Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C9H14N4)[CoCl4], a methyl­ene-bridged bis-imidazolium salt containing a tetrachloro­cobaltate anion, is one of the first examples where an alkyl-bridged bis-imidazolium compound could be structurally characterized. Short C—H...Cl contacts between the imidazolium C—H bonds and the Cl atoms of the counter-anion build up a three-dimensional network and indicate that the C—H bonds are strongly polarized.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104030471/bm1598sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030471/bm1598Isup2.hkl
Contains datablock I

CCDC reference: 263030

Comment top

Metal complexes of N-heterocyclic carbenes (NHC) have been shown to be extremely versatile and stable catalysts for a wide range of reactions (Herrmann, 2002). In particular, chelating NHC complexes have proved to have enhanced thermal stability, leading to remarkable catalytic properties. For instance, bridged palladium triscarbene complexes have been successfully applied in various catalytic reactions (e.g. C—C coupling reactions; Herrmann et al., 1995, 1998), and in particular to C—H activation (Muehlhofer, Strassner & Herrmann, 2002). A convenient synthesis of bridged NHC complexes is the conversion of basic metal precursors, such as palladium(II) acetate, with a bridged imidazolium salt (Herrmann et al., 1998). Here, we report the structural characterization of a methylene-bridged imidazolium salt with a tetrachlorocobaltate counteranion, (I). Previously, only a few reports of solid-state structures of imidazolium salts containing transition metal–halide anions have been published (Dullius et al., 1998; Ortwerth et al., 1998; Hasan et al., 1999, 2001), including the related 1-ethyl-3-methylimidazolium tetrachlorocobaltate (Hitchcock et al., 1993). They all show short contacts between imidazolium H atoms and the halide atoms of the anion, due to ionic interactions.

The structure of (I) is depicted in Fig. 1, and selected geometric parameters are given in Table 1. For steric reasons, the N—CH—N unit in the two imidazole moieties points in opposite directions. The N1—C1 and N2—C1 (and N3—C6 and N4—C6) bonds are almost identical, which indicates delocalization within these bonds. The dihedral angle between the imidazole rings is 72.97 (9)°. The Co atom of the counteranion is surrounded by four Cl ions in a tetrahedral fashion, with bond lengths ranging from 2.2680 (7) to 2.2907 (7) Å. As previously observed for analogous compounds, several short contacts are formed between C—H bonds and the Cl of the anion. In the case of (I), they are established by imidazolium ring H atoms, as well as by both H atoms of the methylene bridge and one H atom of the methyl group (bond distances in Table 2). This shows a possible polarization of all C—H bonds adjacent to an N atom in an imidazolium salt, and not only of the central C—H bond in the N—CH—N unit, which is deprotonated during the formation of metal–NHC complexes.

From the Co-editor: Please check important changes in the following paragraph. As can be seen from Fig. 2 and Table 2, the most acidic H atoms take part in C—H···Cl contacts, which build up a bilayer structure parallel to the ab plane. Contacts such as C2—H21···Cl3iv [symmetry code: (iv) 1/2 − x, y − 1/2, 1/2 − z], which are longer but still within the sum of the relevant van der Waals radii (2.95 Å; Reference?), connect these layers into a three-dimensional network.

From the Co-editor: Please provide a reference for the source of the van der Waals radii.

Experimental top

The title compound was prepared by reaction of 1,1'-dimethyl-3,3'-methylenediimidazolium dibromide (Muehlhofer, Strassner, Herdtweck & Herrmann, 2002) with cobalt(II) chloride hexahydrate in refluxing tetrahydrofuran/ethanol (2:1) for 10 h. The resulting light-blue precipitate was isolated by filtration and washed with tetrahydrofuran (yield 73%). Elemental analysis revealed a formulation of a 1:1 mixture of the tetrachloro- and corresponding tetrabromocobaltate compounds. Analysis calculated for C9H14Br2Cl2CoN4: C 23.10, H 3.02, N 11.97%; found: C 23.15, H 3.01, N 11.98%. Crystals of (I) could be obtained selectively by slow diffusion of tetrahydrofuran into a solution of the product in dimethylsulfoxide.

Refinement top

From the Co-editor: Please check corrected text below. One methyl group is disordered over two sets of positions, with occupancies of 0.61 (3) and 0.39 (3). Methyl H atoms were located from difference Fourier syntheses and refined as part of rigid rotating groups, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C—H distances of 0.99 and 0.95 Å, respectively, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 2001); cell refinement: DENZO (Nonius, 2001); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme and the disorder in the C9 methyl group (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A stereo view of the unit cell of (I), showing the hydrogen-bonding network.
3,3'-Dimethyl-1,1'-methylenediimidazolium tetrachlorocobaltate(II) top
Crystal data top
(C9H14N4)[CoCl4]F(000) = 1528
Mr = 378.97Dx = 1.623 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3026 reflections
a = 15.2885 (1) Åθ = 1.5–25.2°
b = 7.1995 (1) ŵ = 1.78 mm1
c = 28.2539 (3) ÅT = 173 K
β = 94.0770 (4)°Plate, light blue
V = 3102.02 (6) Å30.38 × 0.20 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
2784 independent reflections
Radiation source: NONIUS FR591 rotating anode2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 18 pixels mm-1θmax = 25.2°, θmin = 1.5°
ϕ and ω rotation scansh = 1818
Absorption correction: multi-scan
(DENZO; Nonius, 2001)
k = 88
Tmin = 0.562, Tmax = 0.916l = 3333
32195 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + (Fo2) + (0.029P)2 + 4.883P]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C9H14N4)[CoCl4]V = 3102.02 (6) Å3
Mr = 378.97Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.2885 (1) ŵ = 1.78 mm1
b = 7.1995 (1) ÅT = 173 K
c = 28.2539 (3) Å0.38 × 0.20 × 0.05 mm
β = 94.0770 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(DENZO; Nonius, 2001)
2509 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.916Rint = 0.044
32195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2784 reflectionsΔρmin = 0.28 e Å3
166 parameters
Special details top

Experimental. Diffractometer operator E. Herdtweck scanspeed 2 x 40 s per film repetition 1 dx 40 992 films measured in 8 data sets set 1: phi-scan with delta_phi = 1.0 set 2 to 8: omega-scans with delta_omega = 1.0

Refinement. The crystal was fixed in a capillary with perfluorinated ether and transferred to the diffractometer. Preliminary examination and data collection were carried out on an area detecting system (Nonius, MACH3, κ-CCD) at the window of a rotating anode (Nonius, FR951) and graphite monochromated Mo Kα radiation (λ = 0.71073 Å). Eight data sets were measured in rotation scan modus with Δϕ / Δω = 1.0°. Raw data were corrected for Lorentz, polarization, and, arising from the scaling procedure, for latent decay and absorption effects. The structure was solved by a combination of direct methods and difference Fourier syntheses. All non-hydrogen atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.16816 (12)0.5446 (3)0.20446 (6)0.0304 (6)
N20.12457 (12)0.7854 (3)0.16470 (6)0.0294 (6)
N30.06209 (12)0.8651 (3)0.08664 (7)0.0294 (6)
N40.04959 (12)0.7799 (3)0.04123 (7)0.0316 (6)
C10.18091 (15)0.6450 (3)0.16677 (8)0.0305 (7)
C20.10120 (17)0.6210 (4)0.22733 (9)0.0474 (9)
C30.07359 (18)0.7708 (4)0.20265 (9)0.0513 (10)
C40.2162 (2)0.3761 (4)0.21968 (11)0.0534 (10)
C50.11583 (16)0.9289 (3)0.12812 (9)0.0373 (8)
C60.02461 (15)0.8422 (3)0.08418 (8)0.0302 (7)
C70.02299 (17)0.7633 (4)0.01542 (8)0.0381 (8)
C80.09285 (16)0.8151 (3)0.04368 (8)0.0369 (8)
C90.13979 (17)0.7331 (4)0.02414 (10)0.0452 (9)
Co0.40632 (2)0.82778 (4)0.12818 (1)0.0302 (1)
Cl10.54288 (4)0.87927 (8)0.10327 (2)0.0319 (2)
Cl20.31724 (4)0.69706 (9)0.06859 (2)0.0369 (2)
Cl30.33625 (4)1.08951 (8)0.14925 (2)0.0396 (2)
Cl40.41672 (4)0.62947 (9)0.19100 (2)0.0454 (2)
H110.223500.621100.144600.0370*
H210.078400.576100.255600.0570*
H310.027400.851800.210000.0620*
H410.232800.383500.253800.0800*
H420.269100.365100.202200.0800*
H430.178800.267200.213200.0800*
H510.088801.041000.141200.0450*
H520.174700.963500.118600.0450*
H610.062000.866400.108900.0360*
H710.023500.722700.016500.0460*
H810.152200.817000.035700.0440*
H910.145600.740300.010600.0680*0.61 (3)
H920.180500.821000.037400.0680*0.61 (3)
H930.153500.606800.034200.0680*0.61 (3)
H940.174100.705100.051300.0680*0.39 (3)
H950.139200.624400.003300.0680*0.39 (3)
H960.166200.838600.006500.0680*0.39 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0310 (10)0.0342 (10)0.0261 (10)0.0020 (8)0.0036 (8)0.0012 (8)
N20.0273 (10)0.0339 (11)0.0263 (10)0.0015 (8)0.0028 (8)0.0008 (8)
N30.0272 (10)0.0317 (10)0.0290 (10)0.0003 (8)0.0003 (8)0.0053 (8)
N40.0315 (10)0.0332 (10)0.0292 (10)0.0018 (8)0.0040 (8)0.0020 (8)
C10.0291 (12)0.0314 (12)0.0317 (12)0.0008 (10)0.0064 (10)0.0020 (10)
C20.0389 (15)0.074 (2)0.0303 (13)0.0199 (14)0.0105 (11)0.0097 (13)
C30.0425 (15)0.079 (2)0.0335 (14)0.0303 (15)0.0106 (12)0.0062 (14)
C40.067 (2)0.0413 (15)0.0534 (18)0.0176 (14)0.0153 (15)0.0138 (13)
C50.0360 (14)0.0336 (13)0.0404 (14)0.0029 (11)0.0106 (11)0.0054 (11)
C60.0293 (12)0.0320 (12)0.0295 (12)0.0002 (10)0.0028 (10)0.0010 (9)
C70.0438 (15)0.0444 (14)0.0267 (12)0.0068 (12)0.0071 (11)0.0019 (11)
C80.0313 (13)0.0468 (15)0.0334 (13)0.0062 (11)0.0075 (10)0.0086 (11)
C90.0375 (15)0.0505 (16)0.0455 (15)0.0057 (12)0.0108 (12)0.0032 (13)
Co0.0299 (2)0.0333 (2)0.0274 (2)0.0024 (1)0.0019 (1)0.0016 (1)
Cl10.0280 (3)0.0334 (3)0.0343 (3)0.0028 (2)0.0018 (2)0.0004 (2)
Cl20.0283 (3)0.0509 (4)0.0315 (3)0.0004 (3)0.0023 (2)0.0093 (3)
Cl30.0387 (3)0.0367 (3)0.0443 (3)0.0039 (3)0.0087 (3)0.0084 (3)
Cl40.0487 (4)0.0520 (4)0.0366 (3)0.0167 (3)0.0099 (3)0.0152 (3)
Geometric parameters (Å, º) top
Co—Cl12.2805 (7)C1—H110.95
Co—Cl22.2911 (7)C2—H210.95
Co—Cl32.2679 (7)C3—H310.95
Co—Cl42.2746 (7)C4—H430.98
N1—C41.467 (4)C4—H410.98
N1—C11.313 (3)C4—H420.98
N1—C21.365 (3)C5—H520.99
N2—C51.461 (3)C5—H510.99
N2—C31.374 (3)C6—H610.95
N2—C11.327 (3)C7—H710.95
N3—C61.333 (3)C8—H810.95
N3—C81.380 (3)C9—H950.98
N3—C51.457 (3)C9—H960.98
N4—C61.324 (3)C9—H940.98
N4—C71.376 (3)C9—H910.98
N4—C91.468 (3)C9—H920.98
C2—C31.336 (4)C9—H930.98
C7—C81.340 (3)
Co···C13.915 (2)C6···Cl3vi3.431 (2)
Co···C6i3.882 (2)C6···Cl1vi3.519 (2)
Co···H113.2289C6···Coix3.882 (2)
Co···H61i3.4063C6···Cl2ix3.524 (2)
Co···H71ii3.4236C7···C7xi3.575 (4)
Co···H93iii3.4025C7···Cl2ii3.536 (3)
Cl1···C1iii3.285 (2)C7···Cl1ii3.582 (2)
Cl1···C5i3.484 (2)C8···Cl23.556 (3)
Cl1···C6iii3.519 (2)C8···Cl2ii3.547 (2)
Cl1···C7ii3.582 (2)C9···Cl2ix3.645 (3)
Cl2···C83.556 (3)C9···C9xii3.553 (4)
Cl2···C6i3.524 (2)C1···H41iv3.0503
Cl2···C7ii3.536 (3)C2···H21viii2.8399
Cl2···C13.606 (2)C3···H21viii3.0242
Cl2···C9i3.645 (3)C3···H31viii3.0589
Cl2···C8ii3.547 (2)C9···H96xii3.0739
Cl3···C6iii3.431 (2)H11···Co3.2289
Cl3···C2iv3.557 (3)H11···H422.5239
Cl3···C53.573 (3)H11···Cl22.7208
Cl3···C4v3.479 (3)H11···Cl43.1461
Cl4···C3i3.524 (3)H21···C2viii2.8399
Cl4···C13.623 (2)H21···C3viii3.0242
Cl1···H51i2.7323H21···H21viii2.3956
Cl1···H71ii2.6880H21···Cl3vii2.9052
Cl2···H112.7208H31···C3viii3.0589
Cl2···H81ii3.0177H31···H31viii2.4658
Cl2···H812.7645H31···Cl4ix2.6493
Cl2···H96i3.1409H41···C1vii3.0503
Cl2···H93iii3.1477H42···Cl42.9863
Cl2···H92i2.8482H42···Cl3x2.7290
Cl2···H71ii2.9896H42···H112.5239
Cl3···H522.7146H51···Cl1ix2.7323
Cl3···H94iii2.8834H51···Cl4ix3.1358
Cl3···H61iii2.8188H52···Cl32.7146
Cl3···H21iv2.9053H52···H812.5695
Cl3···H42v2.7290H61···H942.5569
Cl4···H113.1461H61···Coix3.4063
Cl4···H422.9863H61···Cl4ix3.0300
Cl4···H61i3.0300H61···Cl3vi2.8188
Cl4···H31i2.6493H71···Cl1ii2.6880
Cl4···H51i3.1358H71···Coii3.4236
C1···Co3.915 (2)H71···Cl2ii2.9896
C1···Cl23.606 (2)H81···H522.5695
C1···Cl43.623 (2)H81···Cl22.7645
C1···Cl1vi3.285 (2)H81···Cl2ii3.0177
C2···Cl3vii3.557 (3)H92···Cl2ix2.8482
C2···C2viii3.432 (4)H93···Covi3.4025
C2···C4iv3.580 (4)H93···Cl2vi3.1477
C3···Cl4ix3.524 (3)H94···H612.5569
C4···C2vii3.580 (4)H94···Cl3vi2.8834
C4···Cl3x3.479 (3)H96···Cl2ix3.1409
C5···Cl1ix3.484 (2)H96···C9xii3.0739
C5···Cl33.573 (3)
Cl1—Co—Cl2110.45 (2)C2—C3—H31126.40
Cl1—Co—Cl3113.94 (2)N1—C4—H41109.42
Cl1—Co—Cl4109.15 (2)H41—C4—H43109.51
Cl2—Co—Cl3105.49 (2)H42—C4—H43109.42
Cl2—Co—Cl4108.69 (2)H41—C4—H42109.54
Cl3—Co—Cl4108.95 (2)N1—C4—H42109.45
C1—N1—C2108.8 (2)N1—C4—H43109.49
C1—N1—C4126.4 (2)N2—C5—H51109.39
C2—N1—C4124.9 (2)N3—C5—H52109.42
C1—N2—C3108.1 (2)N2—C5—H52109.34
C1—N2—C5126.62 (19)N3—C5—H51109.31
C3—N2—C5125.3 (2)H51—C5—H52107.95
C5—N3—C8125.57 (19)N4—C6—H61125.92
C5—N3—C6125.7 (2)N3—C6—H61125.98
C6—N3—C8108.76 (19)N4—C7—H71126.31
C6—N4—C7108.92 (19)C8—C7—H71126.31
C6—N4—C9125.6 (2)N3—C8—H81126.55
C7—N4—C9125.5 (2)C7—C8—H81126.62
N1—C1—N2108.8 (2)N4—C9—H94109.40
N1—C2—C3107.3 (2)N4—C9—H95109.42
N2—C3—C2107.1 (2)H92—C9—H93109.48
N2—C5—N3111.36 (18)H94—C9—H95109.53
N3—C6—N4108.1 (2)H94—C9—H96109.48
N4—C7—C8107.4 (2)H95—C9—H96109.55
N3—C8—C7106.8 (2)N4—C9—H96109.45
N1—C1—H11125.65H91—C9—H92109.48
N2—C1—H11125.58H91—C9—H93109.48
C3—C2—H21126.29N4—C9—H91109.47
N1—C2—H21126.38N4—C9—H92109.47
N2—C3—H31126.54N4—C9—H93109.45
C2—N1—C1—N20.5 (3)C8—N3—C5—N2105.8 (3)
C4—N1—C1—N2179.6 (2)C5—N3—C6—N4179.0 (2)
C1—N1—C2—C30.1 (3)C8—N3—C6—N40.1 (3)
C4—N1—C2—C3179.2 (2)C5—N3—C8—C7179.3 (2)
C3—N2—C1—N10.7 (3)C6—N3—C8—C70.5 (3)
C5—N2—C1—N1179.2 (2)C7—N4—C6—N30.3 (3)
C1—N2—C3—C20.6 (3)C9—N4—C6—N3178.8 (2)
C5—N2—C3—C2179.2 (2)C6—N4—C7—C80.6 (3)
C1—N2—C5—N382.7 (3)C9—N4—C7—C8178.5 (2)
C3—N2—C5—N395.6 (3)N1—C2—C3—N20.3 (3)
C6—N3—C5—N272.9 (3)N4—C7—C8—N30.6 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z; (vi) x1/2, y1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x, y, z+1/2; (ix) x1/2, y+1/2, z; (x) x, y1, z; (xi) x, y+2, z; (xii) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H61···Cl3vi0.952.823.431 (2)123
C1—H11···Cl20.952.723.606 (2)155
C2—H21···Cl3vii0.952.913.557 (3)127
C3—H31···Cl4ix0.952.653.524 (3)153
C4—H42···Cl3x0.982.733.479 (3)134
C5—H51···Cl1ix0.992.733.484 (2)133
C5—H52···Cl30.992.713.573 (3)145
C7—H71···Cl1ii0.952.693.582 (2)157
C8—H81···Cl20.952.763.556 (3)141
Symmetry codes: (ii) x+1/2, y+3/2, z; (vi) x1/2, y1/2, z; (vii) x+1/2, y1/2, z+1/2; (ix) x1/2, y+1/2, z; (x) x, y1, z.

Experimental details

Crystal data
Chemical formula(C9H14N4)[CoCl4]
Mr378.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)15.2885 (1), 7.1995 (1), 28.2539 (3)
β (°) 94.0770 (4)
V3)3102.02 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.38 × 0.20 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO; Nonius, 2001)
Tmin, Tmax0.562, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
32195, 2784, 2509
Rint0.044
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.05
No. of reflections2784
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: KappaCCD Server Software (Nonius, 2001), DENZO (Nonius, 2001), DENZO, SIR92 (Altomare, 1994), SHELXL97 (Sheldrick, 1998), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
Co—Cl12.2805 (7)N2—C11.327 (3)
Co—Cl22.2911 (7)N3—C61.333 (3)
Co—Cl32.2679 (7)N3—C81.380 (3)
Co—Cl42.2746 (7)N3—C51.457 (3)
N1—C41.467 (4)N4—C61.324 (3)
N1—C11.313 (3)N4—C71.376 (3)
N1—C21.365 (3)N4—C91.468 (3)
N2—C51.461 (3)C2—C31.336 (4)
N2—C31.374 (3)C7—C81.340 (3)
Cl1—Co—Cl2110.45 (2)Cl2—Co—Cl3105.49 (2)
Cl1—Co—Cl3113.94 (2)Cl2—Co—Cl4108.69 (2)
Cl1—Co—Cl4109.15 (2)Cl3—Co—Cl4108.95 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···Cl20.952.723.606 (2)155
C2—H21···Cl3i0.952.913.557 (3)127
C3—H31···Cl4ii0.952.653.524 (3)153
C4—H42···Cl3iii0.982.733.479 (3)134
C5—H51···Cl1ii0.992.733.484 (2)133
C5—H52···Cl30.992.713.573 (3)145
C7—H71···Cl1iv0.952.693.582 (2)157
C8—H81···Cl20.952.763.556 (3)141
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1/2, y+3/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds