Download citation
Download citation
link to html
The crystal structure of a protected L-tyrosine, namely N-acetyl-L-tyrosine methyl ester monohydrate, C12H15NO4·H2O, was determined at both 293 (2) and 123 (2) K. The structure exhibits a network of O—H...O and N—H...O hydrogen bonds, in which the water mol­ecule plays a crucial role as an acceptor of one and a donor of two hydrogen bonds. Mol­ecules of water and of the protected L-tyrosine form hydrogen-bonded layers perpendicular to [001]. C—H...π inter­actions are observed in the hydro­phobic regions of the structure. The structure is similar to that of N-acetyl-L-tyrosine ethyl ester monohydrate [Soriano-García (1993). Acta Cryst. C49, 96–97].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107038413/bm3032sup1.cif
Contains datablocks global, Ia, Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107038413/bm3032Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107038413/bm3032Ibsup3.hkl
Contains datablock Ib

CCDC references: 665500; 665501

Comment top

The N-acetyl methyl ester of L-tyrosine was chosen from among amino acid residues that are responsible for binding the antiarrhythmics of class I and III in sodium and potassium channels, respectively (Tseng, 2001), and was used in some experiments performed to reveal the mutual chemical recognition of antiarrhythmic agents by amino acids. The crystal structure of teh title compound, L-AcYOMe·H2O, (I), was determined to allow comparison with the structures of N-acetyl-L-tyrosine ethyl ester monohydrate (Pieret et al., 1972; Soriano-García, 1993), L-tyrosine and L-tyrosine hydrochloride (Frey et al., 1973). Charge density studies have also been performed on N-acetyl-L-tyrosine ethyl ester monohydrate (Dahaoui et al., 1999).

Compound (I) crystallizes in space group P212121, and the contents of the asymmetric unit at 123 (2) K are shown in Fig. 1. Selected geometric parameters at 293 (2) K, (Ia), and at 123 (2) K, (Ib), are given in Tables 1 and 3, respectively. In relation to L-tyrosine itself, the protected amino acid offers different possibilities of intermolecular interactions, which are closer to the specific interactions of small peptides. Owing to the inactivation of the amino and carboxyl groups, the water molecule can participate in a network of hydrogen bonds as an acceptor of one H atom and a donor of two. Water molecules and L-AcYOMe molecules form layers parallel to ab at z = 1/2 (Fig. 2, and Tables 2 and 4). Each layer consists of alternating hydrophobic and hydrophilic areas. In the hydrophobic area, C—H···π interactions of type III in the classification by Malone et al. (1997) dominate [C5—H5···Cg1(x − 1/2, −y + 3/2, −z + 1), where Cg1 is the centre of gravity of the C4–C9 benzene ring], whereas in the hydrophilic area, mainly O—H···O hydrogen bonds exist. There are weak C3—H3A···O10(x + 1, y, z) interactions between hydrophobic and hydrophilic areas of the layers. The layers are linked by N—H···O hydrogen bonds, and between hydrophobic and hydrophilic areas of neighbouring layers there are weak C8—H8···O1(−x + 2, y + 1/2, −z + 3/2) interactions (Fig. 3, and Tables 2 and 4). There is no obvious difference in molecular geometry between 293 and 123 K, except for the apparent elongation of bond lengths at the lower temperature due to a reduction in librational effects as the atomic displacements decrease.

Table 5 presents a comparison of the torsion angles that characterize the backbone conformation of (I), N-acetyl-L-tyrosine ethyl ester (Soriano-García, 1993), and N-acetyl-L-tyrosine ethyl ester at room- and low-temperature (Dahaoui et al., 1999) with the conformation of the L-tyrosine residue in selected tripeptides and with the conformation of L-tyrosine itself and L-tyrosine hydrochloride (Frey et al., 1973). The values of the torsion angles ω, ϕ, ψ1, ψ2, χ1 and χ2, which are defined in accordance with the IUPAC–IUB Commission on Biochemical Nomenclature (1970), are similar for protected L-tyrosine; the observed differences in torsion angles are in the range 0.7–5.2°. For tripeptides LYL and VYV, the differences are of up to 25°, indicating that the conformation of the L-tyrosine residue is, in general, well preserved with small deviations caused by the N– and C-ends forming hydrogen bonds. However, in both LYL and VYV, the presence of relatively long hydrocarbon chains of L or V residues provides steric hindrance for such intermolecular interactions. In GYA, owing to a lack of hydrocarbon chains, the N– and C-ends are free to form hydrogen bonds. The moderate N—H···O hydrogen bonds could change the torsion angles of the L-tyrosine residue by 50°. In the cases of L-tyrosine and its hydrochloride, the most pronounced conformational differences arise because of specific patterns of hydrogen bonding.

##AUTHOR: In the paragraph above, please define the residue symbols L, V, Y, A, G.

Experimental top

The protected amino acid was purchased from Bachem Chemical Company. Crystals suitable for X-ray structure determination were obtained by vapour diffusion at room temperature between heptane and an acetone solution containing N-acetyl-L-tyrosine ethyl ester and lidocaine in a molar ratio of 1:1. Lidocaine, which was used to provide the correct ionic strength of the solutions, was purchased from Sigma Chemical Company. The diffraction intensity measurements at 293 (2) and 123 (2) K were performed on two different crystals.

Refinement top

Owing to the absence of significant anomalous scattering, Friedel pairs were merged. The absolute configuration of the purchased materials was known. H atoms bonded to N and O atoms were located in difference Fourier maps and included in the refinement without constraints. For the sp2-bound methyl group (C11), the procedure for finding the H atom relied on locating the maximum electron density around the circle representing the locus of possible H-atom positions (Sheldrick, 1997). For this methyl group, C—H distances and C—C—H angles were kept fixed, while the torsion angles were allowed to refine with Uiso(H) set at 1.2Ueq(C11). H atoms attached to other C atoms were included with appropriate geometrical constraints and were treated as riding, with Uiso(H) values of 1.2Ueq of the parent atoms.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of N-acetyl-L-tyrosine methyl ester monohydrate at 123 K, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The role of hydrogen bonds formed by water molecules in joining molecules of N-acetyl-L-tyrosine ethyl ester into layers; (b) a projection onto the (x, y, 1/2) layer, showing hydrophobic and hydrophilic areas alternating along [010].
[Figure 3] Fig. 3. The arrangement of layers in projection along [100].
(Ia) N-Acetyl-L-tyrosine methyl ester monohydrate top
Crystal data top
C12H15NO4·H2ODx = 1.271 Mg m3
Mr = 255.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2095 reflections
a = 7.2117 (1) Åθ = 1.0–30.0°
b = 12.9868 (3) ŵ = 0.10 mm1
c = 14.2470 (4) ÅT = 293 K
V = 1334.33 (5) Å3Block, colourless
Z = 40.52 × 0.52 × 0.37 mm
F(000) = 544
Data collection top
Nonius KappaCCD
diffractometer
2223 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.020
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 3.2°
ϕ scans and ο scans to fill asymmetric unith = 1010
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 1818
Tmin = 0.950, Tmax = 0.964l = 1920
8443 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.235P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2223 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.094 (4)
Crystal data top
C12H15NO4·H2OV = 1334.33 (5) Å3
Mr = 255.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2117 (1) ŵ = 0.10 mm1
b = 12.9868 (3) ÅT = 293 K
c = 14.2470 (4) Å0.52 × 0.52 × 0.37 mm
Data collection top
Nonius KappaCCD
diffractometer
2223 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
1847 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.964Rint = 0.020
8443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
2223 reflectionsΔρmin = 0.16 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7140 (2)0.48523 (12)0.65541 (11)0.0346 (3)
H10.794 (4)0.4776 (19)0.7018 (17)0.051 (7)*
C10.7867 (3)0.38301 (13)0.51672 (12)0.0357 (4)
O10.7839 (3)0.30420 (10)0.56035 (11)0.0627 (5)
C20.7818 (3)0.49014 (13)0.55995 (12)0.0318 (4)
H20.69840.53370.52290.038*
O20.7977 (2)0.38843 (11)0.42440 (10)0.0485 (4)
C30.9779 (3)0.53656 (14)0.55704 (14)0.0365 (4)
H3A1.05950.49520.59580.044*
H3B1.02400.53370.49310.044*
C40.9842 (3)0.64710 (13)0.59090 (12)0.0335 (4)
C50.9006 (3)0.72601 (14)0.54091 (14)0.0401 (4)
H50.83730.71070.48580.048*
C61.0781 (3)0.67253 (15)0.67263 (14)0.0411 (5)
H61.13650.62090.70690.049*
C70.9094 (3)0.82747 (14)0.57132 (14)0.0400 (4)
H70.85290.87940.53660.048*
C81.0864 (3)0.77369 (15)0.70432 (13)0.0442 (5)
H81.14850.78920.75980.053*
C91.0023 (3)0.85107 (13)0.65342 (12)0.0342 (4)
O91.0160 (2)0.94996 (11)0.68728 (11)0.0459 (4)
H90.967 (5)0.994 (2)0.646 (2)0.073 (9)*
C100.5350 (3)0.46506 (15)0.67405 (13)0.0386 (4)
O100.4177 (2)0.45931 (14)0.61182 (11)0.0530 (4)
C110.4865 (4)0.4494 (2)0.77528 (15)0.0578 (6)
H11A0.40500.50350.79560.069*
H11B0.59750.45050.81240.069*
H11C0.42570.38410.78270.069*
C120.8085 (5)0.29253 (19)0.37345 (17)0.0668 (7)
H12A0.81590.30650.30740.080*
H12B0.70000.25210.38620.080*
H12C0.91690.25530.39290.080*
O50.3430 (3)0.41471 (13)0.42768 (13)0.0555 (5)
H5A0.335 (5)0.357 (3)0.425 (2)0.081 (11)*
H5B0.369 (5)0.436 (3)0.493 (3)0.102 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (8)0.0365 (7)0.0329 (7)0.0012 (7)0.0016 (7)0.0013 (6)
C10.0384 (9)0.0310 (8)0.0377 (9)0.0013 (8)0.0037 (8)0.0017 (7)
O10.1109 (15)0.0289 (6)0.0482 (8)0.0039 (8)0.0003 (10)0.0038 (6)
C20.0345 (9)0.0269 (7)0.0340 (8)0.0012 (7)0.0015 (7)0.0006 (6)
O20.0726 (10)0.0369 (7)0.0360 (7)0.0030 (7)0.0008 (7)0.0047 (6)
C30.0341 (9)0.0329 (8)0.0425 (9)0.0009 (8)0.0025 (8)0.0033 (8)
C40.0323 (8)0.0305 (8)0.0376 (8)0.0026 (7)0.0023 (7)0.0002 (7)
C50.0441 (10)0.0379 (9)0.0382 (9)0.0017 (8)0.0107 (8)0.0024 (8)
C60.0488 (11)0.0344 (9)0.0400 (9)0.0017 (8)0.0089 (9)0.0064 (8)
C70.0430 (10)0.0339 (9)0.0431 (10)0.0016 (8)0.0106 (9)0.0032 (8)
C80.0561 (12)0.0405 (10)0.0361 (9)0.0080 (9)0.0114 (9)0.0021 (8)
C90.0372 (9)0.0314 (8)0.0341 (8)0.0041 (7)0.0006 (8)0.0020 (7)
O90.0595 (9)0.0327 (7)0.0454 (7)0.0025 (7)0.0109 (7)0.0049 (6)
C100.0391 (10)0.0371 (9)0.0397 (9)0.0006 (8)0.0019 (8)0.0059 (8)
O100.0381 (8)0.0717 (10)0.0492 (8)0.0048 (8)0.0050 (7)0.0057 (8)
C110.0528 (13)0.0792 (16)0.0415 (10)0.0089 (13)0.0104 (10)0.0077 (11)
C120.099 (2)0.0503 (12)0.0517 (13)0.0063 (14)0.0051 (14)0.0207 (11)
O50.0784 (12)0.0361 (8)0.0519 (9)0.0045 (8)0.0016 (9)0.0004 (7)
Geometric parameters (Å, º) top
N1—C101.344 (3)C6—H60.9300
N1—C21.447 (2)C7—C91.383 (3)
N1—H10.88 (3)C7—H70.9300
C1—O11.198 (2)C8—C91.379 (3)
C1—O21.320 (2)C8—H80.9300
C1—C21.522 (2)C9—O91.375 (2)
C2—C31.538 (3)O9—H90.89 (3)
C2—H20.9800C10—O101.228 (2)
O2—C121.444 (2)C10—C111.498 (3)
C3—C41.515 (2)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—C51.386 (3)C12—H12A0.9600
C4—C61.387 (3)C12—H12B0.9600
C5—C71.388 (3)C12—H12C0.9600
C5—H50.9300O5—H5A0.75 (4)
C6—C81.391 (3)O5—H5B0.99 (4)
C10—N1—C2121.3 (2)C8—C6—H6119.4
C10—N1—H1117 (2)C9—C7—C5119.76 (17)
C2—N1—H1119 (2)C9—C7—H7120.1
O1—C1—O2124.4 (2)C5—C7—H7120.1
O1—C1—C2124.9 (2)C9—C8—C6119.9 (2)
O2—C1—C2110.9 (2)C9—C8—H8120.0
N1—C2—C1110.4 (2)C6—C8—H8120.0
N1—C2—C3110.7 (2)O9—C9—C8117.7 (2)
C1—C2—C3109.1 (2)O9—C9—C7122.6 (2)
N1—C2—H2108.9C8—C9—C7119.8 (2)
C1—C2—H2108.9C9—O9—H9110 (2)
C3—C2—H2108.9O10—C10—N1122.1 (2)
C1—O2—C12117.3 (2)O10—C10—C11121.7 (2)
C4—C3—C2113.0 (2)N1—C10—C11116.2 (2)
C4—C3—H3A109.0C10—C11—H11A109.5
C2—C3—H3A109.0C10—C11—H11B109.5
C4—C3—H3B109.0H11A—C11—H11B109.5
C2—C3—H3B109.0C10—C11—H11C109.5
H3A—C3—H3B107.8H11A—C11—H11C109.5
C5—C4—C6117.9 (2)H11B—C11—H11C109.5
C5—C4—C3121.6 (2)O2—C12—H12A109.5
C6—C4—C3120.5 (2)O2—C12—H12B109.5
C4—C5—C7121.4 (2)H12A—C12—H12B109.5
C4—C5—H5119.3O2—C12—H12C109.5
C7—C5—H5119.3H12A—C12—H12C109.5
C4—C6—C8121.2 (2)H12B—C12—H12C109.5
C4—C6—H6119.4H5A—O5—H5B110 (3)
C10—N1—C2—C171.3 (2)C6—C4—C5—C70.2 (3)
C10—N1—C2—C3167.9 (2)C3—C4—C5—C7178.9 (2)
O1—C1—C2—N118.5 (3)C5—C4—C6—C80.8 (3)
O2—C1—C2—N1162.6 (2)C3—C4—C6—C8179.5 (2)
O1—C1—C2—C3103.3 (2)C4—C5—C7—C90.3 (3)
O2—C1—C2—C375.6 (2)C4—C6—C8—C90.9 (3)
O1—C1—O2—C120.5 (4)C6—C8—C9—O9179.4 (2)
C2—C1—O2—C12178.4 (2)C6—C8—C9—C70.3 (3)
N1—C2—C3—C463.4 (2)C5—C7—C9—O9180.0 (2)
C1—C2—C3—C4175.0 (2)C5—C7—C9—C80.3 (3)
C2—C3—C4—C567.4 (2)C2—N1—C10—O106.9 (3)
C2—C3—C4—C6113.9 (2)C2—N1—C10—C11172.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O5i0.89 (3)1.82 (3)2.707 (2)173 (3)
N1—H1···O9ii0.88 (3)2.12 (3)3.004 (2)177 (2)
O5—H5A···O1iii0.75 (4)2.14 (4)2.880 (2)170 (4)
O5—H5B···O100.99 (4)1.76 (4)2.740 (2)174 (3)
C3—H3A···O10iv0.972.633.417 (3)138
C8—H8···O1v0.932.623.503 (2)160
C11—H11A···O5vi0.962.813.671 (3)150
C12—H12C···O10vii0.962.793.371 (3)120
C5—H5···Cg1viii0.932.943.73 (5)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x1/2, y+3/2, z+1.
(Ib) N-Acetyl-L-tyrosine methyl ester monohydrate top
Crystal data top
C12H15NO4·H2ODx = 1.302 Mg m3
Mr = 255.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2646 reflections
a = 7.1118 (2) Åθ = 1.0–33.1°
b = 12.9364 (3) ŵ = 0.10 mm1
c = 14.1538 (4) ÅT = 123 K
V = 1302.17 (6) Å3Block, colourless
Z = 40.40 × 0.37 × 0.25 mm
F(000) = 544
Data collection top
Nonius KappaCCD
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube2605 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.020
Detector resolution: 9 pixels mm-1θmax = 33.1°, θmin = 3.3°
ο scans at chi = 55 degh = 1010
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 1919
Tmin = 0.961, Tmax = 0.975l = 2121
10167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.2619P]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H15NO4·H2OV = 1302.17 (6) Å3
Mr = 255.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1118 (2) ŵ = 0.10 mm1
b = 12.9364 (3) ÅT = 123 K
c = 14.1538 (4) Å0.40 × 0.37 × 0.25 mm
Data collection top
Nonius KappaCCD
diffractometer
2790 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
2605 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.975Rint = 0.020
10167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.31 e Å3
2790 reflectionsΔρmin = 0.18 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71157 (15)0.48699 (7)0.65787 (7)0.01325 (17)
H10.794 (3)0.4817 (15)0.7039 (14)0.028 (5)*
C10.77991 (17)0.38398 (8)0.51734 (8)0.01321 (19)
O10.77403 (18)0.30426 (6)0.56186 (7)0.0240 (2)
C20.77647 (16)0.49188 (8)0.56094 (8)0.01177 (18)
H20.68920.53670.52370.014*
O20.79393 (15)0.38950 (7)0.42407 (6)0.01828 (17)
C30.97621 (16)0.53788 (8)0.55674 (8)0.01389 (19)
H3A1.06110.49550.59640.017*
H3B1.02260.53450.49090.017*
C40.98391 (16)0.64882 (8)0.59029 (8)0.01260 (18)
C50.89806 (17)0.72820 (8)0.53906 (8)0.0151 (2)
H50.83270.71210.48240.018*
C61.07879 (18)0.67465 (8)0.67320 (8)0.0156 (2)
H61.13840.62170.70880.019*
C70.90651 (17)0.83047 (8)0.56958 (9)0.0149 (2)
H70.84760.88350.53380.018*
C81.08802 (19)0.77652 (8)0.70499 (8)0.0164 (2)
H81.15270.79260.76180.020*
C91.00179 (16)0.85473 (8)0.65288 (8)0.01301 (18)
O91.01535 (14)0.95384 (6)0.68652 (6)0.01733 (17)
H90.967 (4)1.0001 (19)0.6502 (18)0.049 (7)*
C100.53053 (17)0.46497 (8)0.67793 (8)0.0144 (2)
O100.40919 (13)0.45748 (8)0.61595 (7)0.02064 (18)
C110.4846 (2)0.44935 (11)0.78070 (9)0.0221 (2)
H11A0.40060.50470.80210.027*
H11B0.60080.45090.81790.027*
H11C0.42250.38240.78910.027*
C120.8035 (2)0.29199 (10)0.37386 (10)0.0257 (3)
H12A0.81350.30520.30590.031*
H12B0.68950.25170.38660.031*
H12C0.91390.25310.39520.031*
O50.34119 (15)0.41298 (7)0.43062 (7)0.02093 (19)
H5B0.360 (4)0.4303 (17)0.4900 (19)0.048 (7)*
H5A0.330 (4)0.352 (2)0.4296 (19)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0143 (4)0.0153 (4)0.0102 (4)0.0004 (3)0.0009 (3)0.0006 (3)
C10.0150 (4)0.0122 (4)0.0125 (4)0.0004 (4)0.0014 (4)0.0008 (3)
O10.0430 (6)0.0115 (3)0.0176 (4)0.0017 (4)0.0005 (4)0.0014 (3)
C20.0140 (4)0.0106 (4)0.0107 (4)0.0002 (3)0.0003 (4)0.0002 (3)
O20.0281 (4)0.0149 (3)0.0118 (3)0.0013 (3)0.0008 (4)0.0020 (3)
C30.0139 (4)0.0125 (4)0.0152 (4)0.0000 (4)0.0010 (4)0.0014 (3)
C40.0135 (4)0.0120 (4)0.0123 (4)0.0012 (4)0.0007 (4)0.0000 (3)
C50.0171 (5)0.0144 (4)0.0139 (5)0.0003 (4)0.0043 (4)0.0012 (4)
C60.0197 (5)0.0133 (4)0.0137 (5)0.0008 (4)0.0031 (4)0.0022 (3)
C70.0168 (5)0.0136 (4)0.0144 (5)0.0008 (4)0.0032 (4)0.0000 (4)
C80.0227 (5)0.0143 (4)0.0122 (4)0.0020 (4)0.0042 (4)0.0008 (3)
C90.0146 (4)0.0124 (4)0.0121 (4)0.0016 (4)0.0002 (4)0.0006 (3)
O90.0240 (4)0.0120 (3)0.0161 (4)0.0002 (3)0.0051 (4)0.0020 (3)
C100.0154 (5)0.0138 (4)0.0141 (4)0.0001 (4)0.0014 (4)0.0027 (4)
O100.0159 (4)0.0283 (4)0.0177 (4)0.0017 (4)0.0020 (3)0.0022 (4)
C110.0210 (5)0.0321 (6)0.0133 (5)0.0034 (5)0.0039 (5)0.0021 (5)
C120.0393 (8)0.0202 (5)0.0175 (5)0.0029 (5)0.0019 (6)0.0081 (4)
O50.0320 (5)0.0137 (4)0.0171 (4)0.0025 (3)0.0009 (4)0.0002 (3)
Geometric parameters (Å, º) top
N1—C101.349 (2)C6—H60.9500
N1—C21.449 (2)C7—C91.396 (2)
N1—H10.88 (2)C7—H70.9500
C1—O11.209 (1)C8—C91.394 (2)
C1—O21.326 (1)C8—H80.9500
C1—C21.526 (1)C9—O91.371 (1)
C2—C31.541 (2)O9—H90.86 (3)
C2—H21.0000C10—O101.234 (2)
O2—C121.449 (1)C10—C111.504 (2)
C3—C41.513 (2)C11—H11A0.9800
C3—H3A0.9900C11—H11B0.9800
C3—H3B0.9900C11—H11C0.9800
C4—C61.394 (2)C12—H12A0.9800
C4—C51.398 (2)C12—H12B0.9800
C5—C71.393 (2)C12—H12C0.9800
C5—H50.9500O5—H5B0.88 (3)
C6—C81.394 (2)O5—H5A0.79 (3)
C10—N1—C2120.8 (1)C4—C6—H6119.3
C10—N1—H1118 (1)C5—C7—C9119.8 (1)
C2—N1—H1120 (1)C5—C7—H7120.1
O1—C1—O2124.6 (1)C9—C7—H7120.1
O1—C1—C2124.7 (1)C9—C8—C6119.6 (1)
O2—C1—C2110.8 (1)C9—C8—H8120.2
N1—C2—C1110.4 (1)C6—C8—H8120.2
N1—C2—C3110.3 (1)O9—C9—C8117.7 (1)
C1—C2—C3108.8 (1)O9—C9—C7122.5 (1)
N1—C2—H2109.1C8—C9—C7119.8 (1)
C1—C2—H2109.1C9—O9—H9114 (2)
C3—C2—H2109.1O10—C10—N1122.3 (1)
C1—O2—C12116.4 (1)O10—C10—C11121.7 (1)
C4—C3—C2112.8 (1)N1—C10—C11116.0 (1)
C4—C3—H3A109.0C10—C11—H11A109.5
C2—C3—H3A109.0C10—C11—H11B109.5
C4—C3—H3B109.0H11A—C11—H11B109.5
C2—C3—H3B109.0C10—C11—H11C109.5
H3A—C3—H3B107.8H11A—C11—H11C109.5
C6—C4—C5118.2 (1)H11B—C11—H11C109.5
C6—C4—C3120.6 (1)O2—C12—H12A109.5
C5—C4—C3121.2 (1)O2—C12—H12B109.5
C7—C5—C4121.2 (1)H12A—C12—H12B109.5
C7—C5—H5119.4O2—C12—H12C109.5
C4—C5—H5119.4H12A—C12—H12C109.5
C8—C6—C4121.4 (1)H12B—C12—H12C109.5
C8—C6—H6119.3H5A—O5—H5B107 (2)
C10—N1—C2—C170.3 (1)C6—C4—C5—C70.0 (2)
C10—N1—C2—C3169.4 (1)C3—C4—C5—C7179.5 (1)
O1—C1—C2—N116.5 (2)C5—C4—C6—C80.3 (2)
O2—C1—C2—N1164.8 (1)C3—C4—C6—C8179.7 (1)
O1—C1—C2—C3104.7 (1)C4—C5—C7—C90.2 (2)
O2—C1—C2—C374.1 (1)C4—C6—C8—C90.4 (2)
O1—C1—O2—C120.3 (2)C6—C8—C9—O9179.6 (1)
C2—C1—O2—C12178.5 (1)C6—C8—C9—C70.2 (2)
N1—C2—C3—C464.0 (1)C5—C7—C9—O9179.9 (1)
C1—C2—C3—C4174.8 (1)C5—C7—C9—C80.1 (2)
C2—C3—C4—C6112.9 (1)C2—N1—C10—O106.8 (2)
C2—C3—C4—C567.6 (1)C2—N1—C10—C11172.9 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O5i0.86 (3)1.83 (3)2.693 (1)173 (3)
N1—H1···O9ii0.88 (2)2.09 (2)2.968 (1)174 (2)
O5—H5A···O1iii0.79 (3)2.07 (3)2.853 (1)173 (3)
O5—H5B···O100.88 (3)1.85 (3)2.729 (1)176 (2)
C3—H3A···O10iv0.992.543.356 (2)140
C8—H8···O1v0.952.553.462 (2)160
C11—H11A···O5vi0.982.723.612 (2)151
C12—H12C···O10vii0.982.733.317 (2)119
C5—H5···Cg1viii0.952.843.65 (4)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x1/2, y+3/2, z+1.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC12H15NO4·H2OC12H15NO4·H2O
Mr255.27255.27
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293123
a, b, c (Å)7.2117 (1), 12.9868 (3), 14.2470 (4)7.1118 (2), 12.9364 (3), 14.1538 (4)
V3)1334.33 (5)1302.17 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.52 × 0.52 × 0.370.40 × 0.37 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.950, 0.9640.961, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8443, 2223, 1847 10167, 2790, 2605
Rint0.0200.020
(sin θ/λ)max1)0.7040.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.01 0.032, 0.084, 1.00
No. of reflections22232790
No. of parameters181184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.160.31, 0.18

Computer programs: COLLECT (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 1.4; Macrae et al., 2006), SHELXL97.

Selected geometric parameters (Å, º) for (Ia) top
N1—C101.344 (3)C2—C31.538 (3)
N1—C21.447 (2)O2—C121.444 (2)
C1—O11.198 (2)C10—O101.228 (2)
C1—C21.522 (2)
N1—C2—C1110.4 (2)C1—C2—C3109.1 (2)
N1—C2—C3110.7 (2)C1—O2—C12117.3 (2)
O1—C1—C2—N118.5 (3)O1—C1—C2—C3103.3 (2)
O2—C1—C2—N1162.6 (2)O2—C1—C2—C375.6 (2)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O5i0.89 (3)1.82 (3)2.707 (2)173 (3)
N1—H1···O9ii0.88 (3)2.12 (3)3.004 (2)177 (2)
O5—H5A···O1iii0.75 (4)2.14 (4)2.880 (2)170 (4)
O5—H5B···O100.99 (4)1.76 (4)2.740 (2)174 (3)
C3—H3A···O10iv0.972.633.417 (3)138
C8—H8···O1v0.932.623.503 (2)160
C5—H5···Cg1vi0.932.943.73 (5)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x1/2, y+3/2, z+1.
Selected geometric parameters (Å, º) for (Ib) top
N1—C101.349 (2)C2—C31.541 (2)
N1—C21.449 (2)O2—C121.449 (1)
C1—O11.209 (1)C10—O101.234 (2)
C1—C21.526 (1)
N1—C2—C1110.4 (1)C1—C2—C3108.8 (1)
N1—C2—C3110.3 (1)C1—O2—C12116.4 (1)
O1—C1—C2—N116.5 (2)O1—C1—C2—C3104.7 (1)
O2—C1—C2—N1164.8 (1)O2—C1—C2—C374.1 (1)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O5i0.86 (3)1.83 (3)2.693 (1)173 (3)
N1—H1···O9ii0.88 (2)2.09 (2)2.968 (1)174 (2)
O5—H5A···O1iii0.79 (3)2.07 (3)2.853 (1)173 (3)
O5—H5B···O100.88 (3)1.85 (3)2.729 (1)176 (2)
C3—H3A···O10iv0.992.543.356 (2)140
C8—H8···O1v0.952.553.462 (2)160
C5—H5···Cg1vi0.952.843.65 (4)144
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x1/2, y+3/2, z+1.
Table 5. A comparison of torsion angles (°) describing the conformation of backbones in L-tyrosine derivatives. top
ϕ, ψ, χ, ω are defined in agreement with IUPAC–IUB Commission on Biochemical Nomenclature (1970).
Torsion angleSymbolAcYOMe (Ia)AcYOMe (Ib)AcYOEtaAcYOEtbAcYOEtcGYAdLYL(b)eVYVfYgY·HClh
C2—N1—C10—C11ω172.8 (2)172.9 (1)174.6 (4)-174.3-174.7172.8175.3-172.0
C1—C2—N1—C10ϕ-71.3 (2)-70.3 (1)-74.8 (5)75.174.2-119.0-82.8-83.4
O1—C1—C2—N1ψ1-18.5 (3)-16.5 (2)-17.2 (5)16.413.3-61.6-46.3-37.3-14.2-31.8
O2—C1—C2—N1*ψ2162.6 (2)164.8 (1)164.0 (4)-164.0-167.0120.0137.3145.7166.3151.1
N1—C2—C3—C4χ1-63.5 (2)-64.0 (1)-61.7 (5)62.363.0-86.4-76.8-64.369.1-178.1
C1—C2—C3—C4χ2175.0 (1)174.8 (1)175.5 (4)-175.3-174.8154.3162.8172.9-53.162.8
C2—C3—C4—C5-67.5 (2)-67.7 (1)-63.2 (5)62.964.6-112.9-71.2-66.1-86.0-113.7
* Equivalent to N2—C1—C2—N1 in tripepetides.

References: (Ia) and (Ib) this work; (a) N-acetyl-L-tyrosine ethyl ester (Soriano-García, 1993); N-acetyl-L-tyrosine ethyl ester (b) at room temperature and (c) at 110 K (Dahaoui et al., 1999) [notice the opposite sequence of torsion angle signs, which indicates the opposite configuration at Cα; indeed, the deposited data for N-acetyl-L-tyrosine ethyl ester [Cambridge Structural Database (Allen, 2002; Version 5.28) refcodes ATYREE02 and ATYREE03] concern the N-acetyl-(D)-tyrosine ethyl ester structural model); (d) glycyl-L-tyrosyl-L-alanine dihydrate (Eggleston & Baures, 1992); (e) L-leucyl-L-tyrosyl-L-leucine monohydrate (Wu et al., 1987); (f)(D)-valyl-L-tyrosyl-L-valine dihydrate (Mishnev et al., 1978); (g) L-tyrosine; (h) L-tyrosine hydrochloride (Frey et al., 1973).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds