Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compounds, 2-methoxy­ethyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxyl­ate, C21H20N2O4, (II), isopropyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxyl­ate, C21H20N2O3, (III), and ethyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxyl­ate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intra­molecular C—H...O contacts to form six-membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] inter­molecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak inter­molecular C—H...O and C—H...N hydrogen bonds, and in (III) inter­molecular C—H...O hydrogen bonds link the chains into ladders along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049001/bm3039sup1.cif
Contains datablocks II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049001/bm3039IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049001/bm3039IIIsup3.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049001/bm3039IVsup4.hkl
Contains datablock IV

CCDC references: 672432; 672433; 672434

Comment top

The present investigation is a continuation of our work on the synthesis and structural study of sterically hindered heterocyclic compounds, such as 4H-pyran derivatives (Nesterov et al., 2004, 2005), that can be obtained starting from different unsaturated nitriles (Nesterov et al., 2001a,b). Some 4H-pyran derivatives are potential bioactive compounds, such as calcium antagonists (Suarez et al., 2002) or potent apoptosis inducers (Kemnitzer et al., 2004; Zhang et al., 2005).

Synthesis and X-ray structural investigations have been carried out for compounds (II)–(IV) (Figs. 1–3) which were synthesized by the reaction of (1-naphthylmethylene)malononitrile, (I), with different β-ketoesters. Most of the geometric parameters in the molecules (Tables 2, 4 and 6) are very similar to standard values (Allen et al., 1987) and are very close to our previous data for sterically hindered 4H-pyran derivatives (Nesterov et al., 2004, 2005, and literature values cited therein).

X-ray analysis shows that the title molecules have similar structures, with the pyran ring adopting a flattened boat conformation (Table 1). The dihedral angles between the bulky pseudo-axial naphthalene substituent and the closest four atoms (C2/C3/C5/C6) of the pyran ring are 73.3 (1), 71.0 (1) and 74.3 (1)°, respectively. The mutual orientation of these fragments and the flatness of the heterocyclic rings lead to intramolecular H···H steric interactions: H4A···H15A = 2.08, 2.09 and 2.00 Å in (II)–(IV), respectively (Figs. 1–3). These contacts are shorter than the sum of the van der Waals radii of H atoms (2.2 Å; Rowland & Taylor, 1996). As in related compounds (Nesterov et al., 2004, 2005), such steric hindrance causes elongation of the C4—C7 bond to 1.536 (2), 1.541 (2) and 1.531 (3) Å, respectively, in comparison with neighbouring Csp3—Csp2 distances. The latter are only slightly longer than or are equal to the standard value (1.507 Å; Allen et al., 1987).

In (II) and (III), the CO group adopts an anti orientation relative to the C2C3 double bond [C2—C3—C18—O2 torsion angles are 172.0 (2) and 157.7 (2)°, respectively]. However, in (IV) it has a syn orientation [C2—C3—C18—O2 torsion angle is 26.1 (3)°]. As seen in Figs. 1–3, in (II) and (III) the O3 atoms of the ester groups and in (IV) atom O2 of the carbonyl group have favourable orientations for the formation of short steric intramolecular contacts with the methyl groups of the heterocyclic ring (O3/O2···H17A distances 2.08, 2.24 and 2.27 Å, respectively). According to literature data (Desiraju & Steiner 1999), these contacts can be considered weak hydrogen bonds. However, in these cases it can be difficult to distinguish between a weak intramolecular hydrogen bond and a contact which is enforced by the rigid molecular framework (Desiraju & Steiner, 1999). In each case, the contact connects the atoms into a six-membered ring. As in related compounds (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004), in all three title molecules there is conjugation between the donor NH2 and acceptor CN groups via the C5C6 double bond. Thus, in all three molecules, the C6—N1 bonds are shorter than the average conjugated C—N single-bond length (1.370 Å; Allen, 2002), but variations in the other distances in these flat fragments are less distinct.

In all three compounds, only one H atom of the NH2 group is involved in an N—H···O [(II) and (III)] or N—H···N [(IV)] intermolecular hydrogen bond (Tables 3, 5 and 7) and chains along the a axis are formed in (II) and (III) (Figs. 4 and 5). In (IV), the syn orientation of the CO group and its participation in the intramolecular steric contacts with the H atoms of the CH3 and CH2 groups (O2···H19A = 2.31 Å), and the different crystal packing, are reasons for the N—H···N hydrogen bonds forming centrosymmetric dimers in the crystal structure (Fig. 6). In addition, (II) exhibits weak C4—H4A··· O2 and C17—H17B···N2 interactions and in (III), C4—H4A··· O2 intermolecular hydrogen bonds link the chains along the a axis into ladders (Figs. 4 and 5; Tables 3 and 5).

Analysis of the crystal packing of the title compounds shows that in (II) and (III) there are short intermolecular steric contacts [C2···C2(1 - x, 1 - y, 1 - z) = 3.302 (3) Å and C10···C10(2 - x, -y, 1 - z) = 3.377 (3) Å in (II), and C8···C9(1 - x, 1 - y, -x) = 3.345 (3) Å in (III)] between atoms of the heterocycle or naphthalene fragments of neighbouring molecules which are less than the sum of the van der Waals radii of C (3.40 Å; Rowland & Taylor, 1996). In (IV), similar contacts are comparable with or slightly exceed the sum of the van der Waals radii of C. Such steric intermolecular contacts can play a role in determining the orientation of the bulky naphthalene substituents in the molecules and can be considered as ππ interactions between them in the crystal structures (Figs. 4 and 5). The other geometric parameters in compounds (II)–(IV) do not differ significantly from standard values (Allen et al., 1987).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Desiraju & Steiner (1999); Kemnitzer et al. (2004); Nesterov & Viltchinskaia (2001); Nesterov et al. (2001a, 2001b, 2004, 2005); Rowland & Taylor (1996); Sheldrick (2001); Suarez et al. (2002); Zhang et al. (2005).

Experimental top

The title compounds, (II)–(IV), were obtained by the reaction of (1-naphthylmethylene)malononitrile, (I), with 2-methoxyethyl acetoacetate, isopropyl acetoacetate and ethyl acetoacetate, respectively, according to a literature procedure (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004). The resulting precipitates were isolated and recrystallized from acetonitrile [m.p. 437 K, yield 75% for (II); m.p. 451 K, yield 79% for (III); m.p. 417 K, yield 77% for (IV)]. Crystals of the compounds were grown by slow isothermic evaporation from absolute ethanol solutions. All compounds were characterized by 1H and 13C NMR spectroscopy.

Refinement top

For all three title compounds, H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.95 Å for aromatic H atoms with Uiso(H) = 1.2Ueq(C), 0.98 Å for CH3 (AFIX 137 in SHELXTL; Sheldrick, 2001) with Uiso(H) = 1.5Ueq(C), 0.99 Å for CH2 with Uiso(H) = 1.2Ueq(C) and 1.00 Å for CH with Uiso(H) = 1.2Ueq(C), and with N—H distances of 0.88 Å for the NH2 group with Uiso(H) = 1.2Ueq(C). ##From the Co-editor: The lattice refinements are based on rather small numbers of reflections. Was SAINT-Plus actually used for these, or were they done in APEX2?

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. A view of compound (II), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines represent short intramolecular (C)H···O and H···H contacts, both of 2.08 Å.
[Figure 2] Fig. 2. A view of compound (III), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines represent short intramolecular (C)H···O and H···H contacts of 2.24 and 2.09 Å, respectively.
[Figure 3] Fig. 3. A view of compound (IV) showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines represent short intramolecular (C)H···O and H···H contacts of 2.27 and 2.00 Å, respectively.
[Figure 4] Fig. 4. A projection of the crystal packing of (II) along the c axis. Dashed lines represent intermolecular N—H···O and weak C—H···O and C—H···N hydrogen bonds. H atoms not involved in these interactions have been omitted for clarity.
[Figure 5] Fig. 5. A projection of the crystal packing of (III) along the b axis. Dashed lines represent intermolecular N—H···O and weak C—H···O hydrogen bonds. H atoms not involved in these interactions have been omitted for clarity.
[Figure 6] Fig. 6. A projection of the crystal packing of (IV) along the b axis. Dashed lines represent intermolecular N—H···N hydrogen bonds. H atoms not involved in these interactions have been omitted for clarity.
(II) 2-methoxyethyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate top
Crystal data top
C21H20N2O4Z = 2
Mr = 364.39F(000) = 384
Triclinic, P1Dx = 1.328 Mg m3
a = 8.245 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.962 (3) ÅCell parameters from 1887 reflections
c = 11.008 (3) Åθ = 3–28°
α = 98.391 (7)°µ = 0.09 mm1
β = 100.819 (8)°T = 100 K
γ = 107.349 (7)°Square prism, colourless
V = 910.9 (4) Å30.22 × 0.17 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3594 independent reflections
Radiation source: sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.902, Tmax = 0.987k = 1313
7926 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H20N2O4γ = 107.349 (7)°
Mr = 364.39V = 910.9 (4) Å3
Triclinic, P1Z = 2
a = 8.245 (2) ÅMo Kα radiation
b = 10.962 (3) ŵ = 0.09 mm1
c = 11.008 (3) ÅT = 100 K
α = 98.391 (7)°0.22 × 0.17 × 0.14 mm
β = 100.819 (8)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2533 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.987Rint = 0.029
7926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
3594 reflectionsΔρmin = 0.26 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41018 (15)0.31202 (11)0.38590 (11)0.0211 (3)
O20.99168 (15)0.33411 (12)0.37665 (11)0.0258 (3)
O30.79086 (16)0.27279 (14)0.19303 (11)0.0324 (3)
O40.68966 (17)0.09791 (13)0.03360 (12)0.0333 (3)
N10.31640 (19)0.35927 (14)0.55706 (14)0.0234 (4)
H1A0.32560.38070.63890.028*
H1B0.21670.34620.50270.028*
N20.6754 (2)0.44120 (16)0.82608 (15)0.0308 (4)
C10.6502 (2)0.40580 (17)0.71815 (17)0.0214 (4)
C20.5359 (2)0.30202 (16)0.32044 (16)0.0190 (4)
C30.6993 (2)0.31493 (16)0.38225 (15)0.0179 (4)
C40.7578 (2)0.33739 (16)0.52564 (15)0.0178 (4)
H4A0.86510.41710.55600.021*
C50.6159 (2)0.36299 (16)0.58482 (16)0.0182 (4)
C60.4542 (2)0.34660 (16)0.51515 (16)0.0186 (4)
C70.8057 (2)0.22093 (16)0.56394 (15)0.0177 (4)
C80.7108 (2)0.09620 (17)0.49691 (16)0.0204 (4)
H8A0.61210.08320.42980.024*
C90.7544 (2)0.01314 (17)0.52405 (17)0.0245 (4)
H9A0.68450.09830.47640.029*
C100.8967 (2)0.00282 (18)0.61857 (18)0.0262 (4)
H10A0.92740.07110.63510.031*
C110.9988 (2)0.12883 (18)0.69210 (16)0.0226 (4)
C121.1508 (2)0.1489 (2)0.78962 (17)0.0288 (4)
H12A1.18510.07600.80490.035*
C131.2476 (2)0.2700 (2)0.86114 (17)0.0316 (5)
H13A1.35030.28140.92390.038*
C141.1960 (2)0.3792 (2)0.84245 (17)0.0283 (4)
H14A1.26030.46290.89570.034*
C151.0532 (2)0.36457 (18)0.74761 (16)0.0222 (4)
H15A1.02100.43890.73500.027*
C160.9525 (2)0.24030 (17)0.66782 (15)0.0191 (4)
C170.4512 (2)0.27700 (19)0.18317 (16)0.0267 (4)
H17A0.52870.25430.13320.040*
H17B0.42920.35580.16330.040*
H17C0.33990.20440.16260.040*
C180.8406 (2)0.30847 (16)0.31877 (16)0.0198 (4)
C190.9213 (2)0.2536 (2)0.12673 (17)0.0292 (5)
H19A0.96280.18320.15260.035*
H19B1.02310.33520.14530.035*
C200.8308 (2)0.21658 (19)0.01109 (17)0.0287 (4)
H20A0.78660.28640.03540.034*
H20B0.91410.20540.06240.034*
C210.5818 (3)0.0644 (2)0.15847 (18)0.0349 (5)
H21A0.47880.01230.16660.052*
H21B0.64820.04430.21920.052*
H21C0.54400.13820.17590.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (6)0.0299 (7)0.0177 (6)0.0116 (6)0.0043 (5)0.0045 (5)
O20.0167 (7)0.0373 (8)0.0240 (7)0.0092 (6)0.0050 (5)0.0076 (6)
O30.0215 (7)0.0574 (9)0.0180 (7)0.0137 (7)0.0079 (5)0.0019 (6)
O40.0306 (8)0.0372 (8)0.0250 (7)0.0021 (6)0.0059 (6)0.0057 (6)
N10.0208 (8)0.0329 (9)0.0209 (8)0.0139 (7)0.0066 (6)0.0069 (7)
N20.0314 (9)0.0419 (10)0.0218 (9)0.0181 (8)0.0063 (7)0.0031 (8)
C10.0182 (9)0.0237 (10)0.0256 (11)0.0108 (8)0.0063 (8)0.0064 (8)
C20.0205 (9)0.0184 (9)0.0198 (9)0.0083 (7)0.0064 (7)0.0041 (7)
C30.0191 (9)0.0167 (9)0.0177 (9)0.0059 (7)0.0041 (7)0.0039 (7)
C40.0167 (9)0.0181 (9)0.0177 (9)0.0056 (7)0.0037 (7)0.0024 (7)
C50.0202 (9)0.0184 (9)0.0171 (9)0.0073 (7)0.0050 (7)0.0045 (7)
C60.0220 (9)0.0166 (9)0.0191 (9)0.0081 (7)0.0059 (7)0.0046 (7)
C70.0154 (8)0.0228 (9)0.0174 (9)0.0078 (7)0.0069 (7)0.0050 (7)
C80.0166 (9)0.0247 (9)0.0205 (9)0.0075 (7)0.0049 (7)0.0051 (7)
C90.0262 (10)0.0198 (9)0.0297 (10)0.0075 (8)0.0118 (8)0.0060 (8)
C100.0275 (10)0.0280 (10)0.0338 (11)0.0167 (9)0.0145 (8)0.0145 (9)
C110.0200 (9)0.0318 (10)0.0221 (9)0.0115 (8)0.0108 (7)0.0114 (8)
C120.0266 (10)0.0436 (12)0.0264 (10)0.0201 (9)0.0095 (8)0.0176 (9)
C130.0212 (10)0.0573 (14)0.0193 (10)0.0167 (10)0.0030 (8)0.0128 (9)
C140.0199 (10)0.0420 (12)0.0195 (10)0.0065 (9)0.0048 (7)0.0045 (8)
C150.0194 (9)0.0297 (10)0.0197 (9)0.0085 (8)0.0081 (7)0.0067 (8)
C160.0161 (9)0.0276 (10)0.0167 (9)0.0086 (8)0.0079 (7)0.0072 (7)
C170.0252 (10)0.0391 (11)0.0207 (10)0.0188 (9)0.0042 (8)0.0064 (8)
C180.0209 (9)0.0182 (9)0.0205 (9)0.0058 (7)0.0056 (7)0.0056 (7)
C190.0203 (10)0.0434 (12)0.0255 (10)0.0105 (9)0.0127 (8)0.0038 (9)
C200.0269 (10)0.0334 (11)0.0246 (10)0.0061 (9)0.0111 (8)0.0051 (8)
C210.0296 (11)0.0419 (13)0.0292 (11)0.0117 (10)0.0035 (9)0.0013 (9)
Geometric parameters (Å, º) top
O1—C61.366 (2)C9—H9A0.9500
O1—C21.389 (2)C10—C111.413 (3)
O2—C181.215 (2)C10—H10A0.9500
O3—C181.330 (2)C11—C121.426 (2)
O3—C191.455 (2)C11—C161.430 (2)
O4—C201.415 (2)C12—C131.359 (3)
O4—C211.419 (2)C12—H12A0.9500
N1—C61.340 (2)C13—C141.414 (3)
N1—H1A0.8800C13—H13A0.9500
N1—H1B0.8800C14—C151.370 (2)
N2—C11.153 (2)C14—H14A0.9500
C1—C51.421 (2)C15—C161.421 (2)
C2—C31.347 (2)C15—H15A0.9500
C2—C171.488 (2)C17—H17A0.9800
C3—C181.481 (2)C17—H17B0.9800
C3—C41.521 (2)C17—H17C0.9800
C4—C51.517 (2)C19—C201.496 (3)
C4—C71.536 (2)C19—H19A0.9900
C4—H4A1.0000C19—H19B0.9900
C5—C61.353 (2)C20—H20A0.9900
C7—C81.370 (2)C20—H20B0.9900
C7—C161.440 (2)C21—H21A0.9800
C8—C91.406 (2)C21—H21B0.9800
C8—H8A0.9500C21—H21C0.9800
C9—C101.362 (3)
C6—O1—C2120.42 (13)C13—C12—H12A119.3
C18—O3—C19117.36 (14)C11—C12—H12A119.3
C20—O4—C21112.39 (14)C12—C13—C14120.24 (17)
C6—N1—H1A120.0C12—C13—H13A119.9
C6—N1—H1B120.0C14—C13—H13A119.9
H1A—N1—H1B120.0C15—C14—C13120.09 (18)
N2—C1—C5178.80 (19)C15—C14—H14A120.0
C3—C2—O1121.12 (15)C13—C14—H14A120.0
C3—C2—C17131.90 (16)C14—C15—C16121.28 (17)
O1—C2—C17106.98 (14)C14—C15—H15A119.4
C2—C3—C18123.96 (16)C16—C15—H15A119.4
C2—C3—C4123.21 (15)C15—C16—C11118.38 (15)
C18—C3—C4112.83 (14)C15—C16—C7123.27 (15)
C5—C4—C3109.69 (14)C11—C16—C7118.35 (16)
C5—C4—C7112.09 (14)C2—C17—H17A109.5
C3—C4—C7110.55 (13)C2—C17—H17B109.5
C5—C4—H4A108.1H17A—C17—H17B109.5
C3—C4—H4A108.1C2—C17—H17C109.5
C7—C4—H4A108.1H17A—C17—H17C109.5
C6—C5—C1117.45 (16)H17B—C17—H17C109.5
C6—C5—C4122.48 (15)O2—C18—O3122.03 (16)
C1—C5—C4120.07 (15)O2—C18—C3122.77 (16)
N1—C6—C5127.75 (16)O3—C18—C3115.20 (15)
N1—C6—O1110.06 (14)O3—C19—C20105.69 (15)
C5—C6—O1122.19 (15)O3—C19—H19A110.6
C8—C7—C16118.85 (15)C20—C19—H19A110.6
C8—C7—C4119.98 (15)O3—C19—H19B110.6
C16—C7—C4121.15 (15)C20—C19—H19B110.6
C7—C8—C9122.26 (16)H19A—C19—H19B108.7
C7—C8—H8A118.9O4—C20—C19108.54 (15)
C9—C8—H8A118.9O4—C20—H20A110.0
C10—C9—C8120.14 (17)C19—C20—H20A110.0
C10—C9—H9A119.9O4—C20—H20B110.0
C8—C9—H9A119.9C19—C20—H20B110.0
C9—C10—C11120.33 (16)H20A—C20—H20B108.4
C9—C10—H10A119.8O4—C21—H21A109.5
C11—C10—H10A119.8O4—C21—H21B109.5
C10—C11—C12121.55 (16)H21A—C21—H21B109.5
C10—C11—C16119.98 (16)O4—C21—H21C109.5
C12—C11—C16118.46 (17)H21A—C21—H21C109.5
C13—C12—C11121.38 (17)H21B—C21—H21C109.5
C6—O1—C2—C35.7 (2)C8—C9—C10—C111.6 (3)
C6—O1—C2—C17174.15 (14)C9—C10—C11—C12178.48 (17)
O1—C2—C3—C18178.53 (15)C9—C10—C11—C160.3 (3)
C17—C2—C3—C181.3 (3)C10—C11—C12—C13179.23 (18)
O1—C2—C3—C41.7 (3)C16—C11—C12—C132.0 (3)
C17—C2—C3—C4178.44 (17)C11—C12—C13—C141.8 (3)
C2—C3—C4—C58.6 (2)C12—C13—C14—C153.4 (3)
C18—C3—C4—C5171.62 (14)C13—C14—C15—C161.1 (3)
C2—C3—C4—C7115.52 (18)C14—C15—C16—C112.7 (3)
C18—C3—C4—C764.28 (18)C14—C15—C16—C7177.50 (16)
C3—C4—C5—C69.4 (2)C10—C11—C16—C15177.02 (16)
C7—C4—C5—C6113.85 (18)C12—C11—C16—C154.2 (2)
C3—C4—C5—C1170.67 (15)C10—C11—C16—C72.8 (2)
C7—C4—C5—C166.1 (2)C12—C11—C16—C7176.01 (15)
C1—C5—C6—N13.9 (3)C8—C7—C16—C15176.38 (16)
C4—C5—C6—N1176.11 (16)C4—C7—C16—C155.2 (2)
C1—C5—C6—O1176.71 (15)C8—C7—C16—C113.4 (2)
C4—C5—C6—O13.3 (3)C4—C7—C16—C11174.97 (14)
C2—O1—C6—N1175.55 (14)C19—O3—C18—O25.5 (3)
C2—O1—C6—C54.9 (2)C19—O3—C18—C3174.67 (15)
C5—C4—C7—C885.72 (19)C2—C3—C18—O2171.95 (17)
C3—C4—C7—C837.0 (2)C4—C3—C18—O28.2 (2)
C5—C4—C7—C1695.89 (18)C2—C3—C18—O37.9 (2)
C3—C4—C7—C16141.40 (15)C4—C3—C18—O3171.95 (14)
C16—C7—C8—C91.6 (3)C18—O3—C19—C20179.18 (15)
C4—C7—C8—C9176.79 (15)C21—O4—C20—C19171.97 (15)
C7—C8—C9—C100.9 (3)O3—C19—C20—O461.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.882.052.931 (2)175
C4—H4A···O2ii1.002.563.463 (3)150
C17—H17B···N2iii0.982.613.552 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
(III) isopropyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate top
Crystal data top
C21H20N2O3Z = 2
Mr = 348.39F(000) = 368
Triclinic, P1Dx = 1.283 Mg m3
a = 8.248 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.184 (4) ÅCell parameters from 3217 reflections
c = 11.394 (4) Åθ = 3–28°
α = 63.646 (7)°µ = 0.09 mm1
β = 73.836 (8)°T = 100 K
γ = 79.069 (7)°Plate, colourless
V = 901.9 (6) Å30.20 × 0.16 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3528 independent reflections
Radiation source: sealed tube2682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.913, Tmax = 0.999k = 1313
7635 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H20N2O3γ = 79.069 (7)°
Mr = 348.39V = 901.9 (6) Å3
Triclinic, P1Z = 2
a = 8.248 (3) ÅMo Kα radiation
b = 11.184 (4) ŵ = 0.09 mm1
c = 11.394 (4) ÅT = 100 K
α = 63.646 (7)°0.20 × 0.16 × 0.01 mm
β = 73.836 (8)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2682 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.999Rint = 0.030
7635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
3528 reflectionsΔρmin = 0.23 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05122 (15)0.65181 (12)0.30744 (13)0.0294 (3)
O20.60896 (16)0.65576 (12)0.34502 (13)0.0295 (3)
O30.47402 (16)0.85241 (12)0.23516 (13)0.0312 (3)
N10.0734 (2)0.47542 (16)0.34278 (17)0.0340 (4)
H1A0.07840.39110.36010.041*
H1B0.16390.53170.33040.041*
N20.2231 (2)0.19285 (16)0.41998 (19)0.0427 (5)
C10.2254 (2)0.30610 (19)0.38873 (19)0.0298 (4)
C20.1845 (2)0.71550 (17)0.30085 (17)0.0254 (4)
C30.3402 (2)0.65344 (17)0.30871 (17)0.0237 (4)
C40.3826 (2)0.50766 (16)0.33128 (17)0.0236 (4)
H4A0.42500.45950.41600.028*
C50.2229 (2)0.44574 (17)0.35133 (17)0.0251 (4)
C60.0723 (2)0.51821 (17)0.33515 (17)0.0256 (4)
C70.5248 (2)0.49425 (17)0.21602 (17)0.0245 (4)
C80.5385 (2)0.59310 (18)0.08794 (18)0.0283 (4)
H8A0.45620.66720.07100.034*
C90.6716 (2)0.5875 (2)0.01914 (19)0.0326 (4)
H9A0.67830.65730.10670.039*
C100.7905 (2)0.4819 (2)0.0034 (2)0.0337 (5)
H10A0.88020.47890.06890.040*
C110.7824 (2)0.37653 (19)0.1331 (2)0.0301 (4)
C120.9087 (2)0.2675 (2)0.1591 (2)0.0381 (5)
H12A0.99940.26420.08760.046*
C130.9018 (3)0.1682 (2)0.2844 (2)0.0418 (5)
H13A0.98900.09770.30010.050*
C140.7654 (3)0.16945 (19)0.3913 (2)0.0374 (5)
H14A0.75950.09820.47800.045*
C150.6418 (2)0.27265 (18)0.37066 (19)0.0297 (4)
H15A0.55110.27200.44370.036*
C160.6463 (2)0.38131 (18)0.24169 (18)0.0261 (4)
C170.1162 (2)0.85348 (18)0.2884 (2)0.0308 (4)
H17A0.19630.89320.30770.046*
H17B0.00730.84880.35250.046*
H17C0.10010.90890.19690.046*
C180.4863 (2)0.71888 (17)0.29970 (17)0.0247 (4)
C190.6152 (2)0.92553 (19)0.2191 (2)0.0349 (5)
H19A0.66300.88190.30140.042*
C200.5363 (3)1.0642 (2)0.2024 (3)0.0554 (7)
H20A0.44981.05820.28330.083*
H20B0.48401.10400.12450.083*
H20C0.62401.12020.18850.083*
C210.7489 (3)0.9241 (3)0.0990 (2)0.0564 (7)
H21A0.79330.83170.11540.085*
H21B0.84110.97680.08350.085*
H21C0.69930.96300.01970.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (6)0.0210 (6)0.0461 (8)0.0019 (5)0.0093 (5)0.0147 (6)
O20.0235 (7)0.0269 (7)0.0390 (7)0.0031 (5)0.0103 (5)0.0144 (6)
O30.0266 (7)0.0200 (6)0.0469 (8)0.0024 (5)0.0120 (6)0.0111 (6)
N10.0220 (8)0.0270 (8)0.0564 (11)0.0008 (6)0.0096 (7)0.0208 (8)
N20.0332 (10)0.0248 (9)0.0648 (12)0.0023 (7)0.0058 (8)0.0167 (8)
C10.0225 (9)0.0262 (10)0.0383 (10)0.0021 (7)0.0034 (8)0.0131 (8)
C20.0253 (9)0.0198 (9)0.0300 (9)0.0010 (7)0.0053 (7)0.0102 (7)
C30.0250 (9)0.0195 (9)0.0261 (9)0.0001 (7)0.0046 (7)0.0103 (7)
C40.0226 (9)0.0181 (9)0.0287 (9)0.0024 (7)0.0067 (7)0.0093 (7)
C50.0244 (9)0.0199 (9)0.0292 (9)0.0015 (7)0.0033 (7)0.0102 (7)
C60.0265 (9)0.0210 (9)0.0291 (9)0.0032 (7)0.0035 (7)0.0110 (7)
C70.0212 (9)0.0236 (9)0.0326 (10)0.0016 (7)0.0067 (7)0.0148 (8)
C80.0266 (9)0.0262 (9)0.0332 (10)0.0020 (7)0.0074 (7)0.0128 (8)
C90.0320 (10)0.0342 (11)0.0329 (10)0.0074 (8)0.0047 (8)0.0147 (8)
C100.0280 (10)0.0404 (11)0.0390 (11)0.0092 (8)0.0011 (8)0.0244 (9)
C110.0217 (9)0.0306 (10)0.0474 (11)0.0020 (7)0.0064 (8)0.0252 (9)
C120.0241 (10)0.0394 (12)0.0626 (14)0.0006 (8)0.0058 (9)0.0349 (11)
C130.0315 (11)0.0280 (11)0.0744 (16)0.0094 (8)0.0181 (10)0.0294 (11)
C140.0377 (11)0.0230 (10)0.0551 (13)0.0032 (8)0.0195 (10)0.0162 (9)
C150.0283 (10)0.0235 (9)0.0410 (11)0.0006 (7)0.0108 (8)0.0159 (8)
C160.0230 (9)0.0240 (9)0.0368 (10)0.0021 (7)0.0085 (7)0.0161 (8)
C170.0256 (9)0.0215 (9)0.0442 (11)0.0015 (7)0.0065 (8)0.0146 (8)
C180.0250 (9)0.0217 (9)0.0259 (9)0.0010 (7)0.0029 (7)0.0112 (7)
C190.0315 (11)0.0287 (10)0.0450 (11)0.0096 (8)0.0128 (9)0.0102 (9)
C200.0550 (15)0.0288 (12)0.0856 (18)0.0100 (11)0.0238 (13)0.0191 (12)
C210.0429 (13)0.0662 (17)0.0543 (14)0.0233 (12)0.0008 (11)0.0181 (12)
Geometric parameters (Å, º) top
O1—C61.370 (2)C10—C111.416 (3)
O1—C21.388 (2)C10—H10A0.9500
O2—C181.219 (2)C11—C121.425 (3)
O3—C181.338 (2)C11—C161.434 (3)
O3—C191.472 (2)C12—C131.358 (3)
N1—C61.343 (2)C12—H12A0.9500
N1—H1A0.8800C13—C141.412 (3)
N1—H1B0.8800C13—H13A0.9500
N2—C11.156 (2)C14—C151.369 (3)
C1—C51.422 (3)C14—H14A0.9500
C2—C31.345 (3)C15—C161.428 (3)
C2—C171.497 (2)C15—H15A0.9500
C3—C181.482 (3)C17—H17A0.9800
C3—C41.519 (2)C17—H17B0.9800
C4—C51.518 (2)C17—H17C0.9800
C4—C71.541 (2)C19—C211.503 (3)
C4—H4A1.0000C19—C201.513 (3)
C5—C61.359 (3)C19—H19A1.0000
C7—C81.374 (3)C20—H20A0.9800
C7—C161.429 (3)C20—H20B0.9800
C8—C91.412 (3)C20—H20C0.9800
C8—H8A0.9500C21—H21A0.9800
C9—C101.362 (3)C21—H21B0.9800
C9—H9A0.9500C21—H21C0.9800
C6—O1—C2119.73 (14)C11—C12—H12A119.4
C18—O3—C19118.20 (15)C12—C13—C14120.24 (19)
C6—N1—H1A120.0C12—C13—H13A119.9
C6—N1—H1B120.0C14—C13—H13A119.9
H1A—N1—H1B120.0C15—C14—C13120.4 (2)
N2—C1—C5178.3 (2)C15—C14—H14A119.8
C3—C2—O1122.08 (16)C13—C14—H14A119.8
C3—C2—C17130.89 (17)C14—C15—C16121.40 (18)
O1—C2—C17107.01 (14)C14—C15—H15A119.3
C2—C3—C18123.60 (16)C16—C15—H15A119.3
C2—C3—C4123.14 (16)C15—C16—C7123.66 (16)
C18—C3—C4113.25 (15)C15—C16—C11117.61 (17)
C5—C4—C3109.58 (14)C7—C16—C11118.72 (17)
C5—C4—C7112.98 (14)C2—C17—H17A109.5
C3—C4—C7110.87 (14)C2—C17—H17B109.5
C5—C4—H4A107.7H17A—C17—H17B109.5
C3—C4—H4A107.7C2—C17—H17C109.5
C7—C4—H4A107.7H17A—C17—H17C109.5
C6—C5—C1116.63 (16)H17B—C17—H17C109.5
C6—C5—C4122.90 (16)O2—C18—O3122.87 (16)
C1—C5—C4120.47 (15)O2—C18—C3122.58 (16)
N1—C6—C5127.81 (17)O3—C18—C3114.53 (15)
N1—C6—O1110.11 (15)O3—C19—C21108.28 (17)
C5—C6—O1122.08 (16)O3—C19—C20104.65 (16)
C8—C7—C16119.38 (16)C21—C19—C20113.47 (19)
C8—C7—C4120.07 (16)O3—C19—H19A110.1
C16—C7—C4120.52 (15)C21—C19—H19A110.1
C7—C8—C9121.77 (18)C20—C19—H19A110.1
C7—C8—H8A119.1C19—C20—H20A109.5
C9—C8—H8A119.1C19—C20—H20B109.5
C10—C9—C8119.87 (18)H20A—C20—H20B109.5
C10—C9—H9A120.1C19—C20—H20C109.5
C8—C9—H9A120.1H20A—C20—H20C109.5
C9—C10—C11120.92 (17)H20B—C20—H20C109.5
C9—C10—H10A119.5C19—C21—H21A109.5
C11—C10—H10A119.5C19—C21—H21B109.5
C10—C11—C12121.57 (18)H21A—C21—H21B109.5
C10—C11—C16119.31 (17)C19—C21—H21C109.5
C12—C11—C16119.10 (18)H21A—C21—H21C109.5
C13—C12—C11121.20 (19)H21B—C21—H21C109.5
C13—C12—H12A119.4
C6—O1—C2—C36.2 (2)C8—C9—C10—C110.4 (3)
C6—O1—C2—C17172.29 (14)C9—C10—C11—C12178.00 (18)
O1—C2—C3—C18178.90 (15)C9—C10—C11—C160.3 (3)
C17—C2—C3—C183.0 (3)C10—C11—C12—C13178.65 (18)
O1—C2—C3—C42.7 (3)C16—C11—C12—C130.4 (3)
C17—C2—C3—C4175.40 (17)C11—C12—C13—C141.7 (3)
C2—C3—C4—C53.5 (2)C12—C13—C14—C152.0 (3)
C18—C3—C4—C5175.09 (14)C13—C14—C15—C160.1 (3)
C2—C3—C4—C7121.90 (18)C14—C15—C16—C7177.17 (17)
C18—C3—C4—C759.53 (19)C14—C15—C16—C111.9 (3)
C3—C4—C5—C66.8 (2)C8—C7—C16—C15179.13 (16)
C7—C4—C5—C6117.34 (18)C4—C7—C16—C152.7 (3)
C3—C4—C5—C1173.18 (15)C8—C7—C16—C111.8 (3)
C7—C4—C5—C162.7 (2)C4—C7—C16—C11176.40 (15)
C1—C5—C6—N14.1 (3)C10—C11—C16—C15179.52 (16)
C4—C5—C6—N1175.88 (17)C12—C11—C16—C152.2 (3)
C1—C5—C6—O1175.88 (15)C10—C11—C16—C71.3 (3)
C4—C5—C6—O14.1 (3)C12—C11—C16—C7176.99 (16)
C2—O1—C6—N1177.25 (14)C19—O3—C18—O20.2 (2)
C2—O1—C6—C52.8 (2)C19—O3—C18—C3178.76 (14)
C5—C4—C7—C890.96 (19)C2—C3—C18—O2157.71 (17)
C3—C4—C7—C832.5 (2)C4—C3—C18—O220.8 (2)
C5—C4—C7—C1690.87 (19)C2—C3—C18—O323.8 (2)
C3—C4—C7—C16145.69 (16)C4—C3—C18—O3157.69 (14)
C16—C7—C8—C91.2 (3)C18—O3—C19—C2183.1 (2)
C4—C7—C8—C9177.00 (16)C18—O3—C19—C20155.61 (17)
C7—C8—C9—C100.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.882.122.989 (2)168
C4—H4A···O2ii1.002.403.325 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
(IV) ethyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate top
Crystal data top
C20H18N2O3F(000) = 704
Mr = 334.36Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8638 (7) ÅCell parameters from 1424 reflections
b = 19.4628 (18) Åθ = 3–26°
c = 11.0823 (10) ŵ = 0.09 mm1
β = 99.963 (2)°T = 100 K
V = 1670.6 (3) Å3Square prism, colourless
Z = 40.20 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3413 independent reflections
Radiation source: sealed tube2184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.918, Tmax = 0.987k = 2424
14847 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3413 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H18N2O3V = 1670.6 (3) Å3
Mr = 334.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8638 (7) ŵ = 0.09 mm1
b = 19.4628 (18) ÅT = 100 K
c = 11.0823 (10) Å0.20 × 0.16 × 0.14 mm
β = 99.963 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2184 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.987Rint = 0.078
14847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
3413 reflectionsΔρmin = 0.22 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53777 (17)0.39813 (7)0.64463 (12)0.0215 (3)
O20.86631 (19)0.30531 (8)0.41465 (13)0.0352 (4)
O30.73719 (17)0.37998 (7)0.27323 (12)0.0219 (3)
N10.2869 (2)0.44364 (8)0.66878 (15)0.0227 (4)
H1A0.18420.46180.64420.027*
H1B0.32580.43800.74750.027*
N20.0548 (2)0.48391 (9)0.36791 (16)0.0269 (4)
C10.1846 (3)0.45905 (10)0.41101 (18)0.0196 (5)
C20.6565 (2)0.37264 (10)0.57571 (18)0.0198 (5)
C30.6282 (2)0.37528 (10)0.45345 (18)0.0183 (4)
C40.4663 (2)0.40611 (10)0.37885 (17)0.0165 (4)
H4A0.50120.44760.33570.020*
C50.3448 (2)0.42951 (10)0.46270 (18)0.0166 (4)
C60.3843 (2)0.42455 (10)0.58600 (18)0.0179 (5)
C70.3770 (2)0.35613 (10)0.28134 (17)0.0161 (4)
C80.3710 (3)0.28714 (10)0.30760 (19)0.0210 (5)
H8A0.42150.27130.38680.025*
C90.2917 (3)0.23945 (11)0.2197 (2)0.0249 (5)
H9A0.29020.19200.23990.030*
C100.2172 (3)0.26125 (11)0.10596 (19)0.0244 (5)
H10A0.16500.22880.04690.029*
C110.2170 (2)0.33197 (11)0.07480 (18)0.0207 (5)
C120.1334 (3)0.35551 (12)0.04164 (19)0.0276 (5)
H12A0.07830.32340.10030.033*
C130.1313 (3)0.42384 (12)0.0702 (2)0.0309 (6)
H13A0.07330.43910.14790.037*
C140.2147 (3)0.47149 (12)0.0150 (2)0.0294 (5)
H14A0.21490.51880.00610.035*
C150.2954 (3)0.45055 (11)0.12795 (19)0.0239 (5)
H15A0.35070.48360.18450.029*
C160.2985 (2)0.38032 (10)0.16258 (18)0.0185 (4)
C170.8089 (3)0.34687 (12)0.66342 (19)0.0280 (5)
H17A0.89600.32950.61770.042*
H17B0.77260.30970.71290.042*
H17C0.85810.38450.71720.042*
C180.7590 (2)0.34907 (11)0.38227 (18)0.0216 (5)
C190.8363 (3)0.35576 (11)0.18208 (18)0.0245 (5)
H19A0.91100.31680.21530.029*
H19B0.91070.39310.16000.029*
C200.7104 (3)0.33309 (12)0.0706 (2)0.0322 (6)
H20A0.77420.31610.00810.048*
H20B0.63830.37210.03770.048*
H20C0.63700.29630.09350.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (7)0.0231 (8)0.0184 (8)0.0052 (6)0.0020 (6)0.0005 (6)
O20.0325 (9)0.0421 (10)0.0322 (9)0.0203 (8)0.0087 (7)0.0080 (8)
O30.0218 (7)0.0227 (8)0.0227 (8)0.0047 (6)0.0076 (6)0.0015 (6)
N10.0236 (9)0.0268 (10)0.0181 (9)0.0059 (8)0.0048 (8)0.0012 (8)
N20.0264 (10)0.0297 (11)0.0241 (10)0.0066 (8)0.0032 (8)0.0024 (8)
C10.0227 (11)0.0196 (11)0.0167 (11)0.0002 (9)0.0042 (9)0.0044 (9)
C20.0182 (10)0.0170 (11)0.0247 (12)0.0007 (9)0.0047 (9)0.0021 (9)
C30.0173 (10)0.0155 (11)0.0217 (11)0.0001 (9)0.0023 (9)0.0008 (9)
C40.0191 (10)0.0137 (10)0.0162 (11)0.0006 (8)0.0019 (8)0.0001 (8)
C50.0165 (10)0.0140 (10)0.0189 (11)0.0016 (8)0.0020 (9)0.0022 (8)
C60.0179 (10)0.0117 (10)0.0241 (12)0.0005 (8)0.0034 (9)0.0008 (8)
C70.0125 (9)0.0187 (11)0.0173 (10)0.0002 (8)0.0030 (8)0.0027 (8)
C80.0223 (11)0.0202 (11)0.0208 (11)0.0004 (9)0.0046 (9)0.0001 (9)
C90.0271 (12)0.0157 (11)0.0338 (13)0.0041 (9)0.0106 (10)0.0036 (10)
C100.0193 (11)0.0271 (12)0.0281 (13)0.0067 (9)0.0083 (10)0.0130 (10)
C110.0136 (10)0.0295 (12)0.0199 (11)0.0012 (9)0.0053 (9)0.0068 (9)
C120.0193 (11)0.0454 (15)0.0181 (11)0.0031 (10)0.0034 (9)0.0087 (11)
C130.0255 (12)0.0499 (16)0.0172 (12)0.0049 (11)0.0036 (10)0.0048 (11)
C140.0272 (12)0.0323 (13)0.0288 (13)0.0038 (10)0.0051 (10)0.0082 (11)
C150.0228 (11)0.0253 (12)0.0227 (12)0.0007 (9)0.0013 (9)0.0005 (9)
C160.0133 (9)0.0231 (11)0.0197 (11)0.0002 (9)0.0044 (8)0.0020 (9)
C170.0245 (11)0.0340 (13)0.0232 (12)0.0076 (10)0.0023 (10)0.0018 (10)
C180.0178 (11)0.0228 (12)0.0227 (12)0.0017 (9)0.0002 (9)0.0001 (9)
C190.0239 (11)0.0270 (12)0.0253 (12)0.0029 (9)0.0116 (10)0.0009 (10)
C200.0308 (13)0.0369 (14)0.0302 (13)0.0018 (11)0.0092 (11)0.0069 (11)
Geometric parameters (Å, º) top
O1—C61.368 (2)C9—H9A0.9500
O1—C21.395 (2)C10—C111.419 (3)
O2—C181.209 (2)C10—H10A0.9500
O3—C181.334 (2)C11—C121.419 (3)
O3—C191.457 (2)C11—C161.424 (3)
N1—C61.346 (2)C12—C131.366 (3)
N1—H1A0.8800C12—H12A0.9500
N1—H1B0.8800C13—C141.403 (3)
N2—C11.156 (2)C13—H13A0.9500
C1—C51.413 (3)C14—C151.364 (3)
C2—C31.336 (3)C14—H14A0.9500
C2—C171.493 (3)C15—C161.419 (3)
C3—C181.490 (3)C15—H15A0.9500
C3—C41.517 (3)C17—H17A0.9800
C4—C51.513 (3)C17—H17B0.9800
C4—C71.531 (3)C17—H17C0.9800
C4—H4A1.0000C19—C201.510 (3)
C5—C61.351 (3)C19—H19A0.9900
C7—C81.376 (3)C19—H19B0.9900
C7—C161.433 (3)C20—H20A0.9800
C8—C91.410 (3)C20—H20B0.9800
C8—H8A0.9500C20—H20C0.9800
C9—C101.363 (3)
C6—O1—C2119.48 (15)C12—C11—C16119.40 (19)
C18—O3—C19118.80 (16)C13—C12—C11120.7 (2)
C6—N1—H1A120.0C13—C12—H12A119.7
C6—N1—H1B120.0C11—C12—H12A119.7
H1A—N1—H1B120.0C12—C13—C14120.1 (2)
N2—C1—C5179.0 (2)C12—C13—H13A119.9
C3—C2—O1122.16 (17)C14—C13—H13A119.9
C3—C2—C17130.31 (19)C15—C14—C13120.6 (2)
O1—C2—C17107.50 (16)C15—C14—H14A119.7
C2—C3—C18121.01 (18)C13—C14—H14A119.7
C2—C3—C4122.99 (18)C14—C15—C16121.3 (2)
C18—C3—C4115.99 (17)C14—C15—H15A119.4
C5—C4—C3110.12 (16)C16—C15—H15A119.4
C5—C4—C7111.32 (15)C15—C16—C11117.86 (18)
C3—C4—C7111.87 (15)C15—C16—C7123.33 (18)
C5—C4—H4A107.8C11—C16—C7118.80 (18)
C3—C4—H4A107.8C2—C17—H17A109.5
C7—C4—H4A107.8C2—C17—H17B109.5
C6—C5—C1118.17 (18)H17A—C17—H17B109.5
C6—C5—C4122.69 (17)C2—C17—H17C109.5
C1—C5—C4119.13 (17)H17A—C17—H17C109.5
N1—C6—C5127.67 (18)H17B—C17—H17C109.5
N1—C6—O1109.86 (16)O2—C18—O3124.09 (19)
C5—C6—O1122.47 (18)O2—C18—C3126.46 (19)
C8—C7—C16119.32 (18)O3—C18—C3109.43 (17)
C8—C7—C4119.91 (17)O3—C19—C20107.98 (16)
C16—C7—C4120.76 (17)O3—C19—H19A110.1
C7—C8—C9121.55 (19)C20—C19—H19A110.1
C7—C8—H8A119.2O3—C19—H19B110.1
C9—C8—H8A119.2C20—C19—H19B110.1
C10—C9—C8120.1 (2)H19A—C19—H19B108.4
C10—C9—H9A119.9C19—C20—H20A109.5
C8—C9—H9A119.9C19—C20—H20B109.5
C9—C10—C11120.63 (19)H20A—C20—H20B109.5
C9—C10—H10A119.7C19—C20—H20C109.5
C11—C10—H10A119.7H20A—C20—H20C109.5
C10—C11—C12121.02 (19)H20B—C20—H20C109.5
C10—C11—C16119.56 (19)
C6—O1—C2—C32.4 (3)C7—C8—C9—C100.5 (3)
C6—O1—C2—C17179.42 (16)C8—C9—C10—C110.6 (3)
O1—C2—C3—C18178.63 (17)C9—C10—C11—C12177.28 (19)
C17—C2—C3—C180.9 (3)C9—C10—C11—C161.3 (3)
O1—C2—C3—C40.2 (3)C10—C11—C12—C13178.9 (2)
C17—C2—C3—C4177.5 (2)C16—C11—C12—C130.3 (3)
C2—C3—C4—C52.2 (3)C11—C12—C13—C141.0 (3)
C18—C3—C4—C5179.21 (16)C12—C13—C14—C151.4 (3)
C2—C3—C4—C7126.6 (2)C13—C14—C15—C160.3 (3)
C18—C3—C4—C754.9 (2)C14—C15—C16—C111.1 (3)
C3—C4—C5—C62.1 (3)C14—C15—C16—C7178.00 (19)
C7—C4—C5—C6126.75 (19)C10—C11—C16—C15179.98 (18)
C3—C4—C5—C1179.19 (18)C12—C11—C16—C151.4 (3)
C7—C4—C5—C154.5 (2)C10—C11—C16—C70.9 (3)
C1—C5—C6—N11.2 (3)C12—C11—C16—C7177.75 (17)
C4—C5—C6—N1179.96 (18)C8—C7—C16—C15178.81 (19)
C1—C5—C6—O1178.54 (17)C4—C7—C16—C150.9 (3)
C4—C5—C6—O10.2 (3)C8—C7—C16—C110.2 (3)
C2—O1—C6—N1177.60 (16)C4—C7—C16—C11179.99 (17)
C2—O1—C6—C52.6 (3)C19—O3—C18—O26.1 (3)
C5—C4—C7—C885.3 (2)C19—O3—C18—C3172.06 (15)
C3—C4—C7—C838.4 (2)C2—C3—C18—O226.1 (3)
C5—C4—C7—C1694.4 (2)C4—C3—C18—O2155.4 (2)
C3—C4—C7—C16141.88 (18)C2—C3—C18—O3155.87 (18)
C16—C7—C8—C91.0 (3)C4—C3—C18—O322.7 (2)
C4—C7—C8—C9179.27 (17)C18—O3—C19—C20120.62 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.142.999 (2)165
Symmetry code: (i) x, y+1, z+1.

Experimental details

(II)(III)(IV)
Crystal data
Chemical formulaC21H20N2O4C21H20N2O3C20H18N2O3
Mr364.39348.39334.36
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)100100100
a, b, c (Å)8.245 (2), 10.962 (3), 11.008 (3)8.248 (3), 11.184 (4), 11.394 (4)7.8638 (7), 19.4628 (18), 11.0823 (10)
α, β, γ (°)98.391 (7), 100.819 (8), 107.349 (7)63.646 (7), 73.836 (8), 79.069 (7)90, 99.963 (2), 90
V3)910.9 (4)901.9 (6)1670.6 (3)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.090.09
Crystal size (mm)0.22 × 0.17 × 0.140.20 × 0.16 × 0.010.20 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.902, 0.9870.913, 0.9990.918, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7926, 3594, 2533 7635, 3528, 2682 14847, 3413, 2184
Rint0.0290.0300.078
(sin θ/λ)max1)0.6170.6170.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.00 0.053, 0.148, 1.01 0.047, 0.111, 1.00
No. of reflections359435283413
No. of parameters246238228
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.260.38, 0.230.27, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) for (II) top
O2—C181.215 (2)C3—C181.481 (2)
O3—C181.330 (2)C4—C71.536 (2)
N1—C61.340 (2)C5—C61.353 (2)
C2—C31.347 (2)
C2—C3—C18—O2171.95 (17)C2—C3—C18—O37.9 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.882.052.931 (2)175
C4—H4A···O2ii1.002.563.463 (3)150
C17—H17B···N2iii0.982.613.552 (2)161
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (III) top
O2—C181.219 (2)C3—C181.482 (3)
O3—C181.338 (2)C4—C71.541 (2)
N1—C61.343 (2)C5—C61.359 (3)
C2—C31.345 (3)
C2—C3—C18—O2157.71 (17)C2—C3—C18—O323.8 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.882.122.989 (2)168
C4—H4A···O2ii1.002.403.325 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (IV) top
O2—C181.209 (2)C3—C181.490 (3)
O3—C181.334 (2)C4—C71.531 (3)
N1—C61.346 (2)C5—C61.351 (3)
C2—C31.336 (3)
C2—C3—C18—O226.1 (3)C2—C3—C18—O3155.87 (18)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.142.999 (2)165
Symmetry code: (i) x, y+1, z+1.
Geometric parameters (Å, °) for the heterocyclic rings in the compounds (II)–(IV) top
Plane/Compound(II)(III)(IV)
Δ(C2/C3/C5/C6)a0.004 (1)0.017 (1)0.001 (1)
Displacement of O1 from plane-0.054 (1)-0.046 (1)0.026 (1)
Displacement of C4 from plane-0.115 (1)-0.066 (1)0.028 (1)
Hinge angle
O1—C47.8 (1)5.3 (1)2.5 (1)
C2—C64.6 (1)3.9 (1)2.1 (1)
C3—C57.5 (1)4.4 (1)1.8 (1)
a Δ(C2/C3/C5/C6) is the r.m.s. deviation of the atoms from the least-squares mean plane through the four atoms specified.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds