Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title organic–inorganic hybrid complex, poly[[[μ-3,5-bis(3-pyridyl)-1,2,4-triazole]tri-μ3-oxido-tetra-μ2-oxido-oxidodicobalt(II)dimolybdenum(VI)] monohydrate], {[Co2Mo2O8(C12H9N5)]·H2O}n, the asymmetric unit is composed of two CoII centers, two [MoVIO4] tetra­hedral units, one neutral 3,5-bis(3-pyridyl)-1,2,4-triazole (BPT) ligand and one solvent water mol­ecule. The cobalt centers both exhibit octa­hedral [CoO5N] coordination environments. Four CoII and four MoVI centers are linked by μ2-oxide and/or μ3-oxide bridges to give an unprecedented bimetallic octa­nuclear [Co4Mo4O22N4] clus­ter, which can be regarded as the first example of a metal-substituted octa­molybdate and exhibits a structure differ­ent from those of the eight octa­molybdate isomers reported to date. The bimetallic oxide clusters are linked to each other through corner-sharing to give two-dimensional inorganic layers, which are further bridged by trans-BPT ligands to generate a three-dimensional organic–inorganic hybrid architecture with six-connected distorted α-Po topology.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109003813/bm3071sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109003813/bm3071Isup2.hkl
Contains datablock I

CCDC reference: 728199

Comment top

The vast compositional range, considerable structural diversity, extensive physical properties and significant applications of inorganic oxides have stimulated continuous interest in the rational design of new metal oxides (Pope & Müller, 1991). In recent years, one powerful tool for the design of novel oxide solids has been the incorporation of organic molecules to alter the inorganic microstructure or to transmit structural preferences inherent in the coordination preferences of the metal centers (Stupp & Braun, 1997). Such organic–inorganic hybrid materials combine the unique characteristics of the components to provide novel structural types, as well as new properties arising from the synergistic interplay of the two components (Sanchez et al., 2001, and references therein). Hagrman et al. (1999) successfully exploited this method in the development of the structural chemistries of the molybdenum oxides of the Mo/O/M'/ligand family (M' = Fe, Co, Ni, Cu, Zn etc.). Of this hybrid family, the most common example of a metal oxide is the octamolybdate anion [Mo8O26]4–, for which eight isomeric forms have been reported, namely α, β, γ, δ, ε, ζ, η and θ. A comprehensive investigation of these isomers has been reported by Allis et al. (2004). However, to the best of our knowledge, no example of a transition metal-substituted octamolybdate has been obtained to date. Herein, we report the title complex, (I), in which an unprecedented bimetallic octanuclear cluster [Co4Mo4O22N4] is observed: this may be regarded as the first metal-substituted octamolybdate cluster and exhibits a structure different from any of the eight known isomers.

The title compound, (I), is composed of two-dimensional inorganic bimetallic layers based on unique [Mo4Co4] octanuclear clusters linked by 3,5-di-3-pyridyl-1,2,4-triazole (BPT) ligands to generate a three-dimensional organic–inorganic hybrid framework. As shown in Fig. 1, two independent [MoVIO4] units, two CoII cations, one neutral BPT ligand and one solvent water molecule occupy the asymmetric unit of (I). In the two [MoO4] units, the Mo—O distances are in the range 1.699 (4)–1.818 (3) Å (Table 1). The coordination environments around Co1 and Co2 are both distorted octahedral, the six coordination sites being occupied by one N atom from a BPT ligand and five O atoms from five different [MoO4] units. The Co—N distances are 2.129 (4) and 2.093(4 Å, and the Co–O distances range from 2.051 (3) to 2.215 (3)Å. The corresponding bond angles around metal centers are in the ranges 106.57 (18)–112.61 (15)° for O—Mo—O, 80.54 (13)–99.43 (14)° and 163.80 (14)–170.73 (13)° for O—Co—O, and 86.20 (14)–102.10 (15)° and 171.84 (16)–173.08 (15)° for N—Co—O. Moreover, the Mo—O—Co angles range from 116.56 (16) to 164.8 (2)°.

Four [MoO4] tetrahedra and four [CoNO5] octahedra link to each other via corner- and edge-sharing to give an octanuclear [Co4Mo4O22N4] motif as depicted in Fig. 2 (left). The structure can be described as a zigzag Co4 cluster constructed from two pairs of [CoNO5] octahedra linked through edge-sharing and capped on both faces by two [MoO4] tetrahedra. Except for the four coordination sites occupied by the BPT N donors, two Co1 octahedra and four capping [MoO4] tetrahedra all exhibit two terminal oxide groups. Thus, there exist 12 µt-O, (where µt–O denotes a terminal O atom), six µ2-O and four µ3-O atoms in this octanuclear cluster. This novel octanuclear motif can therefore be regarded as the first metal-substituted octamolybdate cluster, although it is not a discrete structure. Comparison of the basic structural characteristics (Allis et al., 2004) of the eight octamolybdate isomers reported to date indicates that the structure of [Mo4Co4O22N4] is unprecedented. It should be noted that although the δ-octamolybdate also consists of four octahedra and four tetrahedra, 14 µt-O, ten µ2-O and two µ3-O atoms are observed. The empirical bond valence calculation for (I) led to S values of 5.856, 5.873, 2.121 and 2.173 for Mo1, Mo2, Co1 and Co2, respectively (Brown & Altermatt, 1985). The average values for the calculated oxidation states of molybdenum and cobalt are 5.865 and 2.147, which accord well with the charge neutrality of compound (I).

As depicted in Fig. 2 (right), ten terminal oxide groups from each octanuclear cluster act as µ2 or µ3 bridges linking four adjacent octanuclear motifs to generate a two-dimensional inorganic layer in the ab plane. Furthermore, all the BPT organic ligands adopt the transoid configuration (Dong et al., 2005; Zhang et al., 2005; Du et al., 2008) and serve as µ2 bridges linking adjacent two-dimensional inorganic layers into a three-dimensional organic–inorganic hybrid framework (Fig. 3). For the purpose of classifying this three-dimensional hybrid structure, we define the [Mo4Co4] octanuclear cluster as a single point. Thus, the two-dimensional inorganic layer can be regarded as a four-connected 44-net, and each octanuclear cluster links two adjacent [Mo4Co4] clusters from adjacent inorganic layers through four trans-BPT ligands. Each [Mo4Co4] motif can therefore be considered as a six-connected node with BPT molecules as linkers. The overall topology of this three-dimensional framework can be described as a distorted α-Po net because parallel inorganic (4,4)-nets are cross-linked by zigzag chains. The internode distances are 7.001 (1) and 9.332 (4) Å in the same inorganic (4,4)-net, and 14.646 (2) Å between two neighboring nets. It should be noted that of the currently known networks of α-Po topology, the majority are twofold or threefold interpenetrated frameworks (Wang et al., 2006). However, (I) exhibits a non-interpenetrated structure owing to the existence of two-dimensional Mo—O—Co inorganic layers, in which, the metal centers are only bridged by small O atoms [what do you mean by "small O atoms"?]. This linking mode generates an extraordinarily rigid two-dimensional net, which presents insufficient space for the interpenetration despite the linkage of BPT organic ligands affording voids between adjacent inorganic layers.

Related literature top

For related literature, see: Allis et al. (2004); Du et al. (2008); Hagrman et al. (1999); Pope & Müller (1991); Sanchez et al. (2001); Stupp & Braun (1997); Wang et al. (2006).

Experimental top

A mixture of Co(NO3)2.6H2O (0.29 g, 1.0 mmol), Na2MoO4.2H2O (0.12 g, 0.5 mmol), MoO3 (0.07 g, 1.0 mmol) and 3,5-di-3-pyridyl-1,2,4-triazole (BPT) (0.22 g, 1.0 mmol) in water (10 ml) was introduced into a Parr Teflon-lined stainless steel vellel (25 ml), after which the vessel was sealed and heated at 453 K for 5 d under autogenous pressure. After the reaction had been cooled to room temperature over a period of 72 h, red crystals of (I) were produced (yield 51% based on Mo). Analysis calculated for C12H11Co2Mo2N5O9: C 21.23, H 1.63, N 10.31%; found: C 21.35, H 1.58, N 10.33%. IR (KBr, cm-1): 3438 (w), 1614 (w), 1411 (w), 921 (m), 869 (m), 786 (m), 647 (s), 549 (w).

Refinement top

The H atoms were positioned geometrically and included in the refinement using a riding model [C—H = 0.93Å, N—H = 0.86Å and O—H = 0.85Å, and Uiso(H) = 1.2Ueq(parent atom)]. The directions of the O—H vectors were aligned with peaks initially located from difference maps. The maximum residual electron density of 1.35 e Å-3 is located 1.22Å from atom O9W and the minimum density of -1.03 e Å-3 lies 0.82Å from atom Mo2.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 200); software used to prepare material for publication: SHELXTL (Sheldrick, 200) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I), shown with 30% probability displacement ellipsoids. All H atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, z+1; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1.]
[Figure 2] Fig. 2. The unprecedented [Mo4Co4] octanuclear cluster (left) and a polyhedral representation of the two-dimensional inorganic layer (right) in (I).
[Figure 3] Fig. 3. The three-dimensional organic–inorganic hybrid framework of (I) viewed along the a-axis direction. All H atoms have been omitted for clarity.
poly[[(µ-3,5-di-3-pyridyl-1,2,4-triazole)tri-µ3-oxido-tetra-µ2-oxido- oxidodicobalt(II)dimolybdenum(VI)] monohydrate] top
Crystal data top
[Co2Mo2O8(C12N5H9)]·H2OZ = 2
Mr = 679.00F(000) = 656
Triclinic, P1Dx = 2.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9999 (3) ÅCell parameters from 2154 reflections
b = 9.3318 (4) Åθ = 3.0–27.5°
c = 14.2802 (12) ŵ = 3.25 mm1
α = 85.341 (11)°T = 293 K
β = 84.805 (11)°Block, red
γ = 75.127 (9)°0.12 × 0.10 × 0.08 mm
V = 896.22 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
4027 independent reflections
Radiation source: sealed tube3434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile fitting scansh = 79
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1211
Tmin = 0.697, Tmax = 0.781l = 1818
6929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.1203P]
where P = (Fo2 + 2Fc2)/3
4027 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Co2Mo2O8(C12N5H9)]·H2Oγ = 75.127 (9)°
Mr = 679.00V = 896.22 (9) Å3
Triclinic, P1Z = 2
a = 6.9999 (3) ÅMo Kα radiation
b = 9.3318 (4) ŵ = 3.25 mm1
c = 14.2802 (12) ÅT = 293 K
α = 85.341 (11)°0.12 × 0.10 × 0.08 mm
β = 84.805 (11)°
Data collection top
Bruker SMART CCD
diffractometer
4027 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3434 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.781Rint = 0.026
6929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 1.35 e Å3
4027 reflectionsΔρmin = 1.05 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.33538 (6)0.54735 (4)0.61500 (3)0.01356 (11)
Mo20.79610 (6)0.81367 (4)0.48598 (3)0.01245 (11)
Co10.31603 (10)0.80272 (7)0.42622 (4)0.01342 (15)
Co20.86114 (10)0.47543 (7)0.59389 (4)0.01348 (15)
O10.2773 (6)0.5535 (4)0.7330 (3)0.0270 (9)
O20.5847 (5)0.4294 (4)0.5963 (2)0.0177 (7)
O30.3270 (5)0.7300 (4)0.5719 (2)0.0193 (7)
O40.1535 (5)0.4816 (4)0.5605 (2)0.0164 (7)
O50.7736 (5)0.7030 (4)0.5898 (2)0.0169 (7)
O60.6030 (5)0.8224 (4)0.4121 (2)0.0187 (7)
O70.2220 (6)1.0088 (4)0.4807 (3)0.0212 (8)
O80.0383 (5)0.7520 (3)0.4253 (2)0.0137 (7)
O9W0.6090 (8)0.0907 (5)0.2937 (3)0.0378 (11)
H10.60790.14560.33850.045*
H20.58310.01250.32050.045*
N10.4487 (8)0.8027 (6)0.1134 (3)0.0346 (12)
N20.3361 (8)0.8969 (6)0.0506 (3)0.0354 (12)
N30.2671 (6)0.8975 (5)0.2871 (3)0.0186 (9)
N40.5482 (8)0.7085 (6)0.0243 (3)0.0292 (11)
H4B0.60940.65240.06870.035*
N50.8647 (7)0.4627 (5)0.2593 (3)0.0209 (9)
C10.4010 (9)0.8355 (7)0.0312 (4)0.0265 (12)
C20.3077 (9)0.9050 (6)0.1187 (4)0.0259 (12)
C30.1600 (10)1.0338 (7)0.1144 (4)0.0335 (14)
H3A0.12461.08040.05620.040*
C40.0640 (10)1.0945 (7)0.1955 (4)0.0319 (14)
H4A0.03641.18180.19320.038*
C50.1210 (8)1.0221 (6)0.2809 (4)0.0244 (11)
H5A0.05521.06150.33620.029*
C60.3609 (8)0.8391 (6)0.2070 (4)0.0216 (11)
H6A0.46330.75310.21070.026*
C70.5741 (9)0.6923 (7)0.0677 (4)0.0283 (13)
C80.7180 (9)0.5700 (6)0.1144 (4)0.0258 (12)
C90.8370 (10)0.4517 (7)0.0643 (4)0.0328 (14)
H9A0.82540.44570.00120.039*
C100.9712 (10)0.3444 (7)0.1124 (4)0.0349 (14)
H10A1.05590.26690.07990.042*
C110.9803 (9)0.3520 (7)0.2098 (4)0.0288 (12)
H11A1.07000.27730.24190.035*
C120.7374 (8)0.5714 (6)0.2117 (4)0.0235 (11)
H12A0.65950.65060.24590.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0117 (2)0.0134 (2)0.0158 (2)0.00336 (15)0.00141 (15)0.00084 (15)
Mo20.0115 (2)0.0111 (2)0.0147 (2)0.00289 (15)0.00072 (15)0.00083 (15)
Co10.0122 (3)0.0124 (3)0.0162 (3)0.0038 (2)0.0014 (2)0.0010 (2)
Co20.0127 (3)0.0126 (3)0.0157 (3)0.0043 (2)0.0005 (2)0.0008 (2)
O10.027 (2)0.034 (2)0.0200 (19)0.0086 (17)0.0015 (16)0.0017 (16)
O20.0119 (17)0.0136 (16)0.0281 (19)0.0036 (13)0.0002 (14)0.0046 (14)
O30.0216 (19)0.0182 (18)0.0197 (17)0.0069 (15)0.0056 (15)0.0004 (14)
O40.0127 (17)0.0175 (17)0.0199 (17)0.0056 (14)0.0031 (13)0.0019 (13)
O50.0228 (19)0.0110 (16)0.0163 (16)0.0040 (14)0.0019 (14)0.0017 (13)
O60.0138 (17)0.0200 (18)0.0230 (18)0.0060 (14)0.0045 (14)0.0041 (14)
O70.026 (2)0.0125 (17)0.0266 (19)0.0068 (15)0.0032 (16)0.0004 (14)
O80.0130 (17)0.0102 (15)0.0173 (16)0.0009 (12)0.0021 (13)0.0032 (12)
O9W0.072 (3)0.026 (2)0.0185 (19)0.018 (2)0.006 (2)0.0007 (16)
N10.041 (3)0.043 (3)0.017 (2)0.003 (2)0.002 (2)0.006 (2)
N20.037 (3)0.049 (3)0.017 (2)0.004 (3)0.000 (2)0.009 (2)
N30.019 (2)0.023 (2)0.016 (2)0.0081 (18)0.0037 (17)0.0016 (16)
N40.032 (3)0.043 (3)0.014 (2)0.012 (2)0.0030 (19)0.000 (2)
N50.025 (2)0.024 (2)0.015 (2)0.0097 (19)0.0042 (17)0.0028 (17)
C10.030 (3)0.033 (3)0.017 (2)0.010 (3)0.001 (2)0.001 (2)
C20.027 (3)0.031 (3)0.021 (3)0.009 (2)0.000 (2)0.003 (2)
C30.045 (4)0.036 (3)0.018 (3)0.008 (3)0.007 (3)0.007 (2)
C40.037 (4)0.032 (3)0.020 (3)0.002 (3)0.007 (2)0.004 (2)
C50.022 (3)0.030 (3)0.019 (2)0.003 (2)0.004 (2)0.002 (2)
C60.019 (3)0.024 (3)0.022 (3)0.006 (2)0.001 (2)0.002 (2)
C70.033 (3)0.037 (3)0.016 (2)0.014 (3)0.001 (2)0.001 (2)
C80.028 (3)0.034 (3)0.021 (3)0.018 (2)0.000 (2)0.002 (2)
C90.040 (4)0.042 (4)0.019 (3)0.016 (3)0.008 (3)0.004 (2)
C100.038 (4)0.035 (3)0.029 (3)0.005 (3)0.009 (3)0.009 (3)
C110.027 (3)0.030 (3)0.030 (3)0.006 (2)0.007 (2)0.001 (2)
C120.024 (3)0.026 (3)0.018 (2)0.004 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Mo1—O11.699 (4)N1—N21.357 (7)
Mo1—O31.753 (3)N2—C11.324 (7)
Mo1—O41.806 (3)N3—C51.340 (7)
Mo1—O21.818 (3)N3—C61.348 (7)
Mo2—O7i1.731 (3)N4—C71.325 (7)
Mo2—O51.755 (3)N4—C11.360 (8)
Mo2—O61.770 (3)N4—H4B0.8600
Mo2—O8ii1.808 (3)N5—C111.333 (7)
Co1—O62.054 (4)N5—C121.349 (7)
Co1—O72.058 (4)N5—Co2vi2.093 (4)
Co1—O82.117 (3)C1—C21.476 (8)
Co1—N32.129 (4)C2—C31.371 (8)
Co1—O32.138 (3)C2—C61.395 (7)
Co1—O2iii2.139 (3)C3—C41.373 (8)
Co2—O52.051 (3)C3—H3A0.9300
Co2—O4ii2.073 (3)C4—C51.386 (7)
Co2—O22.084 (3)C4—H4A0.9300
Co2—O8iii2.090 (3)C5—H5A0.9300
Co2—N5iv2.093 (4)C6—H6A0.9300
Co2—O4iii2.215 (3)C7—C81.475 (8)
O2—Co1iii2.139 (3)C8—C121.383 (7)
O4—Co2v2.073 (3)C8—C91.390 (8)
O4—Co2iii2.215 (3)C9—C101.367 (9)
O7—Mo2i1.731 (3)C9—H9A0.9300
O8—Mo2v1.808 (3)C10—C111.384 (8)
O8—Co2iii2.090 (3)C10—H10A0.9300
O9W—H10.8501C11—H11A0.9300
O9W—H20.8500C12—H12A0.9300
N1—C71.336 (8)
O1—Mo1—O3106.57 (18)Mo2v—O8—Co2iii116.56 (16)
O1—Mo1—O4109.74 (17)Mo2v—O8—Co1135.84 (17)
O3—Mo1—O4109.23 (16)Co2iii—O8—Co198.76 (14)
O1—Mo1—O2108.07 (18)H1—O9W—H2104.6
O3—Mo1—O2110.44 (16)C7—N1—N2109.7 (5)
O4—Mo1—O2112.61 (15)C1—N2—N1102.8 (5)
O7i—Mo2—O5106.87 (16)C5—N3—C6118.8 (4)
O7i—Mo2—O6108.22 (17)C5—N3—Co1115.1 (3)
O5—Mo2—O6111.68 (16)C6—N3—Co1126.0 (4)
O7i—Mo2—O8ii106.65 (16)C7—N4—C1102.9 (5)
O5—Mo2—O8ii111.04 (16)C7—N4—H4B128.5
O6—Mo2—O8ii112.07 (15)C1—N4—H4B128.5
O6—Co1—O790.42 (15)C11—N5—C12118.1 (5)
O6—Co1—O8170.17 (13)C11—N5—Co2vi124.1 (4)
O7—Co1—O899.09 (14)C12—N5—Co2vi117.7 (4)
O6—Co1—N391.12 (15)N2—C1—N4114.3 (5)
O7—Co1—N391.28 (15)N2—C1—C2119.1 (5)
O8—Co1—N386.20 (15)N4—C1—C2126.6 (5)
O6—Co1—O394.13 (14)C3—C2—C6118.7 (5)
O7—Co1—O382.45 (14)C3—C2—C1119.9 (5)
O8—Co1—O389.63 (13)C6—C2—C1121.4 (5)
N3—Co1—O3171.84 (16)C2—C3—C4120.4 (5)
O6—Co1—O2iii90.81 (14)C2—C3—H3A119.8
O7—Co1—O2iii166.54 (14)C4—C3—H3A119.8
O8—Co1—O2iii80.54 (13)C3—C4—C5118.1 (6)
N3—Co1—O2iii102.10 (15)C3—C4—H4A120.9
O3—Co1—O2iii84.10 (13)C5—C4—H4A120.9
O5—Co2—O4ii90.87 (14)N3—C5—C4122.6 (5)
O5—Co2—O299.43 (14)N3—C5—H5A118.7
O4ii—Co2—O2163.80 (14)C4—C5—H5A118.7
O5—Co2—O8iii170.73 (13)N3—C6—C2121.4 (5)
O4ii—Co2—O8iii85.44 (13)N3—C6—H6A119.3
O2—Co2—O8iii82.47 (13)C2—C6—H6A119.3
O5—Co2—N5iv91.50 (15)N4—C7—N1110.4 (5)
O4ii—Co2—N5iv98.17 (16)N4—C7—C8125.6 (5)
O2—Co2—N5iv94.06 (16)N1—C7—C8124.0 (5)
O8iii—Co2—N5iv97.44 (15)C12—C8—C9118.0 (6)
O5—Co2—O4iii81.57 (13)C12—C8—C7119.6 (5)
O4ii—Co2—O4iii81.94 (14)C9—C8—C7122.5 (5)
O2—Co2—O4iii87.20 (13)C10—C9—C8119.3 (5)
O8iii—Co2—O4iii89.48 (13)C10—C9—H9A120.4
N5iv—Co2—O4iii173.08 (15)C8—C9—H9A120.4
Mo1—O2—Co2131.28 (18)C9—C10—C11119.5 (6)
Mo1—O2—Co1iii130.48 (18)C9—C10—H10A120.3
Co2—O2—Co1iii98.22 (14)C11—C10—H10A120.3
Mo1—O3—Co1123.92 (18)N5—C11—C10122.2 (6)
Mo1—O4—Co2v135.70 (19)N5—C11—H11A118.9
Mo1—O4—Co2iii117.24 (16)C10—C11—H11A118.9
Co2v—O4—Co2iii98.06 (14)N5—C12—C8122.8 (5)
Mo2—O5—Co2122.36 (18)N5—C12—H12A118.6
Mo2—O6—Co1137.82 (19)C8—C12—H12A118.6
Mo2i—O7—Co1164.8 (2)
O1—Mo1—O2—Co284.5 (3)O3—Co1—O8—Mo2v61.0 (3)
O3—Mo1—O2—Co231.7 (3)O2iii—Co1—O8—Mo2v145.0 (3)
O4—Mo1—O2—Co2154.1 (2)O6—Co1—O8—Co2iii29.7 (8)
O1—Mo1—O2—Co1iii93.5 (3)O7—Co1—O8—Co2iii165.24 (13)
O3—Mo1—O2—Co1iii150.3 (2)N3—Co1—O8—Co2iii104.07 (16)
O4—Mo1—O2—Co1iii27.9 (3)O3—Co1—O8—Co2iii82.95 (14)
O5—Co2—O2—Mo111.8 (3)O2iii—Co1—O8—Co2iii1.13 (13)
O4ii—Co2—O2—Mo1140.6 (4)C7—N1—N2—C10.5 (7)
O8iii—Co2—O2—Mo1177.3 (3)O6—Co1—N3—C5120.6 (4)
N5iv—Co2—O2—Mo180.4 (3)O7—Co1—N3—C530.1 (4)
O4iii—Co2—O2—Mo192.8 (2)O8—Co1—N3—C568.9 (4)
O5—Co2—O2—Co1iii169.68 (13)O3—Co1—N3—C59.4 (13)
O4ii—Co2—O2—Co1iii40.9 (5)O2iii—Co1—N3—C5148.4 (4)
O8iii—Co2—O2—Co1iii1.14 (13)O6—Co1—N3—C663.4 (4)
N5iv—Co2—O2—Co1iii98.12 (17)O7—Co1—N3—C6153.9 (4)
O4iii—Co2—O2—Co1iii88.70 (14)O8—Co1—N3—C6107.1 (4)
O1—Mo1—O3—Co1164.3 (2)O3—Co1—N3—C6166.6 (9)
O4—Mo1—O3—Co145.9 (3)O2iii—Co1—N3—C627.6 (4)
O2—Mo1—O3—Co178.5 (2)N1—N2—C1—N40.2 (7)
O6—Co1—O3—Mo1107.6 (2)N1—N2—C1—C2178.0 (5)
O7—Co1—O3—Mo1162.5 (2)C7—N4—C1—N20.1 (7)
O8—Co1—O3—Mo163.3 (2)C7—N4—C1—C2178.2 (6)
N3—Co1—O3—Mo1122.5 (10)N2—C1—C2—C31.9 (9)
O2iii—Co1—O3—Mo117.3 (2)N4—C1—C2—C3180.0 (6)
O1—Mo1—O4—Co2v23.4 (3)N2—C1—C2—C6175.4 (6)
O3—Mo1—O4—Co2v93.1 (3)N4—C1—C2—C62.6 (9)
O2—Mo1—O4—Co2v143.8 (2)C6—C2—C3—C41.4 (9)
O1—Mo1—O4—Co2iii162.29 (19)C1—C2—C3—C4176.1 (6)
O3—Mo1—O4—Co2iii45.8 (2)C2—C3—C4—C50.1 (10)
O2—Mo1—O4—Co2iii77.3 (2)C6—N3—C5—C40.9 (8)
O7i—Mo2—O5—Co2162.4 (2)Co1—N3—C5—C4177.2 (5)
O6—Mo2—O5—Co279.5 (2)C3—C4—C5—N31.1 (9)
O8ii—Mo2—O5—Co246.4 (3)C5—N3—C6—C20.5 (8)
O4ii—Co2—O5—Mo264.3 (2)Co1—N3—C6—C2175.3 (4)
O2—Co2—O5—Mo2103.2 (2)C3—C2—C6—N31.7 (8)
O8iii—Co2—O5—Mo22.1 (10)C1—C2—C6—N3175.7 (5)
N5iv—Co2—O5—Mo2162.5 (2)C1—N4—C7—N10.4 (7)
O4iii—Co2—O5—Mo217.5 (2)C1—N4—C7—C8179.7 (6)
O7i—Mo2—O6—Co191.2 (3)N2—N1—C7—N40.6 (7)
O5—Mo2—O6—Co126.1 (3)N2—N1—C7—C8179.9 (5)
O8ii—Mo2—O6—Co1151.5 (3)N4—C7—C8—C12176.3 (5)
O7—Co1—O6—Mo274.2 (3)N1—C7—C8—C124.6 (9)
O8—Co1—O6—Mo2120.5 (7)N4—C7—C8—C93.6 (9)
N3—Co1—O6—Mo2165.5 (3)N1—C7—C8—C9175.6 (6)
O3—Co1—O6—Mo28.2 (3)C12—C8—C9—C101.8 (9)
O2iii—Co1—O6—Mo292.4 (3)C7—C8—C9—C10178.1 (6)
O6—Co1—O7—Mo2i15.6 (8)C8—C9—C10—C112.8 (10)
O8—Co1—O7—Mo2i161.9 (8)C12—N5—C11—C101.0 (8)
N3—Co1—O7—Mo2i75.5 (8)Co2vi—N5—C11—C10176.9 (4)
O3—Co1—O7—Mo2i109.7 (8)C9—C10—C11—N51.4 (10)
O2iii—Co1—O7—Mo2i110.8 (9)C11—N5—C12—C82.1 (8)
O6—Co1—O8—Mo2v173.6 (6)Co2vi—N5—C12—C8176.0 (4)
O7—Co1—O8—Mo2v21.3 (3)C9—C8—C12—N50.7 (9)
N3—Co1—O8—Mo2v112.0 (3)C7—C8—C12—N5179.4 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x1, y, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Co2Mo2O8(C12N5H9)]·H2O
Mr679.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9999 (3), 9.3318 (4), 14.2802 (12)
α, β, γ (°)85.341 (11), 84.805 (11), 75.127 (9)
V3)896.22 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.697, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
6929, 4027, 3434
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.02
No. of reflections4027
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 1.05

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 200) and publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Mo1—O11.699 (4)Co1—O82.117 (3)
Mo1—O31.753 (3)Co1—N32.129 (4)
Mo1—O41.806 (3)Co1—O32.138 (3)
Mo1—O21.818 (3)Co1—O2iii2.139 (3)
Mo2—O7i1.731 (3)Co2—O52.051 (3)
Mo2—O51.755 (3)Co2—O4ii2.073 (3)
Mo2—O61.770 (3)Co2—O22.084 (3)
Mo2—O8ii1.808 (3)Co2—O8iii2.090 (3)
Co1—O62.054 (4)Co2—N5iv2.093 (4)
Co1—O72.058 (4)Co2—O4iii2.215 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds