Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The CdII centre in the title complex, [Cd(C14H13N3O2)2(H2O)4](NO3)2, occupies a crystallographic inversion centre and is coordinated by two donor N atoms from two 2-methoxy­benzldehyde isonicotinoylhydrazone ligands and by four O atoms from four coordinated water mol­ecules, giving a slightly distorted octa­hedral geometry. There is an extended three-dimensional network structure resulting from O—H...O hydrogen bonds between coordinated water and nitrate anions, and between coordinated water and carbonyl O atoms, and from N—H...O hydrogen bonds between NH groups and nitrate O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107044010/bm3034sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044010/bm3034Isup2.hkl
Contains datablock I

CCDC reference: 665491

Comment top

Supramolecular assembly through hydrogen bonds has been extensively exploited to generate one-, two- and three-dimensional extended structures (Beatty, 2003; Li et al., 2006; Russell & Ward, 1996). It is interesting that polytoptic ligands based on isonicotinoylhydrazone have led to a number of complexes with multi-dimensional structure or extended multi-dimensional structures (Bu et al., 2000; Ge et al., 2006). We present here the synthesis and structural characterization of the cadmium complex (I), [Cd(C14H13N3O2)2(H2O)4](NO3)2, where C14H13N3O2 is neutral 2-methoxybenzldehyde isonicotinoylhydrazone, L.

As shown in Fig. 1, the title complex consists of one complex cation, [Cd(C14H13N3O2)2(H2O)4]2+, on an inversion centre and two NO3 anions. The cadmium centre is six-coordinated by two pyridine N atoms [N1 and N1i; symmetry code: (i) −x + 1, −y, −z + 1] of two L ligands and four coordinated water O atoms (O6, O7, O6i and O7i), conferring a slightly distorted octahedral coordination. The equatorial plane is formed by atoms O6, O7, O6i and O7i, while the axial positions are occupied by atoms N1and N1i. The Cd atom lies on a crystallographic inversion centre and the two hydrazone ligands are in a trans configuration.

As listed in Table 2, the Cd—O(coordinated water) bond lengths in the known cadmium complexes are from 2.273 (2) to 2.350 (2) Å (Chen et al., 2007; Liu et al., 2007; Ochoa & Alexandre, 2005; Wei et al., 2006). The Cd—O(coordinated water) bond lengths in (I) (Cd1—O6 and Cd—O7) are 2.267 (2) and 2.311 (2) Å, respectively, the former being the shortest Cd—O(water) value among the known cadmium complexes. It is interesting to note that the difference between Cd—O(coordinated water) bond lengths in same complex ranges from 0.014 (3) to 0.073 (2) Å. The Cd1—N1 bond distance of 2.326 (2) Å is in agreement with the values reported by Mautner et al. (2004) and Vreshch et al. (2005).

The structral parameters of L in the title complex are within normal ranges as reported by Qiu et al. (2006) and Yang et al. (2006). The C7N3 bond distance of 1.268 (3) Å in (I) confirms the presence of a double bond; the corresponding bonds in the neutral [or `uncoordinated?'; `neutral' is used above to describe L in the title complex] ligand L are 1.277 (2) and 1.269 (7) Å (Qiu et al., 2006; Yang et al., 2006). The C6—N2 bond distance of 1.338 (3) Å in (I) is similar to the corresponding distances [1.340 (8) and 1.350 (2) Å] reported by Qiu et al. (2006) and Yang et al. (2006). The dihedral angle between the benzene (C8–C13) and pyridine (N1/C1–C5) rings is 18.8 (2)°; these rings are slightly more inclined than normal (Fun et al., 1997) and we attribute this to the steric effect of the C9 methoxy substituent.

As can be seen from Table 1, there are many hydrogen bonds in the title complex. Each [Cd(C14H13N3O2)2(H2O)4]2+ cation is connected to four NO3 anions by O—H(H2O)···O(NO3)-type hydrogen bonds (O6—H6A···O3, O6—H6B···O3iii, O7—H7A···O4i; symmetry codes as in Table 1), forming an extended chain along the a axis (Fig. 2).

At the same time, every ligand L is coordinated to one Cd atom through its pyridine N atom (N1) and linked to another cadmium complex cation by an O7—H7B···O1iv hydrogen bond. This means that the hydrazone ligand acts as a bridging ligand. Therefore, four [Cd(C14H13N3O2)2(H2O)4]2+ units are combined by four hydrogen bonds, forming a 36-membered ring. Two such rings are presented in Fig. 3; one ring is composed of the four ligands with lightly shaded bonds (coloured cyan in the online version of the journal) and the other ring is composed of three more darkly shaded (pink online [this looks more like purple on the IUCr system]) and one lightly shaded (cyan online) ligands. These ring are then connected together to form an extended layer along the bc plane.

These layers and chains are linked together to obtain an extended three-dimensional network (see Fig. 4). O—H(water)···O(NO3) and OH(water)···O(carboxyl) hydrogen bonds play an important role in the formation of this network.

Related literature top

For related literature, see: Beatty (2003); Bu et al. (2000); Chen et al. (2007); Fun et al. (1997); Ge et al. (2006); Li et al. (2006); Liu et al. (2007); Mautner et al. (2004); Ochoa & Alexandre (2005); Qiu et al. (2006); Russell & Ward (1996); Vreshch et al. (2005); Yang et al. (2006).

Experimental top

Ligand L was prepared by condensation (Qiu et al., 2006; Yang et al., 2006). To a solution of L (51 mg, 0.2 mmol) in methanol (10 ml), cadmium nitrate tetrahydrate (60 mg, 0.2 mmol) was added slowly. After stirring for 1.5 h, the solution was filtered. Slow evaporation of the solution afforded yellow crystals suitable for X-ray diffraction.

Refinement top

H atoms in water molecules were located in difference Fourier maps and then allowed to ride on the O atoms with Uiso(H) values of 1.5Ueq(O). The other H atoms were placed in idealized positions and treated as riding with [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms; and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for the imine group].

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y, −z + 1.]
[Figure 2] Fig. 2. The one-dimensional chain of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) −x + 1, −y, −z + 1; (iii) −x, −y, −z + 1.]
[Figure 3] Fig. 3. The two-dimensional structure of (I) in the bc plane. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (iv) x − 1/2, −y + 1/2, z − 1/2.]
[Figure 4] Fig. 4. The three-dimensional structure of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x + 1/2, −y + 1/2, z − 1/2; (iii) −x, −y, −z + 1; (iv) x − 1/2, −y + 1/2, z − 1/2.]
Tetraaqua-bis(2-methoxybenzaldehyde isonicotinoylhydrazonato)- cadmium(II) dinitrate top
Crystal data top
[Cd(C14H13N3O2)2(H2O)4](NO3)2F(000) = 836
Mr = 819.03Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16376 reflections
a = 8.062 (5) Åθ = 3.1–27.5°
b = 17.955 (8) ŵ = 0.72 mm1
c = 11.853 (6) ÅT = 293 K
β = 98.26 (2)°Prism, yellow
V = 1697.9 (15) Å30.28 × 0.21 × 0.15 mm
Z = 2
Data collection top
Rigaku Weissenberg IP
diffractometer
3892 independent reflections
Radiation source: fine-focus sealed tube3210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
scintillation counter scansθmax = 27.5°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(TEXRAY; Molecular Structure Corporation, 1999)
h = 1010
Tmin = 0.824, Tmax = 0.907k = 2323
16376 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.6841P]
where P = (Fo2 + 2Fc2)/3
3892 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cd(C14H13N3O2)2(H2O)4](NO3)2V = 1697.9 (15) Å3
Mr = 819.03Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.062 (5) ŵ = 0.72 mm1
b = 17.955 (8) ÅT = 293 K
c = 11.853 (6) Å0.28 × 0.21 × 0.15 mm
β = 98.26 (2)°
Data collection top
Rigaku Weissenberg IP
diffractometer
3892 independent reflections
Absorption correction: empirical (using intensity measurements)
(TEXRAY; Molecular Structure Corporation, 1999)
3210 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.907Rint = 0.031
16376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
3892 reflectionsΔρmin = 0.35 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.50000.03016 (7)
N10.5471 (2)0.12516 (8)0.54394 (14)0.0335 (3)
N20.6850 (2)0.39910 (9)0.53496 (15)0.0420 (4)
H2N0.62710.38760.47060.050*
N30.7551 (3)0.46925 (9)0.55202 (16)0.0430 (4)
N40.1051 (3)0.09655 (11)0.71737 (18)0.0539 (5)
O10.7804 (2)0.36331 (8)0.71533 (13)0.0550 (5)
O20.6712 (4)0.59681 (11)0.27756 (18)0.0882 (8)
O30.0330 (3)0.07672 (13)0.62190 (16)0.0718 (6)
O40.2606 (3)0.09431 (16)0.7357 (2)0.0954 (8)
O50.0241 (3)0.11696 (15)0.79077 (16)0.0929 (9)
O60.2207 (2)0.02289 (11)0.46857 (16)0.0572 (4)
H6A0.17760.04040.52820.086*
H6B0.14670.00270.42900.086*
O70.4929 (2)0.02422 (10)0.30786 (13)0.0508 (4)
H7A0.57080.00430.27360.076*
H7B0.42340.04860.26540.076*
C10.4825 (3)0.18060 (12)0.47614 (18)0.0416 (5)
H10.40460.16910.41280.050*
C20.5267 (3)0.25424 (12)0.49630 (17)0.0412 (5)
H20.47890.29150.44760.049*
C30.6436 (3)0.27190 (10)0.59037 (16)0.0336 (4)
C40.7057 (3)0.21492 (11)0.66163 (18)0.0416 (5)
H40.78100.22490.72690.050*
C50.6553 (3)0.14303 (11)0.63555 (18)0.0411 (5)
H50.69900.10500.68430.049*
C60.7085 (3)0.34932 (10)0.61978 (17)0.0375 (4)
C70.7248 (3)0.51204 (11)0.4665 (2)0.0455 (5)
H70.65610.49520.40170.055*
C80.7948 (3)0.58685 (11)0.46696 (19)0.0406 (5)
C90.7633 (3)0.63043 (12)0.3692 (2)0.0477 (5)
C100.8263 (4)0.70238 (13)0.3683 (2)0.0554 (6)
H100.80280.73190.30350.067*
C110.9232 (4)0.72942 (14)0.4638 (3)0.0630 (7)
H110.96490.77770.46360.076*
C120.9599 (4)0.68623 (15)0.5601 (3)0.0701 (8)
H121.02810.70480.62390.084*
C130.8951 (4)0.61536 (13)0.5615 (2)0.0552 (6)
H130.91910.58630.62680.066*
C140.6214 (5)0.63733 (18)0.1781 (2)0.0757 (9)
H14D0.55810.60570.12240.114*
H14A0.71870.65560.14870.114*
H14B0.55310.67860.19470.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03183 (11)0.02169 (10)0.03528 (12)0.00205 (7)0.00087 (7)0.00060 (7)
N10.0383 (8)0.0249 (7)0.0358 (8)0.0033 (6)0.0010 (7)0.0002 (7)
N20.0605 (12)0.0251 (8)0.0371 (9)0.0098 (8)0.0045 (8)0.0010 (7)
N30.0593 (11)0.0252 (8)0.0425 (10)0.0093 (8)0.0008 (8)0.0002 (8)
N40.0641 (14)0.0461 (11)0.0476 (12)0.0079 (10)0.0048 (10)0.0065 (9)
O10.0869 (13)0.0332 (7)0.0379 (8)0.0162 (8)0.0150 (8)0.0010 (7)
O20.148 (2)0.0456 (10)0.0573 (12)0.0274 (12)0.0314 (13)0.0173 (9)
O30.0585 (11)0.1015 (16)0.0543 (11)0.0095 (11)0.0047 (9)0.0310 (11)
O40.0616 (14)0.117 (2)0.1009 (18)0.0146 (13)0.0103 (12)0.0120 (16)
O50.1123 (19)0.1193 (19)0.0424 (10)0.0705 (16)0.0053 (11)0.0138 (11)
O60.0347 (8)0.0708 (10)0.0641 (11)0.0033 (8)0.0003 (7)0.0228 (9)
O70.0643 (11)0.0489 (8)0.0385 (8)0.0141 (8)0.0047 (7)0.0084 (7)
C10.0512 (12)0.0290 (10)0.0399 (11)0.0026 (8)0.0096 (9)0.0011 (8)
C20.0547 (14)0.0267 (10)0.0374 (11)0.0013 (8)0.0100 (10)0.0039 (8)
C30.0420 (10)0.0254 (8)0.0324 (9)0.0039 (8)0.0015 (8)0.0001 (7)
C40.0524 (12)0.0312 (10)0.0362 (10)0.0063 (9)0.0107 (9)0.0024 (8)
C50.0520 (12)0.0283 (9)0.0389 (11)0.0037 (9)0.0069 (9)0.0067 (8)
C60.0488 (12)0.0273 (9)0.0343 (10)0.0052 (8)0.0009 (8)0.0002 (8)
C70.0633 (15)0.0305 (10)0.0402 (11)0.0083 (9)0.0015 (10)0.0014 (9)
C80.0496 (12)0.0278 (9)0.0445 (11)0.0039 (8)0.0071 (9)0.0017 (9)
C90.0616 (14)0.0329 (10)0.0479 (12)0.0053 (10)0.0053 (10)0.0022 (9)
C100.0729 (17)0.0355 (11)0.0592 (15)0.0050 (11)0.0137 (13)0.0118 (11)
C110.0755 (19)0.0333 (11)0.0809 (19)0.0182 (12)0.0134 (15)0.0003 (12)
C120.090 (2)0.0458 (14)0.0696 (18)0.0259 (14)0.0064 (16)0.0049 (13)
C130.0733 (17)0.0376 (11)0.0511 (14)0.0109 (11)0.0028 (12)0.0029 (10)
C140.103 (3)0.0648 (18)0.0530 (16)0.0053 (17)0.0098 (16)0.0140 (14)
Geometric parameters (Å, º) top
Cd1—O62.267 (2)C1—H10.9300
Cd1—O6i2.267 (2)C2—C31.389 (3)
Cd1—O7i2.3112 (19)C2—H20.9300
Cd1—O72.3112 (19)C3—C41.374 (3)
Cd1—N12.3256 (18)C3—C61.508 (3)
Cd1—N1i2.3256 (18)C4—C51.375 (3)
N1—C51.331 (3)C4—H40.9300
N1—C11.337 (3)C5—H50.9300
N2—C61.338 (3)C7—C81.457 (3)
N2—N31.383 (2)C7—H70.9300
N2—H2N0.8600C8—C131.382 (3)
N3—C71.268 (3)C8—C91.391 (3)
N4—O51.217 (3)C9—C101.388 (3)
N4—O41.242 (3)C10—C111.369 (4)
N4—O31.247 (3)C10—H100.9300
O1—C61.222 (2)C11—C121.377 (4)
O2—C91.365 (3)C11—H110.9300
O2—C141.394 (3)C12—C131.377 (3)
O6—H6A0.8892C12—H120.9300
O6—H6B0.8405C13—H130.9300
O7—H7A0.8717C14—H14A0.9600
O7—H7B0.8234C14—H14A0.9600
C1—C21.381 (3)C14—H14B0.9600
O6—Cd1—O6i180.0C4—C3—C6117.42 (17)
O6—Cd1—O7i94.56 (7)C2—C3—C6124.65 (17)
O6i—Cd1—O7i85.44 (7)C3—C4—C5119.41 (18)
O6—Cd1—O785.44 (7)C3—C4—H4120.3
O6i—Cd1—O794.56 (7)C5—C4—H4120.3
O7i—Cd1—O7180.0N1—C5—C4123.20 (18)
O6—Cd1—N189.31 (7)N1—C5—H5118.4
O6i—Cd1—N190.69 (7)C4—C5—H5118.4
O7i—Cd1—N188.91 (6)O1—C6—N2123.79 (18)
O7—Cd1—N191.09 (6)O1—C6—C3120.41 (18)
O6—Cd1—N1i90.69 (7)N2—C6—C3115.79 (17)
O6i—Cd1—N1i89.31 (7)N3—C7—C8121.7 (2)
O7i—Cd1—N1i91.09 (6)N3—C7—H7119.1
O7—Cd1—N1i88.91 (6)C8—C7—H7119.1
N1—Cd1—N1i180.0C13—C8—C9118.8 (2)
C5—N1—C1117.65 (17)C13—C8—C7121.7 (2)
C5—N1—Cd1118.85 (13)C9—C8—C7119.4 (2)
C1—N1—Cd1123.22 (13)O2—C9—C10124.2 (2)
C6—N2—N3119.19 (17)O2—C9—C8115.30 (19)
C6—N2—H2N120.4C10—C9—C8120.4 (2)
N3—N2—H2N120.4C11—C10—C9119.3 (2)
C7—N3—N2114.04 (18)C11—C10—H10120.4
O5—N4—O4121.1 (2)C9—C10—H10120.4
O5—N4—O3120.4 (2)C10—C11—C12121.0 (2)
O4—N4—O3118.4 (2)C10—C11—H11119.5
C9—O2—C14120.0 (2)C12—C11—H11119.5
Cd1—O6—H6A115.2C13—C12—C11119.6 (3)
Cd1—O6—H6B127.0C13—C12—H12120.2
H6A—O6—H6B108.1C11—C12—H12120.2
Cd1—O7—H7A117.6C12—C13—C8120.8 (2)
Cd1—O7—H7B128.4C12—C13—H13119.6
H7A—O7—H7B114.0C8—C13—H13119.6
N1—C1—C2122.69 (18)O2—C14—H14D109.5
N1—C1—H1118.7O2—C14—H14A109.5
C2—C1—H1118.7H14D—C14—H14A109.5
C1—C2—C3119.06 (18)O2—C14—H14B109.5
C1—C2—H2120.5H14D—C14—H14B109.5
C3—C2—H2120.5H14A—C14—H14B109.5
C4—C3—C2117.93 (18)
O6—Cd1—N1—C5134.67 (17)C4—C3—C6—O117.0 (3)
O6i—Cd1—N1—C545.33 (17)C2—C3—C6—O1163.4 (2)
O7i—Cd1—N1—C540.10 (17)C4—C3—C6—N2161.6 (2)
O7—Cd1—N1—C5139.90 (17)C2—C3—C6—N218.1 (3)
O6—Cd1—N1—C151.63 (18)N2—N3—C7—C8177.1 (2)
O6i—Cd1—N1—C1128.37 (18)N3—C7—C8—C131.3 (4)
O7i—Cd1—N1—C1146.20 (18)N3—C7—C8—C9177.4 (3)
O7—Cd1—N1—C133.80 (18)C14—O2—C9—C106.1 (5)
C6—N2—N3—C7179.8 (2)C14—O2—C9—C8175.0 (3)
C5—N1—C1—C21.6 (3)C13—C8—C9—O2176.4 (3)
Cd1—N1—C1—C2172.21 (17)C7—C8—C9—O22.2 (4)
N1—C1—C2—C30.3 (4)C13—C8—C9—C102.5 (4)
C1—C2—C3—C42.3 (3)C7—C8—C9—C10178.8 (2)
C1—C2—C3—C6177.4 (2)O2—C9—C10—C11177.2 (3)
C2—C3—C4—C52.3 (3)C8—C9—C10—C111.6 (4)
C6—C3—C4—C5177.3 (2)C9—C10—C11—C120.4 (5)
C1—N1—C5—C41.5 (3)C10—C11—C12—C131.5 (5)
Cd1—N1—C5—C4172.55 (19)C11—C12—C13—C80.6 (5)
C3—C4—C5—N10.5 (4)C9—C8—C13—C121.4 (4)
N3—N2—C6—O14.7 (4)C7—C8—C13—C12180.0 (3)
N3—N2—C6—C3173.84 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.891.842.705 (3)164
N2—H2N···O5ii0.862.183.011 (3)164
O6—H6B···O3iii0.841.992.811 (3)164
O7—H7A···O4i0.872.243.006 (4)146
O7—H7B···O1iv0.822.002.771 (2)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C14H13N3O2)2(H2O)4](NO3)2
Mr819.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.062 (5), 17.955 (8), 11.853 (6)
β (°) 98.26 (2)
V3)1697.9 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.28 × 0.21 × 0.15
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.824, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
16376, 3892, 3210
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.07
No. of reflections3892
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.35

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.891.842.705 (3)163.5
N2—H2N···O5i0.862.183.011 (3)163.8
O6—H6B···O3ii0.841.992.811 (3)163.6
O7—H7A···O4iii0.872.243.006 (4)146.0
O7—H7B···O1iv0.822.002.771 (2)156.4
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2.
Comparative geometrical parameters (Å) for Cd—O(water) bonds in cadmium complexes top
ComplexCd1—O1Cd2—O2Δd e
This work2.267 (2)2.311 (2)0.044
[Cd(pmtca)2(H2O)2]na2.277 (2)2.350 (2)0.073
[Cd(pmtca)2(H2O)4]a2.298 (2)2.347 (2)0.049
C54H70CdN12O16b2.299 (3)2.321 (2)0.022
[Cd(trtr)2(H2O)4](SiF6)c2.273 (2)2.289 (2)0.016
[Cd(9-EtGH)2(H2O)4]-2(NO3d)2.309 (3)2.324 (3)0.015
[Cd(9-MeGH)2(H2O)4]-2(NO3d)2.317 (3)2.331 (2)0.014
Notes: (a) Chen et al. (2007) [Hpmtca is 2-(3-pyridyl)-4-methylthiazole −5-carboxylic acid, Hptca is 2-(4-pyridyl)thiazole-4-carboxylic acid ptca IS NOT USED]; (b) Wei et al. (2006); (c) Liu et al. (2007) {trtr is 4-[3-(1,2,4-triazolyl)-1,2,4-triazole} PLEASE CHECK NAME - MISSING CLOSING BRACKET; (d) Ochoa & Alexandre (2005) (9-EtGH is 9-ethylguanine, 9-MeGH is 9-methylguanine); (e) Δd is the difference between Cd—O(water) bond distances in same complex.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds