Download citation
Download citation
link to html
In the title compound, [Cu2I2(C11H16N4)2], each of the two crystallographically equivalent Cu atoms is tetrahedrally coordinated by two N atoms from one 1,1′-methyl­ene­bis(3,5-di­methyl-1H-pyrazole) ligand and two bridging iodide anions. The mol­ecule has a crystallographic center of symmetry located at the mid-point of the Cu...Cu line. One H atom of the CH2 group of the 1,1′-methyl­ene­bis(3,5-di­methyl-1H-pyrazole) ligand interacts with an iodide ion in an adjacent mol­ecule to afford pairwise intermolecular C—H...I contacts, thereby forming chains of mol­ecules running along the [101] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104028379/bm1589sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104028379/bm1589Isup2.hkl
Contains datablock I

CCDC reference: 263020

Comment top

Cuprous halide (CuX) is known to easily form neutral adducts with various N-atom donor ligands (L). Some of these compounds show interesting catalytic properties (Mar Diaz-Requejo et al., 2003; Caballero et al., 2003) and rich luminescent properties (Lindsay et al., 1996; Vital et al., 2001; Rasika Dias et al., 2003). The most commonly encountered stoichiometry in CuX/L complexes is dimeric one, [CuXL]2 (X = Cl, Br, I). For example, in the case of X = I, a nubmer of the dimeric complexes with different N-atom donor ligands (e.g. 1,10-phenanthroline, N,N-bis(pyrazol-1-ylmethyl)benzylamine, 2,6-bis(3-pyridyloxy)pyrazine and 2–2-ethylpyrazine) have been reported (Healy et al., 1985; Sheu et al., 1995; McMorran et al., 2002; Näther et al., 2003). Although the N-atom donor ligand bis(3,5-dimethylpyrazolyl)methane (dmpzm; Julia et al., 1982) has often been employed to react with transition metals to form interesting coordination compounds, for example [Hg(CN)2(dmpzm)] (Cingolani et al., 1987), [NiCl2(dmpzm)]2 (Jansen et al., 1980) and [PdL'(dmpzm)]2(ClO4)2·CH3COCH3·H2O (L' is p-toluenethiolato; Sanchez et al., 2000), there is no report of the cuprous halide adduct of this ligand. We report here the crystal structure of the title cuprous iodide complex, (I), of dmpzm.

Complex (I) crystallizes in space group C2/c and the asymmetric unit contains one dmpzm ligand, one Cu atom and one iodide ion. The structure contains a dimetallocyclic Cu2I2 species with a crystallographic center of symmetry at the mid-point of the Cu···Cu line. Every Cu atom is coordinated by two N atoms of one dmpzm ligand and two bridging iodides, forming a distorted tetrahedral geometry with bond angles at the Cu atom ranging from 104.60 (10) to 117.89 (10)°. Each dmpzm ligand coordinates to one Cu center in an N,N'-bidentate fashion, forming a six-membered chelate ring. The dinuclear Cu2I2 core is asymmetric, as the Cu1—I1 and Cu1—I1i bond distances are 2.5719 (10) and 2.6933 (10) Å, while the Cu1—I1—Cu1i and I1—Cu1—I1i bond angles are 62.70 (3) and 117.30 (3)° [symmetry code (i): 1/2 − x, 1/2 − y, 1 − z]. The Cu—I bond lengths are comparable to the? mean value of 2.615 (1) Å in the similar [CuIL]2 complex (L is 1,10-phenanthroline; Healy et al., 1985), but are shorter than that in [CuIL]2 [2.7297 (9) Å; L is 2,6-bis(3-pyridyloxy)pyrazine; McMorran et al., 2002]. The Cu···Cu distance [2.7412 (13) Å] within the Cu2I2 core is shorter than that in [CuIL]2 [2.803 (2) Å; L is 2,6-bis(3-pyridyloxy)pyrazine; McMorran et al., 2002], but longer than that in [CuIL]2 [2.609 (2) Å; L is 1,10-phenanthroline; Healy et al., 1985].

The two Cu centres and the four N atoms (N1, N1i, N4 and N4i) lie close to the Cu2N4 plane (the maximum deviation from this plane is 0.18 Å). This plane is perpendicular to the Cu2I2 core. The Cu1—N1 and Cu1—N4 distances are almost identical, and the mean Cu—N bond length [2.097 (4) Å] is longer than that observed in [CuIL]2 [2.0303 (18) Å; L is 2,6-bis(3-pyridyloxy)pyrazine; McMorran et al., 2002] and shorter than that in [CuIL]2 [2.167 (9) Å; L is 2-(2'-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl; Oshio et al., 1996]. Each ligand in the title compound adopts an extended and twisted exo-anti conformation. Atom C6 of one of the methylene groups in the dinuclear complex lies 1.89 Å below the Cu2N4 plane, while the symmetry-related atom in the other ligand lies the same distance above the plane.

Atom H6B from the CH2 group of each dmpzm ligand interacts with atom I1 in an adjacent molecule to afford pairwise intermolecular C—H···I contacts, thereby forming chains of molecules running along the [101] direction (Fig. 2 and Table 2).

Experimental top

An acetonitrile solution (10 ml) of bis(3,5-dimethylpyrazolyl)methane (0.020 g, 0.1 mmol) was added to CuI (0.035 g, 0.18 mmol). The mixture was stirred at room temperature for 1 h and then filtered. Slow evaporation of the filtrate gave rise to colorless prisms of (I). Yield 0.051 g (92%, based on Cu). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis found: C 33.47, H 4.18, N, 14.19%; calculated for C22H32Co2I2N8: C 33.22, H 4.38, N 13.75%. IR (KBr, cm−1): 3008 (w), 2942 (w), 2920 (w), 1633 (m), 1558 (m), 1465 (m), 1427 (m), 1384 (s), 1287 (s), 1270 (m), 1035 (m), 792 (m), 676 (m).

Refinement top

The final difference Fourier map had a peak about 1.17 Å from atom C1. All H atoms were placed in idealized positions (C—H = 0.98 Å for methyl groups, 0.99 Å for methylene groups and 0.95 Å for phenyl groups) and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small sheres of arbitrary radii. [Symmetry code: (i) 1/2 − x, 1/2 − y, 1 − z.]
[Figure 2] Fig. 2. A packing diagram of (I), viewed approximately down the b axis, showing chains of molecules linked by pairwise C—H···I interactions running along the [101] direction.
Di-µ-iodo-bis{[1,1'-methylenebis(3,5-dimethyl-4H-pyrazole)]copper(I)} top
Crystal data top
[Cu2I2(C11H16N4)2]F(000) = 1536
Mr = 789.44Dx = 1.884 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5625 reflections
a = 17.924 (5) Åθ = 3.1–27.5°
b = 11.702 (3) ŵ = 3.77 mm1
c = 14.339 (4) ÅT = 193 K
β = 112.249 (6)°Platelet, colorless
V = 2783.6 (13) Å30.30 × 0.12 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3187 independent reflections
Radiation source: fine-focus sealed tube2742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 2323
Tmin = 0.397, Tmax = 0.895k = 1315
15314 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.026P)2 + 13.432P]
where P = (Fo2 + 2Fc2)/3
3187 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu2I2(C11H16N4)2]V = 2783.6 (13) Å3
Mr = 789.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.924 (5) ŵ = 3.77 mm1
b = 11.702 (3) ÅT = 193 K
c = 14.339 (4) Å0.30 × 0.12 × 0.03 mm
β = 112.249 (6)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3187 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2742 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.895Rint = 0.041
15314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.026P)2 + 13.432P]
where P = (Fo2 + 2Fc2)/3
3187 reflectionsΔρmax = 1.05 e Å3
155 parametersΔρmin = 0.68 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.19514 (2)0.36842 (3)0.36810 (2)0.0363 (1)
Cu10.32371 (3)0.28540 (5)0.50282 (4)0.0327 (2)
N10.4086 (2)0.4025 (3)0.5930 (3)0.0296 (11)
N20.4874 (2)0.3684 (3)0.6207 (3)0.0297 (11)
N30.4869 (2)0.2020 (3)0.5232 (3)0.0301 (11)
N40.4098 (2)0.2118 (3)0.4544 (3)0.0305 (11)
C10.3369 (3)0.5845 (4)0.5754 (4)0.0469 (17)
C20.4122 (3)0.5167 (4)0.5969 (3)0.0334 (14)
C30.4917 (3)0.5548 (4)0.6251 (4)0.0403 (17)
C40.5383 (3)0.4588 (4)0.6400 (3)0.0336 (14)
C50.6272 (3)0.4446 (5)0.6732 (4)0.0492 (19)
C60.5047 (2)0.2477 (4)0.6232 (3)0.0309 (12)
C70.6225 (3)0.1219 (5)0.5443 (5)0.0514 (19)
C80.5355 (3)0.1465 (4)0.4849 (4)0.0382 (16)
C90.4880 (3)0.1213 (4)0.3876 (4)0.0445 (17)
C100.4108 (3)0.1627 (4)0.3709 (4)0.0369 (16)
C110.3364 (3)0.1598 (5)0.2778 (4)0.0501 (17)
H1A0.298400.539600.593900.0560*
H1B0.349700.655300.614900.0560*
H1C0.313100.603200.503500.0560*
H30.509700.631800.632500.0480*
H5A0.638900.373800.645000.0590*
H5B0.649600.509700.649600.0590*
H5C0.651400.441100.747000.0590*
H6A0.562300.234700.664900.0370*
H6B0.472200.206500.655000.0370*
H7A0.631300.113800.615700.0620*
H7B0.637800.050800.520000.0620*
H7C0.655500.184900.536100.0620*
H90.504300.082900.340100.0530*
H11A0.303300.227000.276000.0610*
H11B0.351100.160000.218600.0610*
H11C0.305800.090300.277600.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0257 (2)0.0397 (2)0.0370 (2)0.0038 (1)0.0044 (1)0.0131 (1)
Cu10.0226 (3)0.0359 (3)0.0355 (3)0.0025 (2)0.0063 (2)0.0027 (2)
N10.0235 (18)0.0320 (19)0.0307 (19)0.0036 (15)0.0073 (15)0.0018 (16)
N20.0219 (17)0.040 (2)0.0249 (18)0.0080 (15)0.0062 (14)0.0031 (16)
N30.0239 (18)0.0328 (19)0.032 (2)0.0009 (15)0.0087 (15)0.0020 (16)
N40.0269 (18)0.0308 (19)0.032 (2)0.0014 (15)0.0092 (15)0.0006 (16)
C10.056 (3)0.037 (3)0.048 (3)0.007 (2)0.020 (3)0.002 (2)
C20.039 (3)0.034 (2)0.025 (2)0.001 (2)0.0097 (19)0.0003 (18)
C30.051 (3)0.036 (3)0.036 (3)0.018 (2)0.019 (2)0.007 (2)
C40.030 (2)0.048 (3)0.023 (2)0.013 (2)0.0102 (18)0.002 (2)
C50.037 (3)0.069 (4)0.044 (3)0.020 (3)0.018 (2)0.010 (3)
C60.020 (2)0.041 (2)0.030 (2)0.0015 (18)0.0076 (17)0.0041 (19)
C70.037 (3)0.055 (3)0.067 (4)0.014 (2)0.025 (3)0.012 (3)
C80.036 (3)0.032 (2)0.050 (3)0.006 (2)0.020 (2)0.005 (2)
C90.060 (3)0.035 (3)0.047 (3)0.007 (2)0.030 (3)0.001 (2)
C100.050 (3)0.027 (2)0.036 (3)0.003 (2)0.019 (2)0.0029 (19)
C110.057 (3)0.048 (3)0.036 (3)0.003 (3)0.007 (2)0.013 (2)
Geometric parameters (Å, º) top
I1—Cu12.5719 (10)C9—C101.399 (8)
I1—Cu1i2.6933 (10)C10—C111.488 (8)
Cu1—N12.092 (4)C1—H1A0.9800
Cu1—N42.102 (4)C1—H1B0.9800
N1—N21.374 (6)C1—H1C0.9800
N1—C21.338 (6)C3—H30.9500
N2—C41.355 (6)C5—H5A0.9800
N2—C61.444 (6)C5—H5B0.9800
N3—N41.365 (6)C5—H5C0.9800
N3—C61.448 (6)C6—H6A0.9900
N3—C81.358 (7)C6—H6B0.9900
N4—C101.334 (7)C7—H7A0.9800
C1—C21.494 (8)C7—H7B0.9800
C2—C31.399 (8)C7—H7C0.9800
C3—C41.368 (7)C9—H90.9500
C4—C51.490 (8)C11—H11A0.9800
C7—C81.495 (8)C11—H11B0.9800
C8—C91.363 (8)C11—H11C0.9800
Cu1—I1—Cu1i62.69 (2)C2—C1—H1A109.00
I1—Cu1—N1116.88 (10)C2—C1—H1B110.00
I1—Cu1—N4117.89 (11)C2—C1—H1C110.00
I1—Cu1—I1i117.31 (2)H1A—C1—H1B109.00
N1—Cu1—N491.12 (15)H1A—C1—H1C109.00
I1i—Cu1—N1105.32 (11)H1B—C1—H1C109.00
I1i—Cu1—N4104.60 (10)C2—C3—H3127.00
Cu1—N1—N2114.6 (3)C4—C3—H3127.00
Cu1—N1—C2133.8 (3)C4—C5—H5A109.00
N2—N1—C2104.5 (4)C4—C5—H5B109.00
N1—N2—C4111.8 (4)C4—C5—H5C109.00
N1—N2—C6118.6 (3)H5A—C5—H5B110.00
C4—N2—C6129.6 (4)H5A—C5—H5C110.00
N4—N3—C6117.9 (4)H5B—C5—H5C109.00
N4—N3—C8112.1 (4)N2—C6—H6A109.00
C6—N3—C8130.0 (4)N2—C6—H6B109.00
Cu1—N4—N3117.7 (3)N3—C6—H6A109.00
Cu1—N4—C10137.2 (4)N3—C6—H6B109.00
N3—N4—C10105.0 (4)H6A—C6—H6B108.00
N1—C2—C1119.8 (5)C8—C7—H7A110.00
N1—C2—C3111.0 (4)C8—C7—H7B109.00
C1—C2—C3129.2 (4)C8—C7—H7C109.00
C2—C3—C4106.2 (4)H7A—C7—H7B109.00
N2—C4—C3106.6 (5)H7A—C7—H7C109.00
N2—C4—C5122.3 (4)H7B—C7—H7C109.00
C3—C4—C5131.1 (5)C8—C9—H9126.00
N2—C6—N3111.8 (3)C10—C9—H9126.00
N3—C8—C7123.5 (5)C10—C11—H11A109.00
N3—C8—C9105.6 (5)C10—C11—H11B109.00
C7—C8—C9130.8 (5)C10—C11—H11C109.00
C8—C9—C10107.1 (5)H11A—C11—H11B110.00
N4—C10—C9110.1 (5)H11A—C11—H11C109.00
N4—C10—C11120.2 (5)H11B—C11—H11C109.00
C9—C10—C11129.7 (5)
Cu1i—I1—Cu1—N1126.51 (13)N1—N2—C4—C5178.9 (4)
Cu1i—I1—Cu1—N4126.46 (12)C6—N2—C4—C3178.7 (4)
Cu1i—I1—Cu1—I1i0.02 (8)C6—N2—C4—C52.7 (7)
Cu1—I1—Cu1i—I1i0.02 (10)N1—N2—C6—N377.7 (5)
Cu1—I1—Cu1i—N1i131.98 (11)C4—N2—C6—N3100.7 (5)
Cu1—I1—Cu1i—N4i132.73 (11)C6—N3—N4—Cu12.8 (5)
I1—Cu1—N1—N2145.6 (3)C6—N3—N4—C10179.6 (4)
I1—Cu1—N1—C20.5 (5)C8—N3—N4—Cu1175.9 (3)
N4—Cu1—N1—N223.3 (3)C8—N3—N4—C100.9 (5)
N4—Cu1—N1—C2121.8 (5)N4—N3—C6—N258.9 (5)
I1i—Cu1—N1—N282.1 (3)C8—N3—C6—N2122.6 (5)
I1i—Cu1—N1—C2132.8 (4)N4—N3—C8—C7178.8 (4)
I1—Cu1—N4—N3159.1 (2)N4—N3—C8—C90.9 (5)
I1—Cu1—N4—C1025.4 (5)C6—N3—C8—C70.3 (8)
N1—Cu1—N4—N337.6 (3)C6—N3—C8—C9179.4 (4)
N1—Cu1—N4—C10146.9 (5)Cu1—N4—C10—C9175.3 (3)
I1i—Cu1—N4—N368.5 (3)Cu1—N4—C10—C115.6 (7)
I1i—Cu1—N4—C10107.0 (5)N3—N4—C10—C90.6 (5)
Cu1—N1—N2—C4154.0 (3)N3—N4—C10—C11178.6 (4)
Cu1—N1—N2—C624.6 (5)C1—C2—C3—C4177.3 (4)
C2—N1—N2—C40.8 (5)N1—C2—C3—C40.7 (5)
C2—N1—N2—C6179.4 (4)C2—C3—C4—C5178.2 (5)
Cu1—N1—C2—C135.1 (7)C2—C3—C4—N20.2 (5)
Cu1—N1—C2—C3146.6 (4)N3—C8—C9—C100.5 (5)
N2—N1—C2—C1177.4 (4)C7—C8—C9—C10179.2 (5)
N2—N1—C2—C30.9 (5)C8—C9—C10—N40.1 (6)
N1—N2—C4—C30.3 (5)C8—C9—C10—C11179.0 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···I1i0.993.023.877 (4)145
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C11H16N4)2]
Mr789.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)17.924 (5), 11.702 (3), 14.339 (4)
β (°) 112.249 (6)
V3)2783.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.77
Crystal size (mm)0.30 × 0.12 × 0.03
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.397, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
15314, 3187, 2742
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.082, 1.11
No. of reflections3187
No. of parameters155
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.026P)2 + 13.432P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.05, 0.68

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
I1—Cu12.5719 (10)N2—C41.355 (6)
I1—Cu1i2.6933 (10)N2—C61.444 (6)
Cu1—N12.092 (4)N3—N41.365 (6)
Cu1—N42.102 (4)N3—C61.448 (6)
N1—N21.374 (6)N3—C81.358 (7)
N1—C21.338 (6)N4—C101.334 (7)
Cu1—I1—Cu1i62.69 (2)N4—N3—C8112.1 (4)
I1—Cu1—N1116.88 (10)C6—N3—C8130.0 (4)
I1—Cu1—N4117.89 (11)Cu1—N4—N3117.7 (3)
I1—Cu1—I1i117.31 (2)Cu1—N4—C10137.2 (4)
N1—Cu1—N491.12 (15)N3—N4—C10105.0 (4)
I1i—Cu1—N1105.32 (11)N1—C2—C1119.8 (5)
I1i—Cu1—N4104.60 (10)N1—C2—C3111.0 (4)
Cu1—N1—N2114.6 (3)N2—C4—C3106.6 (5)
Cu1—N1—C2133.8 (3)N2—C4—C5122.3 (4)
N2—N1—C2104.5 (4)N2—C6—N3111.8 (3)
N1—N2—C4111.8 (4)N3—C8—C7123.5 (5)
N1—N2—C6118.6 (3)N3—C8—C9105.6 (5)
C4—N2—C6129.6 (4)N4—C10—C9110.1 (5)
N4—N3—C6117.9 (4)N4—C10—C11120.2 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···I1i0.993.023.877 (4)145
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds