Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 2,2,2-trichloro-N,N′-bis­(4-methoxy­phenyl)­ethane-1,1-di­amine, C16H17Cl3N2O2, mol­ecules are linked into helical chains by N—H...O hydrogen bonds. Mol­ecules of 2,2,2-trichloro-N,N′-bis­(4-chloro­phenyl)­ethane-1,1-diamine, C14H11­Cl5N2, are connected into a three-dimensional framework by two independent Cl...Cl inter­actions and one C—H...Cl hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107041546/bm3036sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107041546/bm3036Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107041546/bm3036IIsup3.hkl
Contains datablock II

CCDC references: 669176; 669177

Comment top

As a continuation of our structural studies of bis(arylamino)trichloromethylmethanes (Zhang et al., 2007), we report here the molecular and supramolecular structures of 2,2,2-trichloro-N,N'-bis(4-methoxyphenyl)ethane-1,1-diamine, (I) (Fig. 1), and 2,2,2-trichloro-N,N'-bis(4-chlorophenyl)ethane-1,1-diamine, (II) (Fig. 2), where the supramolecular aggregations prove to be different from those in 2,2,2-trichloro-N,N'-diphenylethane-1,1-diamine, (III), and 2,2,2-trichloro-N,N'-bis(4-methylphenyl)ethane-1,1-diamine, (IV), which we reported recently (Zhang et al., 2007). In (III), the two-dimensional supramolecular structure is built from C—H···Cl and C—H···π(arene) contacts, while the crystal structure of (IV) exhibits one-dimensional double columns formed by a combination of two independent C—H···Cl hydrogen bonds and one Cl···Cl interaction.

In compounds (I) and (II), the trichloroethane-1,1-diamine fragments adopt a gauche conformation with respect to the C1—C2 bonds, similar to the situation in (III) and (IV). In (II), the dihedral angle between the planes of the two aromatic rings is 88.01 (2)°, indicating that these phenyl rings are perpendicular to one another. The orientation of the two rings is different from that in (I), where the dihedral angle is 76.37 (3)°. Selected geometric parameters for (I) and (II) are listed in Tables 1 and 3, respectively. The C2—Cl1 bond in (I) is longer than the other C—Cl bonds in compounds (I)–(IV), probably due to the presence of a relatively strong intramolecular N2—H2D···Cl1 hydrogen bond (Table 2). The same variation of ca 9° occurs within each pair of exocyclic C—C—O valence angles in (I), as is well established for 4-methoxyphenyl units (Seip & Seip, 1973). These deviations suggest the presence of repulsive interactions between O2—CH3 and atom H14 (distance between methyl C atom and H14 = 2.61 Å) or O1—CH3 and H7 (distance between methyl C atom and H7 = 2.55 Å). The methoxy group on C6 is effectively coplanar with the C3–C8 ring, as shown by the C7—C6—O1—C9 torsion angle of −4.3 (4)°. The situation is, however, different for the methoxy group on C13, where the torsion angle is −21.3 (5)° and the methyl C atom is displaced from the plane of the C10–C15 aryl ring by 0.408 (4) Å. In compound (II), the C1—N1—C9—C14 and C1—N2—C3—C4 torsion angles are −2.1 (3) and −9.5 (3)°, respectively, indicating that atom C1 lies near the N1/C9–C14 plane. However, atom C1 in (I) is displaced by 0.249 (3) and 0.265 (4) Å from the N2/C3–C8 and N1/C10–C15 planes, respectively.

The two NH H atoms in each molecule have very similar chemical shifts and coupling constants with the adjacent CH H atom [J = 8.8 Hz in (I) and 8.4 Hz in (II)], suggesting that, in solution at room temperature on the NMR timescale, the molecules relax to a conformation where the two H—N—C—H torsion angles have similar average magnitudes, though the two H—N—C—H torsion angles in each molecule in the solid state are different [−169 and −128° for H1D—N1—C1—H1 and H2D—N2—C1—H1, respectively, in (I), and −155 and −128° for H2D—N2—C—H1 and H1D—N1—C1—H1, respectively, in (II)].

In compound (I), the molecules are linked into helical chains by a single N—H···O hydrogen bond (Table 2). Atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to methoxy atom O1 in the molecule at (−1/2 − x, y − 1/2, z). Propagation by an a-glide plane at x = −1/4 then generates a C(9) (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 3). Eight chains of this type pass through each unit cell; four of these, running along the (−1/4, y, 3/8), (3/4, y, 3/8), (−1/4, y, 7/8) and (3/4, y, 7/8) directions, are related to each other by translational symmetry operations, and they are related by an a-glide plane to the other four chains running along the (−1/4, y, 1/8), (3/4, y, 1/8), (−1/4, y, 5/8) and (3/4, y, 5/8) directions. There are no direction-specific interactions between adjacent chains.

There are no aromatic ππ stacking interactions in the structure of (II); instead, the molecules are linked into a complex three-dimensional framework by a combination of two independent Cl···Cl interactions and one C—H···Cl hydrogen bond (Table 4). However, the formation of the structure of (II) can be easily analysed in terms of three one-dimensional substrutures. In the first substructure, atom Cl5 in the molecule at (x, y, z) forms an intermolecular interaction with trichloromethyl atom Cl3 [Cl5···Cl3 = 3.343 (2) Å] in the molecule at (x + 1, y, z). Propagation by translation then generates a C(9) chain running along the [110] direction (Fig. 4). In the same way, the second substructure is constructed by way of a Cl···Cl interaction: atom Cl4 in the molecule at (x, y, z) forms another independent intermolecular interaction with trichloromethyl atom Cl2 [Cl4···Cl2 = 3.469 (2) Å] in the molecule at (x + 1, y − 1, z), so forming by translation a C(9) chain parallel to the [110] direction (Fig. 5). In the third substructure, atom H8 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom Cl4 in the molecule at (−x + 2, y + 1/2, − z + 1/2), thus generating a C(5) chain along the (1, y, 1/4) direction and generated by a 21 screw axis along (1, y, 1/4) (Fig. 6). The combination of these three chain motifs links molecules of (II) into a three-dimensional framework.

Experimental top

For the synthesis of (I), chloral hydrate (16.5 g, 0.1 mol) and 4-methoxyaniline (0.2 mol) were mixed in ethyl acetate (25–30 ml) and heated until dissolution of the solid occurred. Cooling of the hot solution, followed by slow evaporation of the solvent at room temperature, yielded the crude product (yield 86%). Single crystals of (I) were obtained by recrystallization from CH2Cl2. Spectroscopic analysis: 1H NMR (DMSO, 400 MHz, δ, p.p.m.): 6.71 (m, 8H, 2Ar), 5.63 (d, J = 8.8 Hz, 2H, 2NH), 5.42 (t, J = 8.7 Hz, 1H, CH), 3.59 (s, 6H, 2CH3).

Compound (II) was synthesized by heating, with stirring, a mixture of chloral hydrate (16.5 g, 0.1 mol), freshly distilled 4-chloroaniline (0.2 mol) and ethyl acetate (25–30 ml) until dissolution of the solid occurred. Cooling of the hot solution and then slow evaporation of the solvent at room temperature yielded a crystalline product (yield 82%). Single crystals of (II) were obtained by recrystallization from hot DMSO. Spectroscopic analysis: 1H NMR (DMSO, 400 MHz, δ, p.p.m.): 6.93 (m, 8H, 2Ar), 6.32 (d, J = 8.4 Hz, 2H, 2NH), 5.73 (t, J = 8.4 Hz, 1H, CH).

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.98 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing the the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C(9) helical chain parallel to the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or ampersand (&) are at the symmetry positions (−1/2 − x, y − 1/2, z) and (−1/2 − x, 1/2 + y, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a C(9) chain parallel to the [110] direction. Atoms marked with an asterisk (*) or ampersand (&) are at the symmetry positions (x − 1, y − 1, z) and (x + 1, y + 1, z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a C(9) chain parallel to the [1, y, 1/4] direction. Atoms marked with an asterisk (*) or ampersand (&) are at the symmetry positions (x + 1, y − 1, z) and (x − 1, y + 1, z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of a C(5) chain of rings along the [010] direction. Atoms marked with an asterisk (*) or ampersand (&) are at the symmetry positions (2 − x, 1/2 + y, 1/2 − z) and (2 − x, −1/2 + y, 1/2 − z), respectively.
(I) 2,2,2-trichloro-N,N'-bis(4-methoxyphenyl)ethane-1,1-diamine top
Crystal data top
C16H17Cl3N2O2Dx = 1.438 Mg m3
Mr = 375.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5641 reflections
a = 9.717 (2) Åθ = 2.4–24.9°
b = 10.575 (3) ŵ = 0.54 mm1
c = 33.772 (8) ÅT = 291 K
V = 3470.3 (14) Å3Block, colourless
Z = 80.38 × 0.29 × 0.25 mm
F(000) = 1552
Data collection top
Nonius KappaCCD area-detector
diffractometer
3233 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.822, Tmax = 0.876k = 1212
23826 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 3.5039P]
where P = (Fo2 + 2Fc2)/3
3233 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H17Cl3N2O2V = 3470.3 (14) Å3
Mr = 375.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.717 (2) ŵ = 0.54 mm1
b = 10.575 (3) ÅT = 291 K
c = 33.772 (8) Å0.38 × 0.29 × 0.25 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2571 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.876Rint = 0.066
23826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3233 reflectionsΔρmin = 0.39 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10056 (9)0.11368 (7)0.47142 (2)0.0566 (2)
Cl20.18966 (8)0.34925 (7)0.50681 (2)0.0508 (2)
Cl30.36487 (8)0.21912 (9)0.45195 (3)0.0651 (3)
O10.3595 (2)0.67992 (19)0.35315 (6)0.0534 (5)
O20.4760 (3)0.3681 (2)0.26119 (7)0.0859 (9)
N10.1410 (2)0.2639 (2)0.39127 (7)0.0449 (6)
H1D0.09040.19790.38820.054*
N20.0136 (2)0.3574 (2)0.43759 (7)0.0472 (6)
H2D0.04990.32040.45770.057*
C10.1277 (3)0.3321 (3)0.42794 (7)0.0390 (6)
H10.17610.41300.42530.047*
C20.1923 (3)0.2579 (3)0.46285 (8)0.0413 (6)
C30.0938 (3)0.4405 (2)0.41514 (7)0.0370 (6)
C40.2359 (3)0.4420 (3)0.42149 (7)0.0394 (6)
H40.27440.38730.44000.047*
C50.3196 (3)0.5231 (3)0.40079 (8)0.0424 (6)
H50.41380.52290.40560.051*
C60.2654 (3)0.6050 (2)0.37292 (8)0.0401 (6)
C70.1244 (3)0.6051 (3)0.36631 (9)0.0449 (7)
H70.08640.66020.34780.054*
C80.0400 (3)0.5228 (3)0.38728 (8)0.0436 (7)
H80.05430.52310.38250.052*
C90.3070 (4)0.7699 (3)0.32570 (10)0.0611 (9)
H9A0.24740.82800.33930.092*
H9B0.38200.81550.31390.092*
H9C0.25610.72690.30540.092*
C100.2297 (3)0.2963 (3)0.36023 (7)0.0390 (6)
C110.2102 (3)0.2366 (3)0.32402 (9)0.0568 (8)
H110.13950.17800.32130.068*
C120.2933 (4)0.2623 (3)0.29208 (9)0.0668 (10)
H120.27870.22010.26830.080*
C130.3983 (3)0.3501 (3)0.29492 (9)0.0534 (8)
C140.4200 (3)0.4092 (3)0.33029 (9)0.0490 (7)
H140.49080.46790.33280.059*
C150.3360 (3)0.3817 (3)0.36278 (9)0.0493 (7)
H150.35250.42230.38670.059*
C160.5531 (5)0.4790 (4)0.25775 (13)0.0967 (15)
H16A0.49400.55090.26140.145*
H16B0.59410.48280.23190.145*
H16C0.62410.47970.27750.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0679 (5)0.0386 (4)0.0633 (5)0.0023 (4)0.0127 (4)0.0072 (3)
Cl20.0584 (4)0.0514 (4)0.0425 (4)0.0059 (3)0.0021 (3)0.0034 (3)
Cl30.0420 (4)0.0849 (6)0.0686 (5)0.0206 (4)0.0057 (4)0.0013 (5)
O10.0479 (12)0.0478 (12)0.0645 (13)0.0113 (10)0.0061 (10)0.0135 (10)
O20.108 (2)0.0882 (19)0.0618 (16)0.0328 (17)0.0367 (14)0.0137 (13)
N10.0440 (13)0.0482 (14)0.0426 (13)0.0119 (11)0.0007 (10)0.0031 (11)
N20.0359 (13)0.0601 (15)0.0457 (13)0.0101 (11)0.0055 (10)0.0160 (12)
C10.0363 (14)0.0417 (15)0.0391 (14)0.0016 (12)0.0006 (11)0.0015 (12)
C20.0368 (14)0.0406 (15)0.0466 (15)0.0016 (12)0.0051 (12)0.0012 (12)
C30.0387 (14)0.0363 (14)0.0361 (14)0.0037 (11)0.0022 (11)0.0008 (11)
C40.0351 (14)0.0433 (15)0.0399 (14)0.0005 (12)0.0051 (12)0.0052 (12)
C50.0324 (14)0.0486 (16)0.0462 (16)0.0046 (12)0.0032 (12)0.0006 (13)
C60.0421 (15)0.0338 (14)0.0443 (15)0.0058 (12)0.0035 (12)0.0005 (12)
C70.0441 (16)0.0397 (15)0.0509 (17)0.0031 (13)0.0016 (13)0.0080 (13)
C80.0314 (14)0.0470 (16)0.0524 (17)0.0015 (12)0.0017 (12)0.0093 (13)
C90.071 (2)0.0511 (19)0.061 (2)0.0108 (16)0.0066 (17)0.0149 (16)
C100.0389 (15)0.0390 (14)0.0392 (14)0.0024 (12)0.0027 (11)0.0002 (12)
C110.066 (2)0.0528 (18)0.0513 (18)0.0212 (16)0.0036 (15)0.0083 (15)
C120.091 (3)0.066 (2)0.0430 (17)0.023 (2)0.0117 (17)0.0151 (16)
C130.0590 (19)0.0536 (18)0.0476 (17)0.0063 (16)0.0130 (14)0.0011 (14)
C140.0421 (16)0.0509 (17)0.0539 (18)0.0076 (14)0.0036 (14)0.0042 (14)
C150.0443 (16)0.0583 (18)0.0451 (16)0.0064 (14)0.0035 (13)0.0125 (14)
C160.118 (4)0.081 (3)0.091 (3)0.025 (3)0.045 (3)0.010 (2)
Geometric parameters (Å, º) top
Cl1—C21.790 (3)C6—C71.388 (4)
Cl2—C21.771 (3)C7—C81.390 (4)
Cl3—C21.765 (3)C7—H70.9300
O1—C61.383 (3)C8—H80.9300
O1—C91.423 (4)C9—H9A0.9600
O2—C131.380 (3)C9—H9B0.9600
O2—C161.396 (4)C9—H9C0.9600
N1—C101.400 (3)C10—C151.375 (4)
N1—C11.439 (3)C10—C111.389 (4)
N1—H1D0.8600C11—C121.374 (4)
N2—C31.397 (3)C11—H110.9300
N2—C11.437 (3)C12—C131.383 (4)
N2—H2D0.8600C12—H120.9300
C1—C21.549 (4)C13—C141.365 (4)
C1—H10.9800C14—C151.398 (4)
C3—C81.385 (4)C14—H140.9300
C3—C41.398 (4)C15—H150.9300
C4—C51.373 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.383 (4)C16—H16C0.9600
C5—H50.9300
C6—O1—C9117.4 (2)C8—C7—H7120.0
C13—O2—C16118.6 (3)C3—C8—C7121.2 (2)
C10—N1—C1125.2 (2)C3—C8—H8119.4
C10—N1—H1D117.4C7—C8—H8119.4
C1—N1—H1D117.4O1—C9—H9A109.5
C3—N2—C1121.8 (2)O1—C9—H9B109.5
C3—N2—H2D119.1H9A—C9—H9B109.5
C1—N2—H2D119.1O1—C9—H9C109.5
C1—C2—Cl3110.13 (19)H9A—C9—H9C109.5
C1—C2—Cl2110.85 (18)H9B—C9—H9C109.5
Cl3—C2—Cl2108.39 (14)C15—C10—C11117.1 (3)
C1—C2—Cl1110.64 (18)C15—C10—N1125.2 (2)
Cl3—C2—Cl1107.98 (15)C11—C10—N1117.6 (2)
Cl2—C2—Cl1108.76 (15)C12—C11—C10121.4 (3)
N2—C1—N1112.0 (2)C12—C11—H11119.3
N2—C1—C2108.0 (2)C10—C11—H11119.3
N1—C1—C2111.4 (2)C11—C12—C13120.8 (3)
N2—C1—H1108.4C11—C12—H12119.6
N1—C1—H1108.4C13—C12—H12119.6
C2—C1—H1108.4C14—C13—O2125.1 (3)
C8—C3—N2123.6 (2)C14—C13—C12118.8 (3)
C8—C3—C4118.0 (2)O2—C13—C12116.1 (3)
N2—C3—C4118.4 (2)C13—C14—C15120.1 (3)
C5—C4—C3120.9 (2)C13—C14—H14119.9
C5—C4—H4119.5C15—C14—H14119.9
C3—C4—H4119.5C10—C15—C14121.7 (3)
C4—C5—C6120.8 (3)C10—C15—H15119.1
C4—C5—H5119.6C14—C15—H15119.1
C6—C5—H5119.6O2—C16—H16A109.5
O1—C6—C5115.8 (2)O2—C16—H16B109.5
O1—C6—C7125.1 (2)H16A—C16—H16B109.5
C5—C6—C7119.1 (2)O2—C16—H16C109.5
C6—C7—C8120.0 (3)H16A—C16—H16C109.5
C6—C7—H7120.0H16B—C16—H16C109.5
C3—N2—C1—N167.7 (3)O1—C6—C7—C8178.2 (3)
C3—N2—C1—C2169.3 (2)C5—C6—C7—C80.6 (4)
C10—N1—C1—N2131.0 (3)N2—C3—C8—C7178.8 (3)
C10—N1—C1—C2107.9 (3)C4—C3—C8—C70.3 (4)
Cl3—C2—C1—N2177.96 (18)C6—C7—C8—C30.5 (4)
Cl2—C2—C1—N262.1 (3)C1—N1—C10—C1513.6 (4)
Cl1—C2—C1—N258.7 (3)C1—N1—C10—C11167.2 (3)
Cl3—C2—C1—N154.6 (3)C15—C10—C11—C120.3 (5)
Cl2—C2—C1—N1174.51 (18)N1—C10—C11—C12179.6 (3)
Cl1—C2—C1—N164.7 (2)C10—C11—C12—C130.8 (6)
C1—N2—C3—C813.1 (4)C16—O2—C13—C1421.3 (5)
C1—N2—C3—C4167.9 (2)C16—O2—C13—C12160.5 (4)
C8—C3—C4—C50.2 (4)C11—C12—C13—C141.3 (5)
N2—C3—C4—C5178.9 (2)C11—C12—C13—O2179.6 (3)
C3—C4—C5—C60.4 (4)O2—C13—C14—C15178.8 (3)
C9—O1—C6—C5176.9 (3)C12—C13—C14—C150.7 (5)
C9—O1—C6—C74.3 (4)C11—C10—C15—C140.9 (4)
C4—C5—C6—O1178.4 (2)N1—C10—C15—C14179.8 (3)
C4—C5—C6—C70.6 (4)C13—C14—C15—C100.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl10.862.673.030 (3)107
N1—H1D···O1i0.862.543.150 (3)128
Symmetry code: (i) x1/2, y1/2, z.
(II) 2,2,2-trichloro-N,N'-bis(4-chlorophenyl)ethane-1,1-diamine top
Crystal data top
C14H11Cl5N2Dx = 1.591 Mg m3
Mr = 384.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6611 reflections
a = 6.0186 (6) Åθ = 2.5–28.0°
b = 8.0624 (8) ŵ = 0.90 mm1
c = 33.082 (3) ÅT = 291 K
V = 1605.3 (3) Å3Block, colourless
Z = 40.42 × 0.31 × 0.28 mm
F(000) = 776
Data collection top
Nonius KappaCCD area-detector
diffractometer
2990 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.706, Tmax = 0.791k = 99
11400 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.036P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2990 reflectionsΔρmax = 0.18 e Å3
190 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C14H11Cl5N2V = 1605.3 (3) Å3
Mr = 384.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0186 (6) ŵ = 0.90 mm1
b = 8.0624 (8) ÅT = 291 K
c = 33.082 (3) Å0.42 × 0.31 × 0.28 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2990 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2898 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.791Rint = 0.016
11400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.23 e Å3
2990 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
190 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.26273 (9)1.06659 (7)0.16704 (2)0.05758 (16)
Cl20.82360 (10)1.20078 (7)0.161908 (19)0.05598 (16)
Cl31.10707 (12)1.20059 (7)0.091570 (19)0.06127 (17)
Cl41.50835 (9)0.34965 (7)0.241841 (16)0.04864 (14)
Cl50.30846 (13)0.38658 (8)0.009030 (19)0.0690 (2)
N10.7472 (3)0.9328 (2)0.09838 (5)0.0464 (4)
H1D0.68791.02960.09650.056*
N20.8963 (3)0.8106 (2)0.15779 (5)0.0409 (4)
H2D0.76730.82070.16870.049*
C10.9412 (3)0.9122 (2)0.12323 (6)0.0345 (4)
H11.05600.85730.10700.041*
C21.0281 (3)1.0873 (3)0.13526 (6)0.0397 (4)
C31.0416 (3)0.6968 (2)0.17554 (5)0.0314 (4)
C41.2440 (3)0.6489 (3)0.15813 (6)0.0420 (4)
H41.28480.69070.13300.050*
C51.3839 (3)0.5396 (2)0.17816 (6)0.0399 (4)
H51.51770.50800.16640.048*
C61.3247 (3)0.4778 (2)0.21539 (6)0.0347 (4)
C71.1223 (4)0.5186 (2)0.23231 (6)0.0369 (4)
H71.08070.47330.25700.044*
C80.9824 (3)0.6261 (2)0.21260 (6)0.0360 (4)
H80.84580.65240.22410.043*
C90.6522 (3)0.8008 (3)0.07725 (6)0.0385 (4)
C100.4571 (3)0.8298 (3)0.05510 (6)0.0403 (5)
H100.39710.93610.05450.048*
C110.3530 (4)0.7045 (3)0.03428 (6)0.0444 (5)
H110.22330.72570.01990.053*
C120.4423 (4)0.5469 (3)0.03485 (6)0.0457 (5)
C130.6356 (5)0.5148 (3)0.05606 (7)0.0544 (6)
H130.69570.40860.05610.065*
C140.7395 (4)0.6408 (3)0.07729 (6)0.0483 (5)
H140.86870.61840.09170.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0415 (3)0.0548 (3)0.0764 (4)0.0025 (3)0.0181 (3)0.0039 (3)
Cl20.0472 (3)0.0543 (3)0.0664 (3)0.0096 (2)0.0069 (3)0.0172 (3)
Cl30.0742 (4)0.0474 (3)0.0622 (3)0.0003 (3)0.0158 (3)0.0148 (3)
Cl40.0418 (2)0.0480 (3)0.0561 (3)0.0050 (2)0.0062 (2)0.0165 (2)
Cl50.0904 (5)0.0637 (4)0.0528 (3)0.0218 (4)0.0111 (3)0.0065 (3)
N10.0480 (10)0.0386 (9)0.0525 (10)0.0105 (8)0.0159 (8)0.0004 (8)
N20.0301 (8)0.0476 (9)0.0450 (9)0.0053 (7)0.0041 (7)0.0107 (8)
C10.0336 (10)0.0351 (9)0.0350 (9)0.0042 (8)0.0012 (7)0.0026 (8)
C20.0366 (10)0.0420 (10)0.0405 (10)0.0034 (9)0.0029 (8)0.0008 (8)
C30.0298 (9)0.0309 (8)0.0335 (8)0.0000 (7)0.0018 (7)0.0003 (7)
C40.0388 (10)0.0493 (11)0.0378 (10)0.0049 (9)0.0049 (8)0.0091 (9)
C50.0332 (10)0.0424 (11)0.0442 (10)0.0078 (9)0.0054 (9)0.0039 (9)
C60.0358 (10)0.0292 (9)0.0391 (9)0.0005 (8)0.0072 (8)0.0019 (7)
C70.0427 (11)0.0360 (10)0.0320 (9)0.0008 (9)0.0032 (8)0.0036 (7)
C80.0344 (9)0.0337 (9)0.0399 (9)0.0011 (8)0.0065 (8)0.0017 (8)
C90.0394 (10)0.0433 (11)0.0330 (9)0.0028 (9)0.0011 (8)0.0014 (8)
C100.0369 (11)0.0475 (11)0.0366 (10)0.0083 (9)0.0000 (8)0.0021 (9)
C110.0381 (11)0.0596 (13)0.0355 (10)0.0007 (10)0.0031 (8)0.0017 (9)
C120.0518 (13)0.0535 (13)0.0317 (10)0.0111 (10)0.0018 (9)0.0021 (9)
C130.0653 (16)0.0421 (12)0.0559 (13)0.0077 (12)0.0063 (12)0.0034 (10)
C140.0482 (12)0.0464 (12)0.0503 (12)0.0099 (11)0.0122 (10)0.0008 (9)
Geometric parameters (Å, º) top
Cl1—C21.768 (2)C5—C61.375 (3)
Cl2—C21.769 (2)C5—H50.9300
Cl3—C21.775 (2)C6—C71.380 (3)
Cl4—C61.7480 (19)C7—C81.373 (3)
Cl5—C121.746 (2)C7—H70.9300
N1—C91.396 (3)C8—H80.9300
N1—C11.437 (2)C9—C141.393 (3)
N1—H1D0.8600C9—C101.404 (3)
N2—C31.397 (2)C10—C111.374 (3)
N2—C11.432 (2)C10—H100.9300
N2—H2D0.8600C11—C121.380 (3)
C1—C21.558 (3)C11—H110.9300
C1—H10.9800C12—C131.383 (3)
C3—C81.398 (3)C13—C141.384 (3)
C3—C41.402 (3)C13—H130.9300
C4—C51.387 (3)C14—H140.9300
C4—H40.9300
C9—N1—C1122.06 (17)C5—C6—C7120.37 (18)
C9—N1—H1D119.0C5—C6—Cl4119.90 (15)
C1—N1—H1D119.0C7—C6—Cl4119.72 (15)
C3—N2—C1126.37 (16)C8—C7—C6119.93 (18)
C3—N2—H2D116.8C8—C7—H7120.0
C1—N2—H2D116.8C6—C7—H7120.0
C1—C2—Cl1109.54 (13)C7—C8—C3121.14 (17)
C1—C2—Cl2111.26 (14)C7—C8—H8119.4
Cl1—C2—Cl2107.96 (11)C3—C8—H8119.4
C1—C2—Cl3110.38 (13)N1—C9—C14123.45 (18)
Cl1—C2—Cl3108.60 (11)N1—C9—C10118.52 (19)
Cl2—C2—Cl3109.03 (11)C14—C9—C10118.03 (19)
N2—C1—N1111.68 (16)C11—C10—C9121.39 (19)
N2—C1—C2112.18 (16)C11—C10—H10119.3
N1—C1—C2108.28 (16)C9—C10—H10119.3
N2—C1—H1108.2C10—C11—C12119.51 (19)
N1—C1—H1108.2C10—C11—H11120.2
C2—C1—H1108.2C12—C11—H11120.2
N2—C3—C8118.46 (16)C11—C12—C13120.5 (2)
N2—C3—C4123.51 (17)C11—C12—Cl5119.68 (17)
C8—C3—C4118.03 (17)C13—C12—Cl5119.85 (18)
C5—C4—C3120.39 (18)C14—C13—C12120.0 (2)
C5—C4—H4119.8C14—C13—H13120.0
C3—C4—H4119.8C12—C13—H13120.0
C6—C5—C4120.04 (18)C13—C14—C9120.6 (2)
C6—C5—H5120.0C13—C14—H14119.7
C4—C5—H5120.0C9—C14—H14119.7
C3—N2—C1—N1144.05 (18)C5—C6—C7—C82.4 (3)
C3—N2—C1—C294.2 (2)Cl4—C6—C7—C8176.60 (15)
C9—N1—C1—N266.9 (2)C6—C7—C8—C30.4 (3)
C9—N1—C1—C2169.13 (18)N2—C3—C8—C7177.36 (18)
Cl1—C2—C1—N254.71 (19)C4—C3—C8—C72.8 (3)
Cl2—C2—C1—N264.57 (19)C1—N1—C9—C142.1 (3)
Cl3—C2—C1—N2174.24 (13)C1—N1—C9—C10177.20 (17)
Cl1—C2—C1—N1178.41 (13)N1—C9—C10—C11178.74 (19)
Cl2—C2—C1—N159.13 (18)C14—C9—C10—C110.6 (3)
Cl3—C2—C1—N162.06 (18)C9—C10—C11—C120.5 (3)
C1—N2—C3—C8170.73 (18)C10—C11—C12—C130.2 (3)
C1—N2—C3—C49.5 (3)C10—C11—C12—Cl5179.09 (15)
N2—C3—C4—C5177.69 (19)C11—C12—C13—C140.7 (3)
C8—C3—C4—C52.5 (3)Cl5—C12—C13—C14178.59 (18)
C3—C4—C5—C60.2 (3)C12—C13—C14—C90.6 (4)
C4—C5—C6—C72.7 (3)N1—C9—C14—C13179.2 (2)
C4—C5—C6—Cl4176.29 (16)C10—C9—C14—C130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl20.862.693.049 (2)106
C8—H8···Cl4i0.932.893.774 (3)160
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H17Cl3N2O2C14H11Cl5N2
Mr375.67384.50
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, P212121
Temperature (K)291291
a, b, c (Å)9.717 (2), 10.575 (3), 33.772 (8)6.0186 (6), 8.0624 (8), 33.082 (3)
V3)3470.3 (14)1605.3 (3)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.540.90
Crystal size (mm)0.38 × 0.29 × 0.250.42 × 0.31 × 0.28
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.822, 0.8760.706, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
23826, 3233, 2571 11400, 2990, 2898
Rint0.0660.016
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.109, 1.05 0.024, 0.063, 1.03
No. of reflections32332990
No. of parameters210190
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.390.18, 0.23
Absolute structure?Flack (1983), with how many Friedel pairs?
Absolute structure parameter?0.02 (5)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) for (I) top
Cl1—C21.790 (3)O2—C161.396 (4)
C10—N1—C1125.2 (2)O1—C6—C7125.1 (2)
C3—N2—C1121.8 (2)C15—C10—N1125.2 (2)
N1—C1—C2111.4 (2)C11—C10—N1117.6 (2)
C8—C3—N2123.6 (2)C14—C13—O2125.1 (3)
O1—C6—C5115.8 (2)O2—C13—C12116.1 (3)
C3—N2—C1—N167.7 (3)C9—O1—C6—C74.3 (4)
Cl3—C2—C1—N2177.96 (18)C1—N1—C10—C1513.6 (4)
Cl2—C2—C1—N1174.51 (18)N1—C10—C11—C12179.6 (3)
C1—N2—C3—C813.1 (4)C11—C12—C13—O2179.6 (3)
N2—C3—C4—C5178.9 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···Cl10.862.673.030 (3)107
N1—H1D···O1i0.862.543.150 (3)128
Symmetry code: (i) x1/2, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
C9—C101.404 (3)
C3—N2—C1126.37 (16)N1—C9—C14123.45 (18)
N2—C3—C4123.51 (17)
C3—N2—C1—N1144.05 (18)C1—N1—C9—C142.1 (3)
C1—N2—C3—C49.5 (3)N1—C9—C14—C13179.2 (2)
N2—C3—C4—C5177.69 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl20.862.693.049 (2)106
C8—H8···Cl4i0.932.893.774 (3)160
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds