
c = 14.8044 (4) ŵ = 0.28 mm1
β = 92.0014 (7)°T = 150 K
V = 2158.02 (9) Å3Block, colourless
Z = 80.32 × 0.26 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
3768 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 5.4°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1717
Tmin = 0.81, Tmax = 0.96k = 1313
19529 measured reflectionsl = 1919
4913 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 27.2 43.7 25.5 10.4 2.31
S = 0.94(Δ/σ)max = 0.000257
4913 reflectionsΔρmax = 0.43 e Å3
253 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
C9H15NO3SV = 2158.02 (9) Å3
Mr = 217.29Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.8593 (3) ŵ = 0.28 mm1
b = 10.5242 (2) ÅT = 150 K
c = 14.8044 (4) Å0.32 × 0.26 × 0.16 mm
β = 92.0014 (7)°
Data collection top
Nonius KappaCCD
diffractometer
4913 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3768 reflections with I > 2.0σ(I)
Tmin = 0.81, Tmax = 0.96Rint = 0.041
19529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.94Δρmax = 0.43 e Å3
4913 reflectionsΔρmin = 0.44 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39121 (4)0.61526 (5)0.63002 (4)0.0303
O20.47797 (11)0.58690 (16)0.58492 (11)0.0367
O30.40023 (11)0.57263 (15)0.73067 (10)0.0325
C40.44292 (18)0.4484 (2)0.75537 (15)0.0371
C50.37343 (17)0.3388 (2)0.73970 (14)0.0342
C60.35709 (14)0.3028 (2)0.64083 (14)0.0267
C70.32528 (14)0.3925 (2)0.58528 (13)0.0265
N80.30018 (12)0.52508 (17)0.59397 (12)0.0292
C90.30911 (15)0.4599 (2)0.50154 (14)0.0308
C100.37851 (15)0.1678 (2)0.60990 (14)0.0290
C110.35496 (18)0.1517 (2)0.50870 (15)0.0377
C120.31541 (19)0.0755 (2)0.66261 (19)0.0428
C130.48513 (17)0.1370 (3)0.62839 (19)0.0441
O140.35905 (13)0.74312 (15)0.63205 (13)0.0436
S1010.05457 (4)0.23211 (5)0.47800 (4)0.0319
O1020.05996 (12)0.11981 (16)0.53174 (12)0.0408
O1030.09829 (11)0.34692 (15)0.53243 (10)0.0339
C1040.08001 (15)0.3584 (2)0.62967 (15)0.0339
C1050.01681 (16)0.4187 (2)0.64730 (15)0.0319
C1060.10419 (14)0.33485 (18)0.62502 (13)0.0245
C1070.11226 (14)0.2848 (2)0.54353 (14)0.0267
N1080.05752 (13)0.28465 (18)0.46234 (12)0.0309
C1090.14131 (15)0.1921 (2)0.47596 (15)0.0335
C1100.17700 (14)0.3077 (2)0.69683 (14)0.0274
C1130.12924 (17)0.2231 (2)0.76997 (15)0.0357
C1110.26600 (15)0.2393 (2)0.65641 (16)0.0367
C1120.20972 (18)0.4317 (2)0.74049 (17)0.0394
O1140.09861 (13)0.2345 (2)0.39283 (12)0.0495
H410.46050.45380.81970.0451*
H420.50070.43510.71870.0452*
H520.40320.26520.77130.0405*
H510.31020.36180.76630.0406*
H920.36510.48030.46530.0363*
H910.24830.45090.46630.0376*
H1110.36630.06290.49320.0578*
H1120.39570.20860.47430.0581*
H1130.28690.17240.49720.0580*
H1220.33270.00910.64420.0638*
H1210.32910.08590.72820.0643*
H1230.24750.09020.64650.0645*
H1320.49520.04910.61230.0671*
H1310.50160.15050.69320.0669*
H1330.52340.19100.59110.0673*
H10410.13150.41280.65370.0414*
H10420.08370.27260.65660.0409*
H10520.01750.43790.71330.0398*
H10510.02160.49800.61110.0398*
H10920.12730.10270.48610.0425*
H10910.19710.20470.43530.0421*
H11310.17350.20760.81850.0526*
H11320.07200.26470.79610.0533*
H11330.11020.14110.74490.0526*
H11120.31190.22430.70410.0555*
H11110.29690.29110.60780.0562*
H11130.24810.15600.63150.0557*
H11220.25790.41180.78530.0602*
H11210.15440.47660.77030.0604*
H11230.23970.48650.69460.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0305 (3)0.0260 (3)0.0341 (3)0.0011 (2)0.0012 (2)0.0003 (2)
O20.0288 (7)0.0444 (9)0.0370 (8)0.0075 (7)0.0039 (6)0.0043 (7)
O30.0367 (8)0.0315 (8)0.0294 (7)0.0022 (6)0.0006 (6)0.0052 (6)
C40.0453 (13)0.0374 (12)0.0278 (10)0.0030 (10)0.0094 (9)0.0001 (9)
C50.0425 (12)0.0343 (11)0.0258 (10)0.0025 (9)0.0008 (9)0.0036 (8)
C60.0241 (9)0.0284 (10)0.0278 (9)0.0015 (7)0.0007 (7)0.0022 (8)
C70.0225 (9)0.0285 (10)0.0284 (10)0.0018 (7)0.0010 (7)0.0001 (8)
N80.0266 (8)0.0287 (9)0.0320 (9)0.0002 (7)0.0015 (7)0.0018 (7)
C90.0308 (10)0.0301 (10)0.0310 (10)0.0025 (8)0.0045 (8)0.0036 (8)
C100.0262 (9)0.0264 (10)0.0344 (11)0.0012 (8)0.0013 (8)0.0028 (8)
C110.0420 (12)0.0351 (12)0.0360 (12)0.0011 (10)0.0002 (9)0.0069 (9)
C120.0451 (13)0.0302 (11)0.0537 (15)0.0003 (10)0.0086 (11)0.0065 (10)
C130.0307 (11)0.0468 (14)0.0545 (15)0.0074 (10)0.0008 (10)0.0029 (12)
O140.0467 (10)0.0231 (8)0.0602 (11)0.0025 (7)0.0077 (8)0.0017 (7)
S1010.0276 (2)0.0362 (3)0.0321 (3)0.0008 (2)0.00173 (19)0.0057 (2)
O1020.0390 (9)0.0307 (8)0.0523 (10)0.0043 (7)0.0044 (7)0.0036 (7)
O1030.0308 (8)0.0368 (8)0.0343 (8)0.0081 (6)0.0046 (6)0.0033 (7)
C1040.0300 (10)0.0401 (12)0.0316 (11)0.0086 (9)0.0006 (8)0.0069 (9)
C1050.0345 (11)0.0289 (10)0.0324 (10)0.0073 (9)0.0031 (8)0.0044 (8)
C1060.0256 (9)0.0221 (9)0.0257 (9)0.0021 (7)0.0012 (7)0.0012 (7)
C1070.0244 (9)0.0275 (10)0.0282 (9)0.0003 (8)0.0001 (7)0.0014 (8)
N1080.0290 (9)0.0380 (10)0.0255 (8)0.0012 (7)0.0002 (7)0.0005 (7)
C1090.0286 (10)0.0412 (12)0.0305 (10)0.0037 (9)0.0020 (8)0.0089 (9)
C1100.0255 (9)0.0290 (10)0.0277 (9)0.0032 (8)0.0005 (7)0.0038 (8)
C1130.0354 (11)0.0377 (12)0.0338 (11)0.0018 (9)0.0013 (9)0.0085 (9)
C1110.0274 (10)0.0457 (13)0.0368 (11)0.0068 (9)0.0010 (8)0.0060 (10)
C1120.0415 (12)0.0369 (12)0.0403 (12)0.0082 (10)0.0082 (10)0.0013 (10)
O1140.0394 (9)0.0711 (13)0.0386 (9)0.0018 (9)0.0110 (7)0.0121 (9)
Geometric parameters (Å, º) top
S1—O21.4271 (16)S101—O1031.5628 (16)
S1—O31.5569 (16)S101—N1081.6577 (18)
S1—N81.6524 (18)S101—O1141.4200 (18)
S1—O141.4182 (16)S101—O1021.4252 (18)
O3—C41.476 (3)O103—C1041.475 (3)
C4—C51.515 (3)C104—C1051.515 (3)
C4—H410.976C104—H10410.972
C4—H420.993C104—H10420.988
C5—C61.521 (3)C105—C1061.525 (3)
C5—H520.988C105—H10520.997
C5—H511.003C105—H10510.994
C6—C71.317 (3)C106—C1071.317 (3)
C6—C101.525 (3)C106—C1101.518 (3)
C7—N81.445 (3)C107—N1081.444 (3)
C7—C91.439 (3)C107—C1091.445 (3)
N8—C91.540 (3)N108—C1091.535 (3)
C9—H920.982C109—H10920.972
C9—H910.981C109—H10910.972
C10—C111.532 (3)C110—C1131.534 (3)
C10—C121.538 (3)C110—C1111.532 (3)
C10—C131.528 (3)C110—C1121.533 (3)
C11—H1110.977C113—H11310.975
C11—H1120.978C113—H11320.975
C11—H1130.977C113—H11330.979
C12—H1220.964C111—H11120.979
C12—H1210.989C111—H11110.989
C12—H1230.976C111—H11130.986
C13—H1320.967C112—H11220.980
C13—H1310.989C112—H11210.992
C13—H1330.964C112—H11230.973
O2—S1—O3110.29 (9)O103—S101—N10899.14 (9)
O2—S1—N8112.02 (9)O103—S101—O114105.86 (10)
O3—S1—N8100.28 (9)N108—S101—O114107.45 (10)
O2—S1—O14118.62 (11)O103—S101—O102109.97 (10)
O3—S1—O14105.55 (10)N108—S101—O102112.65 (10)
N8—S1—O14108.34 (10)O114—S101—O102119.63 (12)
S1—O3—C4120.70 (13)S101—O103—C104119.32 (13)
O3—C4—C5112.90 (18)O103—C104—C105112.69 (18)
O3—C4—H41105.9O103—C104—H1041104.8
C5—C4—H41109.2C105—C104—H1041109.5
O3—C4—H42108.3O103—C104—H1042108.1
C5—C4—H42109.3C105—C104—H1042110.3
H41—C4—H42111.3H1041—C104—H1042111.3
C4—C5—C6114.16 (18)C104—C105—C106114.97 (17)
C4—C5—H52105.8C104—C105—H1052107.0
C6—C5—H52107.8C106—C105—H1052107.1
C4—C5—H51108.4C104—C105—H1051107.5
C6—C5—H51109.5C106—C105—H1051109.4
H52—C5—H51111.1H1052—C105—H1051110.8
C5—C6—C7117.23 (19)C105—C106—C107118.07 (18)
C5—C6—C10119.80 (18)C105—C106—C110119.98 (17)
C7—C6—C10122.97 (19)C107—C106—C110121.91 (18)
C6—C7—N8135.43 (19)C106—C107—N108137.12 (19)
C6—C7—C9158.3 (2)C106—C107—C109156.4 (2)
N8—C7—C964.54 (14)N108—C107—C10964.18 (14)
C7—N8—S1113.58 (13)C107—N108—S101113.66 (13)
C7—N8—C957.54 (13)C107—N108—C10957.95 (13)
S1—N8—C9117.31 (13)S101—N108—C109118.67 (15)
N8—C9—C757.92 (13)N108—C109—C10757.86 (13)
N8—C9—H92118.5N108—C109—H1092119.1
C7—C9—H92118.5C107—C109—H1092119.9
N8—C9—H91114.9N108—C109—H1091114.9
C7—C9—H91121.1C107—C109—H1091122.2
H92—C9—H91114.3H1092—C109—H1091112.3
C6—C10—C11111.09 (17)C106—C110—C113108.82 (17)
C6—C10—C12108.42 (18)C106—C110—C111111.15 (17)
C11—C10—C12108.72 (19)C113—C110—C111108.95 (18)
C6—C10—C13109.94 (18)C106—C110—C112110.38 (17)
C11—C10—C13108.87 (19)C113—C110—C112108.88 (18)
C12—C10—C13109.79 (19)C111—C110—C112108.61 (18)
C10—C11—H111107.8C110—C113—H1131110.5
C10—C11—H112109.5C110—C113—H1132110.2
H111—C11—H112111.3H1131—C113—H1132107.9
C10—C11—H113108.5C110—C113—H1133111.0
H111—C11—H113109.5H1131—C113—H1133108.5
H112—C11—H113110.2H1132—C113—H1133108.7
C10—C12—H122106.8C110—C111—H1112109.2
C10—C12—H121109.6C110—C111—H1111110.3
H122—C12—H121109.8H1112—C111—H1111109.7
C10—C12—H123109.7C110—C111—H1113110.7
H122—C12—H123108.9H1112—C111—H1113107.7
H121—C12—H123111.9H1111—C111—H1113109.1
C10—C13—H132107.8C110—C112—H1122108.7
C10—C13—H131109.4C110—C112—H1121111.0
H132—C13—H131110.2H1122—C112—H1121109.6
C10—C13—H133108.7C110—C112—H1123109.6
H132—C13—H133109.7H1122—C112—H1123108.4
H131—C13—H133111.0H1121—C112—H1123109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H92···O2i0.982.433.294 (3)147
C9—H91···O1030.982.573.202 (3)122
C109—H1092···O102ii0.972.543.474 (3)162
C109—H1091···O14iii0.972.493.434 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.
(II) top
Crystal data top
C9H15NO3SF(000) = 928
Mr = 217.29Dx = 1.337 Mg m3
Monoclinic, P21/cMelting point: 331 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.8594 (2) ÅCell parameters from 4694 reflections
b = 10.5243 (2) Åθ = 5–27°
c = 19.9230 (3) ŵ = 0.28 mm1
β = 132.0439 (7)°T = 150 K
V = 2158.07 (7) Å3Block, colourless
Z = 80.32 × 0.26 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
3769 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 5.4°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1717
Tmin = 0.81, Tmax = 0.96k = 1313
9037 measured reflectionsl = 2525
4913 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 18.1 26.7 12.7 3.26
S = 0.94(Δ/σ)max = 0.001
4913 reflectionsΔρmax = 0.44 e Å3
253 parametersΔρmin = 0.45 e Å3
0 restraints
Crystal data top
C9H15NO3SV = 2158.07 (7) Å3
Mr = 217.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.8594 (2) ŵ = 0.28 mm1
b = 10.5243 (2) ÅT = 150 K
c = 19.9230 (3) Å0.32 × 0.26 × 0.16 mm
β = 132.0439 (7)°
Data collection top
Nonius KappaCCD
diffractometer
4913 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3769 reflections with I > 2.0σ(I)
Tmin = 0.81, Tmax = 0.96Rint = 0.026
9037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.94Δρmax = 0.44 e Å3
4913 reflectionsΔρmin = 0.45 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76119 (5)0.38474 (5)0.36998 (4)0.0300
O20.89308 (15)0.41318 (17)0.41507 (11)0.0364
O30.66953 (15)0.42735 (15)0.26930 (10)0.0323
C40.6878 (3)0.5516 (2)0.24470 (16)0.0367
C50.6338 (2)0.6612 (2)0.26038 (15)0.0339
C60.7163 (2)0.6973 (2)0.35921 (14)0.0264
C70.7400 (2)0.6076 (2)0.41473 (14)0.0263
N80.70607 (18)0.47484 (18)0.40600 (12)0.0290
C90.8076 (2)0.5400 (2)0.49846 (15)0.0304
C100.7686 (2)0.8320 (2)0.39004 (15)0.0287
C110.8463 (2)0.8483 (2)0.49132 (16)0.0375
C120.6527 (3)0.9245 (2)0.33738 (19)0.0422
C130.8567 (3)0.8629 (3)0.37153 (19)0.0437
O140.7270 (2)0.25681 (15)0.36795 (13)0.0432
S1010.57657 (5)0.76790 (6)0.52200 (4)0.0317
O1020.52818 (18)0.88029 (16)0.46823 (13)0.0406
O1030.56585 (15)0.65307 (16)0.46757 (11)0.0336
C1040.4504 (2)0.6417 (2)0.37043 (15)0.0337
C1050.3360 (2)0.5815 (2)0.35276 (15)0.0315
C1060.2709 (2)0.66518 (19)0.37506 (13)0.0242
C1070.3442 (2)0.7152 (2)0.45643 (14)0.0267
N1080.48021 (18)0.71538 (19)0.53769 (12)0.0306
C1090.3827 (2)0.8079 (2)0.52405 (15)0.0333
C1100.1261 (2)0.6922 (2)0.30314 (14)0.0272
C1130.1009 (2)0.7770 (2)0.23011 (16)0.0355
C1110.0776 (2)0.7607 (2)0.34358 (16)0.0366
C1120.0498 (2)0.5682 (2)0.25950 (17)0.0392
O1140.70583 (17)0.7655 (2)0.60715 (12)0.0490
H410.64100.54620.18040.0451*
H420.78220.56490.28140.0452*
H520.63190.73480.22880.0405*
H510.54390.63820.23380.0406*
H920.89980.51960.53470.0363*
H910.78200.54900.53370.0376*
H1110.87310.93710.50690.0578*
H1120.92140.79140.52570.0581*
H1130.78970.82760.50280.0580*
H1220.68841.00920.35580.0638*
H1210.60070.91420.27170.0643*
H1230.60090.90990.35350.0645*
H1320.88280.95090.38760.0671*
H1310.80830.84940.30670.0669*
H1330.93230.80900.40880.0673*
H10410.47790.58730.34640.0414*
H10420.42720.72750.34350.0409*
H10520.26940.56220.28680.0398*
H10510.36750.50210.38900.0398*
H10920.38660.89730.51390.0425*
H10910.36770.79530.56470.0421*
H11310.00800.79240.18160.0526*
H11320.13200.73540.20390.0533*
H11330.14500.85900.25520.0526*
H11120.01600.77570.29590.0555*
H11110.09530.70890.39220.0562*
H11130.12040.84400.36850.0557*
H11220.04320.58820.21470.0602*
H11210.07530.52330.22970.0604*
H11230.06570.51340.30540.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0344 (3)0.0258 (3)0.0339 (3)0.0005 (2)0.0245 (2)0.0004 (2)
O20.0295 (8)0.0442 (10)0.0366 (8)0.0026 (7)0.0226 (7)0.0043 (7)
O30.0338 (8)0.0312 (8)0.0287 (8)0.0050 (6)0.0196 (7)0.0047 (6)
C40.0477 (13)0.0368 (12)0.0275 (11)0.0023 (10)0.0259 (11)0.0002 (9)
C50.0352 (11)0.0339 (12)0.0255 (10)0.0003 (9)0.0174 (9)0.0031 (9)
C60.0259 (10)0.0280 (10)0.0271 (10)0.0025 (8)0.0185 (9)0.0022 (8)
C70.0255 (9)0.0282 (10)0.0282 (10)0.0013 (8)0.0191 (9)0.0001 (8)
N80.0317 (9)0.0281 (9)0.0323 (9)0.0014 (7)0.0235 (8)0.0015 (7)
C90.0365 (11)0.0299 (11)0.0301 (10)0.0051 (9)0.0244 (10)0.0043 (9)
C100.0294 (10)0.0260 (10)0.0345 (11)0.0013 (8)0.0229 (9)0.0029 (8)
C110.0402 (12)0.0351 (12)0.0351 (12)0.0055 (10)0.0243 (11)0.0069 (10)
C120.0413 (13)0.0300 (12)0.0523 (15)0.0042 (10)0.0301 (12)0.0063 (11)
C130.0421 (14)0.0467 (15)0.0539 (15)0.0037 (11)0.0369 (13)0.0027 (12)
O140.0624 (12)0.0229 (8)0.0595 (12)0.0032 (8)0.0470 (11)0.0015 (7)
S1010.0287 (3)0.0360 (3)0.0318 (3)0.0046 (2)0.0209 (2)0.0057 (2)
O1020.0512 (10)0.0306 (9)0.0519 (10)0.0060 (7)0.0395 (9)0.0037 (8)
O1030.0288 (8)0.0365 (9)0.0336 (8)0.0039 (7)0.0201 (7)0.0035 (7)
C1040.0307 (11)0.0400 (12)0.0316 (11)0.0011 (9)0.0214 (10)0.0073 (9)
C1050.0312 (11)0.0285 (11)0.0322 (11)0.0022 (9)0.020 (1)0.0043 (9)
C1060.0280 (10)0.0218 (9)0.0255 (9)0.0009 (8)0.0190 (8)0.0008 (7)
C1070.0270 (10)0.0277 (10)0.0279 (10)0.0007 (8)0.0194 (9)0.0014 (8)
N1080.0279 (9)0.0381 (10)0.0254 (8)0.0011 (8)0.0177 (8)0.0005 (8)
C1090.0326 (11)0.0410 (13)0.0298 (11)0.0034 (9)0.0224 (10)0.0089 (9)
C1100.0267 (10)0.0287 (10)0.0275 (10)0.0006 (8)0.0187 (9)0.0042 (8)
C1130.0371 (12)0.0375 (12)0.0331 (11)0.0044 (10)0.0240 (10)0.0084 (10)
C1110.0341 (12)0.0457 (14)0.0366 (12)0.0093 (10)0.0264 (11)0.0061 (10)
C1120.0340 (12)0.0365 (13)0.0407 (13)0.0070 (10)0.0223 (11)0.0011 (10)
O1140.0285 (9)0.0710 (14)0.0377 (9)0.0099 (8)0.0181 (8)0.0121 (9)
Geometric parameters (Å, º) top
S1—O21.4278 (17)S101—O1031.5628 (16)
S1—O31.5573 (16)S101—N1081.6571 (19)
S1—N81.6527 (18)S101—O1141.4204 (18)
S1—O141.4189 (17)S101—O1021.4262 (19)
O3—C41.476 (3)O103—C1041.474 (3)
C4—C51.517 (3)C104—C1051.514 (3)
C4—H410.976C104—H10410.972
C4—H420.993C104—H10420.988
C5—C61.521 (3)C105—C1061.525 (3)
C5—H520.988C105—H10520.998
C5—H511.003C105—H10510.994
C6—C71.318 (3)C106—C1071.316 (3)
C6—C101.522 (3)C106—C1101.519 (3)
C7—N81.447 (3)C107—N1081.445 (3)
C7—C91.440 (3)C107—C1091.445 (3)
N8—C91.540 (3)N108—C1091.535 (3)
C9—H920.982C109—H10920.972
C9—H910.981C109—H10910.972
C10—C111.533 (3)C110—C1131.535 (3)
C10—C121.540 (3)C110—C1111.532 (3)
C10—C131.529 (3)C110—C1121.532 (3)
C11—H1110.977C113—H11310.975
C11—H1120.978C113—H11320.975
C11—H1130.977C113—H11330.979
C12—H1220.964C111—H11120.979
C12—H1210.989C111—H11110.989
C12—H1230.976C111—H11130.986
C13—H1320.967C112—H11220.980
C13—H1310.989C112—H11210.992
C13—H1330.964C112—H11230.973
O2—S1—O3110.26 (10)O103—S101—N10899.14 (10)
O2—S1—N8112.07 (10)O103—S101—O114105.83 (11)
O3—S1—N8100.28 (9)N108—S101—O114107.45 (11)
O2—S1—O14118.64 (11)O103—S101—O102109.99 (10)
O3—S1—O14105.53 (11)N108—S101—O102112.66 (10)
N8—S1—O14108.31 (10)O114—S101—O102119.62 (12)
S1—O3—C4120.62 (14)S101—O103—C104119.29 (14)
O3—C4—C5112.78 (19)O103—C104—C105112.71 (18)
O3—C4—H41105.9O103—C104—H1041104.8
C5—C4—H41109.3C105—C104—H1041109.5
O3—C4—H42108.3O103—C104—H1042108.2
C5—C4—H42109.3C105—C104—H1042110.3
H41—C4—H42111.3H1041—C104—H1042111.3
C4—C5—C6114.16 (19)C104—C105—C106115.00 (18)
C4—C5—H52105.7C104—C105—H1052107.0
C6—C5—H52107.8C106—C105—H1052107.1
C4—C5—H51108.5C104—C105—H1051107.5
C6—C5—H51109.6C106—C105—H1051109.4
H52—C5—H51111.1H1052—C105—H1051110.8
C5—C6—C7117.2 (2)C105—C106—C107118.06 (19)
C5—C6—C10119.81 (18)C105—C106—C110119.92 (18)
C7—C6—C10123.01 (19)C107—C106—C110121.99 (19)
C6—C7—N8135.4 (2)C106—C107—N108137.1 (2)
C6—C7—C9158.4 (2)C106—C107—C109156.5 (2)
N8—C7—C964.49 (15)N108—C107—C10964.17 (15)
C7—N8—S1113.52 (14)C107—N108—S101113.62 (14)
C7—N8—C957.53 (13)C107—N108—C10957.94 (13)
S1—N8—C9117.21 (14)S101—N108—C109118.68 (15)
N8—C9—C757.98 (13)N108—C109—C10757.89 (13)
N8—C9—H92118.6N108—C109—H1092119.1
C7—C9—H92118.5C107—C109—H1092119.8
N8—C9—H91114.9N108—C109—H1091114.9
C7—C9—H91121.0C107—C109—H1091122.2
H92—C9—H91114.3H1092—C109—H1091112.3
C6—C10—C11111.09 (18)C106—C110—C113108.76 (17)
C6—C10—C12108.48 (18)C106—C110—C111111.08 (18)
C11—C10—C12108.6 (2)C113—C110—C111108.86 (18)
C6—C10—C13110.01 (19)C106—C110—C112110.47 (18)
C11—C10—C13108.9 (2)C113—C110—C112108.97 (19)
C12—C10—C13109.8 (2)C111—C110—C112108.66 (19)
C10—C11—H111107.8C110—C113—H1131110.4
C10—C11—H112109.5C110—C113—H1132110.1
H111—C11—H112111.3H1131—C113—H1132107.9
C10—C11—H113108.5C110—C113—H1133111.2
H111—C11—H113109.5H1131—C113—H1133108.5
H112—C11—H113110.2H1132—C113—H1133108.7
C10—C12—H122106.9C110—C111—H1112109.2
C10—C12—H121109.6C110—C111—H1111110.3
H122—C12—H121109.8H1112—C111—H1111109.7
C10—C12—H123109.7C110—C111—H1113110.8
H122—C12—H123108.9H1112—C111—H1113107.7
H121—C12—H123111.9H1111—C111—H1113109.1
C10—C13—H132107.8C110—C112—H1122108.8
C10—C13—H131109.4C110—C112—H1121111.0
H132—C13—H131110.2H1122—C112—H1121109.6
C10—C13—H133108.7C110—C112—H1123109.6
H132—C13—H133109.7H1122—C112—H1123108.4
H131—C13—H133111.0H1121—C112—H1123109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H92···O2i0.982.433.294 (4)147
C9—H91···O1030.982.573.203 (4)122
C109—H1092···O102ii0.972.543.473 (4)162
C109—H1091···O14iii0.972.493.433 (4)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC9H15NO3SC9H15NO3S
Mr217.29217.29
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)150150
a, b, c (Å)13.8593 (3), 10.5242 (2), 14.8044 (4)13.8594 (2), 10.5243 (2), 19.9230 (3)
α, β, γ (°)90, 92.0014 (7), 9090, 132.0439 (7), 90
V3)2158.02 (9)2158.07 (7)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.280.28
Crystal size (mm)0.32 × 0.26 × 0.160.32 × 0.26 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.81, 0.960.81, 0.96
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
19529, 4913, 3768 9037, 4913, 3769
Rint0.0410.026
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 0.94 0.043, 0.120, 0.94
No. of reflections49134913
No. of parameters253253
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.440.44, 0.45

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), Structure transformed from solution to I, CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, °). The values from the refinement in P21/n are given first, followed by the values from the P21/c refinement. top
D—H···AD—HH···AD···AD—H···A
C9—H92···O2i0.98/0.982.43/2.433.294 (3)/3.294 (3)147/147
C9—H91···O1030.98/0.982.57/2.573.202 (3)/3.203 (3)122/122
C109—H1092···O102ii0.97/0.972.54/2.543.474 (3)/3.473 (3)162/162
C109—H1091···O14iii0.97/0.972.49/2.493.434 (3)/3.433 (3)165/165
C104—H1042···O3iv0.99/0.992.69/2.693.654 (3)/3.654 (3)165/165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1/2, y-1/2, -z+3/2.
Bond lengths for the methylene aziridine refined in P21/n and P21/c calculated with CRYSTALS and with PLATON top
Bond(I)(II)(I), excluding covariances(II), excluding covariances
S1—O21.4271 (16)1.4278 (17)1.4272 (17)1.428 (2)
S1—O31.5569 (16)1.5573 (16)1.5570 (16)1.5574 (16)
S1—N81.6524 (18)1.6527 (18)1.6523 (18)1.653 (3)
S1—O141.4182 (16)1.4189 (17)1.4182 (17)1.4189 (19)
O3—C41.476 (3)1.476 (3)1.476 (3)1.477 (3)
C4—C51.515 (3)1.517 (3)1.515 (3)1.517 (4)
C5—C61.521 (3)1.521 (3)1.521 (3)1.521 (3)
C6—C71.317 (3)1.318 (3)1.318 (3)1.318 (3)
C6—C101.525 (3)1.522 (3)1.525 (3)1.522 (3)
C7—N81.445 (3)1.447 (3)1.445 (3)1.447 (3)
C7—C91.439 (3)1.440 (3)1.439 (3)1.440 (3)
N8—C91.540 (3)1.540 (3)1.540 (3)1.540 (3)
C10—C111.532 (3)1.533 (3)1.532 (3)1.533 (3)
C10—C121.538 (3)1.540 (3)1.538 (3)1.540 (4)
C10—C131.528 (3)1.529 (3)1.528 (3)1.528 (6)
S101—O1031.5628 (16)1.5628 (16)1.5628 (16)1.5629 (19)
S101—N1081.6577 (18)1.6571 (19)1.6576 (19)1.657 (3)
S101—O1141.4200 (18)1.4204 (18)1.4201 (19)1.420 (2)
S101—O1021.4252 (18)1.4262 (19)1.4252 (18)1.4262 (19)
O103—C1041.475 (3)1.474 (3)1.475 (3)1.474 (3)
C104—C1051.515 (3)1.514 (3)1.515 (3)1.514 (5)
C105—C1061.525 (3)1.525 (3)1.525 (3)1.524 (4)
C106—C1071.317 (3)1.316 (3)1.318 (3)1.316 (3)
C106—C1101.518 (3)1.519 (3)1.518 (3)1.520 (4)
C107—N1081.444 (3)1.445 (3)1.444 (3)1.445 (3)
C107—C1091.445 (3)1.445 (3)1.444 (3)1.445 (3)
N108—C1091.535 (3)1.535 (3)1.534 (3)1.535 (4)
C110—C1131.534 (3)1.535 (3)1.532 (3)1.535 (3)
C110—C1111.532 (3)1.532 (3)1.532 (3)1.532 (4)
C110—C1121.533 (3)1.532 (3)1.534 (3)1.532 (3)
Largest correlations in I and II. top
ParametersCorrelation in ICorrelation in II
Largest correlations in I
OSF U11(S1)0.3650.317
OSF U22(S1)0.3610.310
OSF U33(S1)0.3530.312
OSF U11(S10)0.3570.307
OSF U22(S10)0.3430.297
OSF U33(S10)0.3540.307
Largest correlations in II
U11(C13) U13(C13)0.0100.801
U33(C13) U13(C13)0.0230.805
U11(O14) U13(O14)-0.0910.804
U33(O14) U13(O14)-0.0800.809
U11(C111) U13(C111)0.0040.781
U33(C111) U13(C111)0.0020.782
U11(O102) U13(O102)-0.0420.795
U33(O102) U13(O102)-0.0340.797
OSF = Overall scale factor.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds