Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C12H15N4S2)(C18H15P)], the copper(I) center is tetra­hedrally coordinated by one S atom and two N atoms from one bis­(3,5-dimethyl­pyrazol-1-yl)­dithio­acetate ligand and one P atom from a triphenyl­phosphine ligand. In the crystal structure, adjacent pyrazole rings are involved in weak π–π inter­actions, thereby forming a one-dimensional zigzag chain running along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107046665/bm3041sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107046665/bm3041Isup2.hkl
Contains datablock I

CCDC reference: 669162

Comment top

In the past decades, much interest in metal complexes of the tris(pyrazolyl)borate or `scorpionate' ligands (Trofimenko, 1967) has been motivated by their chemistry, their relevance in biological systems (Beck et al., 2001), and their potential applications in advanced materials, such as single-molecule magnets (Li et al., 2006), optoelectronic devices (Enomoto et al., 2001) and catalysts (Noel et al., 2006). Besides these `scorpionate' ligands, several so-called `heteroscopionate' ligands, such as bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide (bdmpze) and bis(3,5-dimethylpyrazol-1-yl)dithioacetate (bdmpzdta), in which one pyrazole group was replaced by a carboxylate, ethoxide group or dithioacetate group, have been reported. A family of transition metal complexes of these `heteroscopionate' ligands have been prepared (Otero et al., 2000, 2002, 2004, 2005; Beck et al., 2001; Hammes et al., 2003; Smith et al., 2002, 2005; Ortiz et al., 2004; Porchia et al., 2006). Among them, only a few examples containing TiVI, ZrIV, HaIV, RuII, ScII and YIII involve the bdmpzdta ligand. There is no report of a cuprous complex of this ligand.

The title compound, (I), crystallizes in the monoclinic space group P21/c and the asymmetric unit contains a discrete [Cu(bdmpzdta)PPh3] molecule with no crystallographically imposed symmetry. Compound (I) can be viewed as having a scorpionate-shaped structure in which the bdmpzdta ligand is in the tridentate κ3-N,N,S coordination mode (Fig. 1). This coordination resembles that found in [Ti(bdmpzdta)Cl2{O(CH2)4Cl}] (Otero et al., 2002). The Cu center is tetrahedrally coordinated by two N atoms and one S atom from the bdmpzdta ligand and one P atom from the PPh3 ligand. Tetrahedral CuI centers with three different donor atoms are only found in a limited number of complexes, such as [PtCu2(bpy)2(tdt)(dppm)2](ClO4)2 [bpy is 2,2'-bipyridine; tdt is 3,4-toluenedithiolate; dppm is bis(diphenylphhosphino); Chen et al., 2004] and [Cu4(SCN4Me)4(PPh3)3] [SCN4Me is 1-methyl-1,2,3,4-tetrazole-5-thilate; Nöth et al., 1998]. The dihedral angle between the two pyrozalate rings in bdmpzdta ligand is 49.83(s.u.?)°. The N—Cu—N and N—Cu—S bond angles range from 88.22 (6) to 94.71 (5)°, and are much smaller than the N—Cu—P and P—Cu—S angles [120.68 (5)–128.91 (2)°]. Such a difference may be due to the steric hindrance between the bdmpzdta and PPh3 ligands. ##AUTHOR: Is this steric hindrance alone, or the typical bite angles of the bdmpzdta?

As indicated in Table 1, the mean Cu—N bond distance in (I) is longer than those in [Cu(tdmpzb)PPh3], [Cu(tdphpzb)Cl] and [Cu(tdippzb)Cl]. The Cu—P bond length in (I) is longer than those observed in [Cu(tdmpzb)PPh3] and [Cu(Tpms)PPh3] but shorter than that in [Cu(PPh3)2PhCOS], while the Cu—S bond length in (I) is comparable to that found in [Cu(C6H11CN)2(dmpzdtc)]. The average C—S bond length of (I) is comparable to that observed in [Li(THF)4][ScCl3(bdmpzdta)] but much shorter than that in [Ti(bdmpzdta)2Cl2], which may be ascribed to the different coordination mode of the CS2 group in the latter complex.

In the crystal structure of (I), two pyrazolyl rings of neighbouring molecules are stacked in a face-to-face fashion with a separation of 3.744 (s.u.?) Å between the centroids of the two pyrazolate rings A and Ai [symmetry code: (i) −x + 1, y − 1/2, −z + 1/2], indicating a weak intermolecular ππ interaction (Janiak, 2000; Tong et al., 1999). These ππ interactions result in the formation of a one-dimensional zigzag chain running along the b axis (Fig. 2).

Related literature top

For related literature, see: Beck et al. (2001); Chen et al. (2004); Enomoto et al. (2001); Hammes et al. (2003); Janiak (2000); Li et al. (2006); Nöth et al. (1998); Noel et al. (2006); Ortiz et al. (2004); Otero et al. (2000, 2002, 2004, 2005); Porchia et al. (2006); Smith et al. (2002, 2005); Tong et al. (1999); Trofimenko (1967).

Experimental top

To a solution of Cu(PPh3)Cl (0.181 g, 0.5 mmol) in CH2Cl2 (5 ml) was added a solution of [Li(bdmpzdta)(H2O)]4 (0.606 g, 0.5 mmol) in MeCN (10 ml) (Otero et al., 2002). The resulting red solution was stirred at room temperature for ten hours and then filtered. Diethyl ether was allowed to diffuse into the filtrate over a period of several days, forming red plates of (I), which were collected by filtration, washed with Et2O and dried in vacuo (yield 0.527 g, 87% based on Cu). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis found: C 59.39, H 5.08, N 9.11%; calculated for C30H30CuN4PS2: C 59.53, H 5.00, N 9.26%.

Refinement top

Methyl H atoms were constrained to an ideal geometry [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)] but were allowed to rotate freely about the parent C—C bonds. All other H atoms were placed in geometrically idealized positions (C—H = 1.0 Å for methine groups and C—H = 0.95 Å for aromatic groups) and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ##AUTHOR - please supply a valid reference; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of complex (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of (I), viewed approximately down the a axis, showing the one-dimensional chain generated by ππ interactions. H atoms have been omitted for clarity.
[Bis(3,5-dimethylpyrazol-1-yl-κN2)dithioacetato-κS](triphenylphosphine- κP)copper(I) top
Crystal data top
[Cu(C12H15N4S2)(C18H15P)]F(000) = 1256
Mr = 605.24Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 26898 reflections
a = 13.051 (3) Åθ = 3.0–25.3°
b = 14.256 (3) ŵ = 0.96 mm1
c = 17.100 (3) ÅT = 193 K
β = 112.19 (3)°Block, red
V = 2945.9 (12) Å30.46 × 0.45 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
6583 independent reflections
Radiation source: fine-focus sealed tube5364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1616
Tmin = 0.666, Tmax = 0.831k = 1815
26346 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3127P]
where P = (Fo2 + 2Fc2)/3
6583 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C12H15N4S2)(C18H15P)]V = 2945.9 (12) Å3
Mr = 605.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.051 (3) ŵ = 0.96 mm1
b = 14.256 (3) ÅT = 193 K
c = 17.100 (3) Å0.46 × 0.45 × 0.20 mm
β = 112.19 (3)°
Data collection top
Rigaku Mercury
diffractometer
6583 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
5364 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.831Rint = 0.035
26346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
6583 reflectionsΔρmin = 0.34 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.661659 (18)0.332640 (14)0.228606 (12)0.04044 (8)
P10.81652 (4)0.30604 (3)0.21163 (3)0.03676 (11)
S10.48239 (4)0.33890 (4)0.12713 (3)0.05269 (13)
S20.27265 (4)0.34758 (4)0.15807 (4)0.06221 (15)
N10.52769 (12)0.28636 (12)0.32650 (9)0.0490 (4)
N20.61854 (13)0.25412 (10)0.31415 (9)0.0452 (3)
N30.63721 (12)0.45354 (10)0.28825 (9)0.0438 (3)
N40.54426 (12)0.45162 (11)0.30576 (9)0.0458 (3)
C10.3956 (2)0.2420 (3)0.39433 (19)0.1152 (13)
H1A0.40400.30230.42350.173*
H1B0.38900.19170.43130.173*
H1C0.32890.24330.34250.173*
C20.49394 (18)0.22453 (19)0.37266 (12)0.0681 (6)
C30.5680 (2)0.15238 (17)0.39168 (14)0.0720 (7)
H30.56760.09820.42390.086*
C40.64410 (18)0.17290 (13)0.35516 (12)0.0536 (5)
C50.7444 (2)0.11962 (15)0.36042 (16)0.0747 (7)
H5A0.76660.13850.31400.112*
H5B0.72810.05230.35630.112*
H5C0.80470.13290.41450.112*
C60.47091 (15)0.37105 (14)0.28411 (11)0.0469 (4)
H60.41260.38420.30730.056*
C70.40933 (15)0.35394 (12)0.18899 (11)0.0456 (4)
C80.4349 (2)0.5525 (2)0.36694 (18)0.0877 (8)
H8A0.43620.61820.38420.132*
H8B0.44090.51150.41450.132*
H8C0.36540.53960.31950.132*
C90.52949 (17)0.53462 (15)0.34075 (11)0.0545 (5)
C100.61681 (19)0.58988 (14)0.34580 (12)0.0586 (5)
H100.63060.65200.36740.070*
C110.68200 (17)0.53806 (12)0.31335 (11)0.0505 (4)
C120.7879 (2)0.56582 (16)0.30592 (16)0.0715 (6)
H12A0.84970.55140.35880.107*
H12B0.78680.63330.29460.107*
H12C0.79680.53110.25940.107*
C130.82232 (14)0.19913 (12)0.15376 (10)0.0401 (4)
C140.87552 (18)0.11736 (13)0.19136 (12)0.0567 (5)
H140.91810.11610.25030.068*
C150.8669 (2)0.03714 (15)0.14313 (15)0.0729 (7)
H150.90360.01870.16940.088*
C160.8060 (2)0.03781 (16)0.05811 (14)0.0699 (6)
H160.80100.01710.02550.084*
C170.75217 (19)0.11817 (15)0.02023 (13)0.0622 (5)
H170.70890.11870.03860.075*
C180.76095 (17)0.19816 (14)0.06760 (11)0.0507 (4)
H180.72420.25370.04070.061*
C190.93461 (15)0.30006 (12)0.31230 (10)0.0434 (4)
C200.91477 (19)0.32976 (14)0.38303 (12)0.0562 (5)
H200.84280.35040.37670.067*
C210.9985 (2)0.32953 (17)0.46235 (14)0.0739 (7)
H210.98360.35000.50990.089*
C221.1014 (2)0.30030 (17)0.47265 (15)0.0716 (6)
H221.15870.30060.52720.086*
C231.12298 (18)0.27049 (16)0.40497 (16)0.0712 (6)
H231.19530.24960.41280.085*
C241.03961 (17)0.27017 (15)0.32342 (13)0.0575 (5)
H241.05560.24950.27640.069*
C250.85227 (15)0.39664 (11)0.15047 (10)0.0417 (4)
C260.76887 (18)0.45745 (13)0.10272 (12)0.0527 (5)
H260.69660.45160.10330.063*
C270.7912 (2)0.52715 (14)0.05394 (13)0.0654 (6)
H270.73350.56730.01990.078*
C280.8956 (2)0.53775 (14)0.05492 (13)0.0647 (6)
H280.91070.58660.02300.078*
C290.9793 (2)0.47781 (16)0.10200 (13)0.0646 (6)
H291.05180.48490.10220.077*
C300.95669 (17)0.40740 (14)0.14883 (12)0.0553 (5)
H301.01410.36560.18050.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03961 (14)0.03856 (13)0.04503 (13)0.00176 (8)0.01813 (9)0.00005 (7)
P10.0385 (3)0.0343 (2)0.0382 (2)0.00305 (16)0.01534 (17)0.00310 (15)
S10.0493 (3)0.0625 (3)0.0388 (2)0.0003 (2)0.00820 (19)0.00403 (18)
S20.0357 (3)0.0627 (3)0.0721 (3)0.0006 (2)0.0022 (2)0.0002 (2)
N10.0390 (9)0.0641 (10)0.0430 (8)0.0052 (7)0.0145 (6)0.0069 (7)
N20.0461 (9)0.0439 (8)0.0473 (8)0.0008 (6)0.0194 (6)0.0070 (6)
N30.0405 (9)0.0406 (8)0.0486 (8)0.0000 (6)0.0150 (6)0.0074 (6)
N40.0382 (9)0.0494 (9)0.0463 (8)0.0036 (6)0.0120 (6)0.0108 (6)
C10.0675 (19)0.195 (4)0.095 (2)0.004 (2)0.0449 (16)0.063 (2)
C20.0463 (13)0.1050 (18)0.0494 (11)0.0135 (12)0.0141 (9)0.0246 (11)
C30.0643 (16)0.0822 (16)0.0613 (13)0.0154 (12)0.0142 (11)0.0308 (11)
C40.0600 (13)0.0457 (11)0.0471 (10)0.0072 (8)0.0112 (9)0.0094 (7)
C50.0940 (19)0.0472 (12)0.0828 (15)0.0155 (12)0.0333 (13)0.0210 (10)
C60.0342 (10)0.0594 (11)0.0456 (9)0.0007 (8)0.0135 (7)0.0033 (7)
C70.0408 (11)0.0382 (9)0.0492 (10)0.0007 (7)0.0074 (7)0.0005 (7)
C80.0695 (18)0.101 (2)0.0952 (18)0.0248 (15)0.0340 (14)0.0268 (15)
C90.0508 (12)0.0585 (12)0.0483 (10)0.0194 (9)0.0121 (8)0.0089 (8)
C100.0661 (14)0.0413 (10)0.0594 (11)0.0087 (9)0.0135 (9)0.0113 (8)
C110.0591 (13)0.0355 (9)0.0513 (10)0.0003 (8)0.0143 (8)0.0052 (7)
C120.0749 (17)0.0516 (13)0.0925 (16)0.0210 (11)0.0370 (13)0.0172 (11)
C130.0424 (10)0.0376 (9)0.0432 (9)0.0016 (7)0.0194 (7)0.0009 (6)
C140.0690 (14)0.0448 (11)0.0505 (10)0.0119 (9)0.0160 (9)0.0023 (8)
C150.0938 (19)0.0438 (12)0.0741 (14)0.0193 (11)0.0238 (13)0.0007 (9)
C160.0880 (18)0.0523 (13)0.0695 (14)0.0054 (11)0.0297 (12)0.0177 (10)
C170.0740 (16)0.0618 (13)0.0484 (11)0.0014 (11)0.0203 (10)0.0085 (9)
C180.0572 (13)0.0463 (10)0.0455 (9)0.0055 (8)0.0160 (8)0.0023 (7)
C190.0404 (10)0.0395 (9)0.0448 (9)0.0003 (7)0.0100 (7)0.0056 (6)
C200.0532 (13)0.0640 (13)0.0448 (10)0.0041 (9)0.0110 (8)0.0026 (8)
C210.0747 (18)0.0831 (17)0.0488 (12)0.0025 (12)0.0062 (11)0.0046 (10)
C220.0680 (17)0.0644 (14)0.0601 (13)0.0057 (11)0.0012 (11)0.0083 (10)
C230.0401 (12)0.0593 (13)0.0997 (17)0.0062 (10)0.0098 (11)0.0250 (12)
C240.0481 (12)0.0570 (12)0.0665 (12)0.0051 (9)0.0206 (9)0.0125 (9)
C250.0514 (11)0.0347 (8)0.0402 (8)0.0000 (7)0.0186 (7)0.0013 (6)
C260.0628 (13)0.0438 (10)0.0552 (10)0.0092 (9)0.0266 (9)0.0078 (8)
C270.0974 (19)0.0427 (11)0.0611 (12)0.0152 (11)0.0357 (12)0.0135 (8)
C280.103 (2)0.0435 (11)0.0615 (12)0.0091 (11)0.0466 (12)0.0019 (9)
C290.0714 (16)0.0680 (14)0.0639 (12)0.0153 (11)0.0364 (11)0.0026 (10)
C300.0546 (13)0.0581 (12)0.0563 (11)0.0017 (9)0.0242 (9)0.0095 (8)
Geometric parameters (Å, º) top
Cu1—N22.0812 (14)C11—C121.488 (3)
Cu1—N32.0877 (14)C12—H12A0.9800
Cu1—P12.1809 (7)C12—H12B0.9800
Cu1—S12.3295 (11)C12—H12C0.9800
P1—C191.8281 (18)C13—C141.385 (3)
P1—C251.8297 (17)C13—C181.386 (2)
P1—C131.8343 (17)C14—C151.389 (3)
S1—C71.684 (2)C14—H140.9500
S2—C71.661 (2)C15—C161.369 (3)
N1—N21.360 (2)C15—H150.9500
N1—C21.363 (2)C16—C171.372 (3)
N1—C61.458 (2)C16—H160.9500
N2—C41.329 (2)C17—C181.378 (3)
N3—C111.337 (2)C17—H170.9500
N3—N41.355 (2)C18—H180.9500
N4—C91.372 (2)C19—C241.378 (3)
N4—C61.451 (2)C19—C201.395 (3)
C1—C21.485 (3)C20—C211.384 (3)
C1—H1A0.9800C20—H200.9500
C1—H1B0.9800C21—C221.353 (4)
C1—H1C0.9800C21—H210.9500
C2—C31.364 (3)C22—C231.358 (4)
C3—C41.390 (3)C22—H220.9500
C3—H30.9500C23—C241.408 (3)
C4—C51.487 (3)C23—H230.9500
C5—H5A0.9800C24—H240.9500
C5—H5B0.9800C25—C301.382 (3)
C5—H5C0.9800C25—C261.390 (3)
C6—C71.537 (2)C26—C271.397 (3)
C6—H61.0000C26—H260.9500
C8—C91.485 (3)C27—C281.364 (3)
C8—H8A0.9800C27—H270.9500
C8—H8B0.9800C28—C291.382 (3)
C8—H8C0.9800C28—H280.9500
C9—C101.361 (3)C29—C301.384 (3)
C10—C111.391 (3)C29—H290.9500
C10—H100.9500C30—H300.9500
N2—Cu1—N388.22 (6)C9—C10—H10126.5
N2—Cu1—P1120.68 (5)C11—C10—H10126.5
N3—Cu1—P1121.93 (5)N3—C11—C10110.34 (19)
N2—Cu1—S194.71 (5)N3—C11—C12121.31 (18)
N3—Cu1—S192.09 (4)C10—C11—C12128.34 (18)
P1—Cu1—S1128.91 (2)C11—C12—H12A109.5
C19—P1—C25105.36 (8)C11—C12—H12B109.5
C19—P1—C13106.10 (8)H12A—C12—H12B109.5
C25—P1—C13101.93 (7)C11—C12—H12C109.5
C19—P1—Cu1112.14 (6)H12A—C12—H12C109.5
C25—P1—Cu1113.74 (6)H12B—C12—H12C109.5
C13—P1—Cu1116.45 (6)C14—C13—C18118.19 (16)
C7—S1—Cu1100.64 (7)C14—C13—P1124.38 (14)
N2—N1—C2111.27 (17)C18—C13—P1117.17 (13)
N2—N1—C6120.77 (14)C13—C14—C15120.22 (18)
C2—N1—C6127.50 (17)C13—C14—H14119.9
C4—N2—N1105.80 (15)C15—C14—H14119.9
C4—N2—Cu1139.34 (14)C16—C15—C14120.6 (2)
N1—N2—Cu1114.22 (11)C16—C15—H15119.7
C11—N3—N4105.46 (15)C14—C15—H15119.7
C11—N3—Cu1140.52 (14)C15—C16—C17119.73 (19)
N4—N3—Cu1113.95 (10)C15—C16—H16120.1
N3—N4—C9111.34 (16)C17—C16—H16120.1
N3—N4—C6121.27 (14)C16—C17—C18119.96 (19)
C9—N4—C6127.31 (17)C16—C17—H17120.0
C2—C1—H1A109.5C18—C17—H17120.0
C2—C1—H1B109.5C17—C18—C13121.29 (18)
H1A—C1—H1B109.5C17—C18—H18119.4
C2—C1—H1C109.5C13—C18—H18119.4
H1A—C1—H1C109.5C24—C19—C20118.34 (17)
H1B—C1—H1C109.5C24—C19—P1125.82 (15)
N1—C2—C3105.72 (19)C20—C19—P1115.84 (14)
N1—C2—C1122.4 (2)C21—C20—C19120.9 (2)
C3—C2—C1131.9 (2)C21—C20—H20119.6
C2—C3—C4107.25 (18)C19—C20—H20119.6
C2—C3—H3126.4C22—C21—C20120.4 (2)
C4—C3—H3126.4C22—C21—H21119.8
N2—C4—C3109.9 (2)C20—C21—H21119.8
N2—C4—C5121.11 (19)C21—C22—C23120.0 (2)
C3—C4—C5128.91 (19)C21—C22—H22120.0
C4—C5—H5A109.5C23—C22—H22120.0
C4—C5—H5B109.5C22—C23—C24120.9 (2)
H5A—C5—H5B109.5C22—C23—H23119.5
C4—C5—H5C109.5C24—C23—H23119.5
H5A—C5—H5C109.5C19—C24—C23119.5 (2)
H5B—C5—H5C109.5C19—C24—H24120.3
N4—C6—N1111.48 (14)C23—C24—H24120.3
N4—C6—C7115.23 (15)C30—C25—C26118.57 (17)
N1—C6—C7111.04 (15)C30—C25—P1123.79 (14)
N4—C6—H6106.1C26—C25—P1117.64 (14)
N1—C6—H6106.1C25—C26—C27120.0 (2)
C7—C6—H6106.1C25—C26—H26120.0
C6—C7—S2114.52 (14)C27—C26—H26120.0
C6—C7—S1119.41 (14)C28—C27—C26120.3 (2)
S2—C7—S1126.01 (11)C28—C27—H27119.9
C9—C8—H8A109.5C26—C27—H27119.9
C9—C8—H8B109.5C27—C28—C29120.35 (19)
H8A—C8—H8B109.5C27—C28—H28119.8
C9—C8—H8C109.5C29—C28—H28119.8
H8A—C8—H8C109.5C28—C29—C30119.4 (2)
H8B—C8—H8C109.5C28—C29—H29120.3
C10—C9—N4105.94 (17)C30—C29—H29120.3
C10—C9—C8130.7 (2)C25—C30—C29121.3 (2)
N4—C9—C8123.3 (2)C25—C30—H30119.3
C9—C10—C11106.91 (17)C29—C30—H30119.3

Experimental details

Crystal data
Chemical formula[Cu(C12H15N4S2)(C18H15P)]
Mr605.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)13.051 (3), 14.256 (3), 17.100 (3)
β (°) 112.19 (3)
V3)2945.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.46 × 0.45 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.666, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
26346, 6583, 5364
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.07
No. of reflections6583
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ##AUTHOR - please supply a valid reference.

Table 1. Comparative bond distances (Å) for (I) and some related complexes top
ComplexCu—NCu—PCu—SC—S
[Cu(dmpzdta)PPh3]a2.0844 (14)2.1809 (7)2.32951.673
[Cu(tdmpzb)PPh3]b2.075 (2)2.156 (2)
[Cu(tdphpzb)Cl]c2.046 (3)
[Cu(tdippzb)Cl]d1.984
[Cu(Tpms)PPh3]e2.147
[Cu(PPh3)2PhCOS)f2.263
[Cu(C6H11CN)2(dmpzdtc)]g2.327 (2)
[Li(THF)4][ScCl3(bdmpzdta)]g1.658 (3)
[Ti(bdmpzdta)2Cl2]h1.736
Notes: (a) this work; (b) Lobbia et al. (2004) [tdmpzb is hydridotris(3,5-dimethylpyrazol-1-yl)-borate]; (c) Higashimura et al. (2000) [tdphpzb is hydridotris(3,5-diphenylpyrazol-1-yl)-borate]; (d) Kitajima et al. (1990) [tdippzb is hydridotris(3,5-diisopropylpyrazol-1-yl)-borate]; (e) Santini et al. (2002) [Tpms is tris(pyrazolyl)methanesulfonate]; (f) Deivaraj et al. (2000); (g) Ardizzoia et al. (1991) [dmpzdtc is 3,5-dimethylpyrazole-1-dithioacetate]; (h) Otero et al. (2002).

##AUTHOR: standard uncertainties ate missing from some values - please supply them.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds