Download citation
Download citation
link to html
The novel title fur­azan-containing macrocycle (systematic name: 6,9,14,17-tetraoxa-2,3,5,7,16,18-hexa­aza­tri­cyclo­[13.3.0.04,8]­octadeca-4,7,15,18-tetraene), C8H10N6O4, (I), is the first macrocycle where the fur­azan rings are connected via a hydrazine group. In spite of the strain in the 12-membered macrocycle of (I), the geometry of the fur­azan fragment is the same in (I) and in its acyclic analogue 1,8-bis(5-amino­fur­azan-4-yl­oxy)-3,6-dioxaoctane, C10H16N6O6, (II). In both compounds, the participation of the fur­azan rings in intermolecular hydrogen bonding equalizes the N-O bonds within the fur­azan rings, in contrast with rings which do not participate in such interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104007541/bm1564sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007541/bm1564Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007541/bm1564IIsup3.hkl
Contains datablock II

CCDC references: 245925; 245926

Comment top

Furazan derivatives have potential as high-energy materials (Coburn, 1968; Beal & Brill, 2000), and it has been shown that these compounds are useful as ingredients of explosives and rocket propellants (Sheremetev et al., 1996; Batog et al., 1998). At the same time, furazan-containing macrocycles have exhibited interesting biological and pharmacological properties, for instance as effective inhibitors of soluble guanylate cyclase (Kots et al., 1999; Sheremetev et al., 2000). Recently, we have been involved in the construction of furazan-containing macrocycles (Sheremetev, Shatunova et al., 2004; Sheremetev, Ivanova et al., 2004), in which the macrocyclic furazan fragments are linked by a rigid azo group.

In the present paper, we discuss the structure of a new 12-membered macrocycle containing two furazan rings linked by the less rigid –NH—NH– group, namely difurazano[3,4 − b:3',4'-f]-4,5-diaza-1,8-dioxacyclododecine, (I). We also describe the structure of 1,8-bis(3-aminofurazan-4-yloxy)-3,6-dioxaoctane, (II), which is an acyclic analogue of (I). We are interested in the influence of steric factors, caused by the macrocyclic structure of the molecule, on the geometry of the furazan rings. Compound (II) is not an exact acyclic analogue of (I) because the former contains the additional O5—C7—C8—O6 fragment, but this fragment should not influence the geometry of the furazan rings, because it is remote from them. \sch

Ellipsoid plots of molecules of (I) and (II) is presented in Figs. 1 and 2, respectively. Due to the incorporation of the hydrazine group, the molecule of (I) is nonplanar, unlike previously studied macrocycles, where the furazan rings were connected via an azo group (Sheremetev et al., 2002, 2003) or an ether O atom (Averkiev et al., 2003). The dihedral angle between the furazan rings in (I) is 99.0° (Fig. 1). The molecule of (II) is also nonplanar and adopts a crimped shape (Figure 2).

The strain in the macrocycle of (I) is evident from the increased bond angles at atoms C6, C7 and C8 [113.8 (2), 114.9 (2) and 111.8 (2)°, respectively] relative to the ideal tetrahedral angle. However, the bond angles at atoms O1 and O2 are not increased in comparison with those in (II): in both compounds, these are between 115 and 116°. Perhaps the slight lengthening of the C—C bonds within the furazan rings in (I), to 1.443 (2) Å for C1—C2 and 1.437 (2) Å for C3—C4, in comparison with 1.429 (2) and 1.423 (3) Å for the respective analogous bonds in (II) and the standard database value of 1.428 Å (Allen et al., 1987), may be explained by the strained structure of (I) (Tables 1 and 3).

In spite of possible conjugation between the lone pairs of the N atoms and the π system of the furazan rings, the configuration around atoms N1 and N2 is noticeably non-planar. The sum of the bond angles is 346 (2)° for N1 and 341 (2)° for N2 in (I), and 348 (2)° for N1 and 345 (2)° for N2 in (II). The trigonal configuration of the N atoms in (I) cannot be explained by steric interactions with neighbouring alkoxy substituents (Borbulevych et al., 2002), because deviation from planarity does not affect the N1—H1A···O1 and N2—H2A···O2 intramolecular contacts (2.67 and 2.65 Å, respectively). The corresponding N—H···O distances for the calculated planar configuration of an N atom are 2.68 and 2.67 Å, and are very close to the sum of the van der Waals radii of O and H atoms (2.65 Å; Rowland & Taylor, 1996). In (I), the non-planar coordination at N1 and N2 can be attributed in part to the cyclic structure of the molecule. In both compounds, the bond angles at the O atoms of the methoxy fragments [115.2 (2)–116.5 (2)°] are slightly wider than the average value of 112.9° we find for the unconjugated C—O—C fragment in the Cambridge Structural Database (CSD, Version?; Allen, 2002).

Analysis of the furazan geometry in (I) and (II) reveals the unexpected feature that, in each compound, the geometries of the two chemically equivalent furazan rings are slightly different. It might be expected that the lengths of the N—O bonds close to the alkoxy substituents should be about 1.379–1.390 Å, as we reported previously (Averkiev et al., 2003), while the lengths of the N—O bonds close to an amino or hydrazine group should be about 1.400–1.411 Å, according to our analysis of aminofurazan fragments in the CSD. However, only the C3—N5—O4—N6—C4 furazan rings in both compounds show the expected lengths for the N—O bonds: N5—O4 is elongated to 1.410 (2) Å in (I) and 1.411 (3) Å in (II), while N6—O4 is shortened to 1.391 (3) Å in (I) and 1.393 (3) Å in (II). Meanwhile, the N3—O3 and N4—O3 bonds in both compounds are unexpectedly equal, at 1.399 (2) and 1.395 (2) Å, respectively, for (I), and 1.403 and 1.403 Å, respectively, for (II). The only explanation which we can suggest is participation of atoms N3 and N4 in both compounds in the intermolecular hydrogen bonds (see below).

Molecules of (I) are arranged in centrosymmetrical dimers linked by N1—H1···N3 hydrogen bonds. These dimers are arranged into crimped layers by another hydrogen bond, N2—H2···N4 (Table 2, Fig. 3). These layers are parallel to the (1 0 1) plane. Molecules of (II) are arranged in helices along the b direction. All molecules in a helix are translationally identical, hence each molecule composes one coil of the helix. Two intermolecular hydrogen bonds, namely N2—H2B···O5 and N2—H2A···N4, were found inside each helix (Table 4). Each helix is connected by N1—H1A···N3 hydrogen bonds to the neighbouring helix, symmetrically related by 21 screw axes (Fig. 4). As can be seen from the pattern of hydrogen bonds, for both compounds (I) and (II), one furazan ring (C1—C2—N3—O3—N4, denoted by 'a' in Figs. 3 and 4) participates in intermolecular hydrogen bonding via both N atoms, while the other furazan ring (C3—C4—N6—O4—N5, denoted by 'b') does not participate in hydrogen bonding. We believe that it is due to this hydrogen bonding that the N—O bonds in the C1—C2—N3—O3—N4 ring are equalized.

Experimental top

Compound (I) (m.p. 333–334 K) was obtained in 40% yield using the literature procedures of Kharitinova et al. (1991) and Shatunova & Sheremetev (1995). X-ray quality crystals of (I) were grown by slow evaporation of a methanol solution at room temperature. Using the previously reported procedure of Poncio & Avogadro (1923), compound (II) (m.p. 453–454 K) was obtained in 52% yield by reduction of the NN bond in the corresponding azomacrocycle [1,2] with phenyl hydrazine in Et2O at room temperature. Separation of (II) by flash chromatography followed by recrystallization from AcOH solution afforded X-ray quality crystals.

Computing details top

Data collection: SMART (Bruker, 1998) for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: SAINT-Plus (Bruker, 1998) for (I); CAD-4 Software for (II). Data reduction: SAINT-Plus for (I); XCAD4 (Harms, 1996) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A general view of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A general view of (II), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. The hydrogen-bonding scheme in (I) [symmetry codes (i) and (ii) are as given in Table 2].
[Figure 4] Fig. 4. The hydrogen-bonding scheme in (II) [symmetry codes (i), (ii) and (iii) are as given in Table 4].
(I) 6,9,14,17-tetraoxa-2,3,5,7,16,18-hexaazatricyclo[13.3.0.04,8]octadeca- 4,7,15,18-tetraene top
Crystal data top
C8H10N6O4F(000) = 528
Mr = 254.22Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 908 reflections
a = 8.3331 (12) Åθ = 3–29°
b = 14.695 (2) ŵ = 0.13 mm1
c = 9.2384 (13) ÅT = 110 K
β = 106.619 (3)°Rectangular prism, colourless
V = 1084.1 (3) Å30.4 × 0.3 × 0.3 mm
Z = 4
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
2100 independent reflections
Radiation source: fine-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 108
Tmin = 0.882, Tmax = 0.965k = 1618
4776 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.171All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.1347P)2]
where P = (Fo2 + 2Fc2)/3
2100 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H10N6O4V = 1084.1 (3) Å3
Mr = 254.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3331 (12) ŵ = 0.13 mm1
b = 14.695 (2) ÅT = 110 K
c = 9.2384 (13) Å0.4 × 0.3 × 0.3 mm
β = 106.619 (3)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
2100 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1757 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.965Rint = 0.025
4776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.171All H-atom parameters refined
S = 1.06Δρmax = 0.53 e Å3
2100 reflectionsΔρmin = 0.34 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48627 (16)0.22906 (8)0.72669 (14)0.0239 (4)
N10.59616 (19)0.42285 (11)0.69846 (17)0.0232 (4)
C10.4954 (2)0.36905 (11)0.58685 (19)0.0211 (4)
H10.592 (3)0.4787 (16)0.682 (3)0.032 (6)*
O20.51203 (16)0.27300 (8)1.05979 (14)0.0266 (4)
N20.6012 (2)0.40317 (10)0.84990 (17)0.0233 (4)
C20.4487 (2)0.27524 (11)0.59753 (19)0.0205 (4)
H20.664 (3)0.3558 (14)0.885 (2)0.026 (5)*
O30.35966 (15)0.31780 (8)0.36702 (13)0.0253 (4)
N30.43830 (19)0.39450 (10)0.44589 (16)0.0238 (4)
C30.4506 (2)0.40055 (12)0.88437 (19)0.0235 (4)
O40.20130 (16)0.42704 (10)0.89576 (15)0.0308 (4)
N40.36684 (19)0.24461 (10)0.46486 (16)0.0231 (4)
C40.4080 (2)0.33823 (12)0.98749 (19)0.0245 (4)
C50.4478 (3)0.13186 (12)0.7157 (2)0.0245 (4)
N50.32493 (19)0.45487 (10)0.82804 (17)0.0276 (4)
H5B0.524 (2)0.1027 (12)0.664 (2)0.017 (5)*
H5A0.331 (3)0.1261 (13)0.658 (3)0.028 (5)*
C60.4773 (2)0.09709 (12)0.8751 (2)0.0233 (4)
N60.2576 (2)0.35470 (11)0.99436 (18)0.0300 (4)
H6B0.468 (2)0.0322 (14)0.866 (2)0.027 (5)*
H6A0.588 (3)0.1094 (14)0.936 (2)0.022 (5)*
C70.3523 (2)0.13480 (12)0.9554 (2)0.0266 (5)
H7B0.265 (3)0.1716 (14)0.881 (3)0.032 (6)*
H7A0.289 (3)0.0857 (14)0.986 (3)0.030 (5)*
C80.4304 (3)0.19079 (13)1.0952 (2)0.0295 (5)
H8B0.522 (3)0.1545 (17)1.168 (3)0.040 (6)*
H8A0.350 (3)0.2103 (16)1.150 (3)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0333 (8)0.0239 (7)0.0137 (6)0.0031 (5)0.0054 (5)0.0020 (5)
N10.0299 (9)0.0246 (8)0.0151 (8)0.0031 (6)0.0063 (6)0.0015 (6)
C10.0224 (9)0.0250 (9)0.0162 (8)0.0003 (7)0.0062 (7)0.0004 (7)
O20.0319 (8)0.0288 (7)0.0192 (7)0.0007 (5)0.0074 (6)0.0041 (5)
N20.0294 (9)0.0263 (8)0.0142 (8)0.0013 (6)0.0064 (7)0.0017 (6)
C20.0218 (9)0.0254 (9)0.0159 (9)0.0003 (6)0.0076 (7)0.0005 (6)
O30.0343 (8)0.0258 (7)0.0147 (6)0.0028 (5)0.0054 (6)0.0011 (5)
N30.0292 (8)0.0261 (8)0.0159 (8)0.0027 (6)0.0060 (6)0.0009 (6)
C30.0292 (10)0.0270 (9)0.0129 (8)0.0007 (7)0.0037 (7)0.0045 (6)
O40.0272 (7)0.0391 (8)0.0263 (7)0.0048 (5)0.0083 (6)0.0001 (6)
N40.0274 (8)0.0273 (8)0.0151 (8)0.0010 (6)0.0068 (7)0.0027 (6)
C40.0297 (10)0.0292 (9)0.0147 (8)0.0015 (7)0.0064 (7)0.0014 (7)
C50.0333 (11)0.0221 (9)0.0186 (9)0.0031 (7)0.0084 (8)0.0009 (7)
N50.0321 (9)0.0296 (9)0.0211 (8)0.0019 (7)0.0077 (7)0.0010 (6)
C60.0275 (10)0.0251 (10)0.0180 (9)0.0019 (7)0.0078 (8)0.0033 (7)
N60.0335 (9)0.0368 (9)0.0212 (8)0.0009 (7)0.0100 (7)0.0002 (7)
C70.0299 (10)0.0292 (10)0.0229 (10)0.0000 (8)0.0113 (8)0.0018 (7)
C80.0380 (12)0.0325 (11)0.0207 (9)0.0027 (8)0.0125 (9)0.0055 (7)
Geometric parameters (Å, º) top
O1—C21.330 (2)C3—C41.437 (2)
O1—C51.461 (2)O4—N61.391 (2)
N1—C11.378 (2)O4—N51.410 (2)
N1—N21.417 (2)C4—N61.296 (2)
N1—H10.83 (2)C5—C61.512 (2)
C1—N31.307 (2)C5—H5B1.00 (2)
C1—C21.443 (2)C5—H5A0.97 (2)
O2—C41.336 (2)C6—C71.544 (2)
O2—C81.469 (2)C6—H6B0.96 (2)
N2—C31.381 (2)C6—H6A0.95 (2)
N2—H20.87 (2)C7—C81.512 (3)
C2—N41.301 (2)C7—H7B1.01 (2)
O3—N41.3951 (18)C7—H7A0.98 (2)
O3—N31.3991 (19)C8—H8B1.01 (3)
C3—N51.301 (2)C8—H8A0.99 (2)
C2—O1—C5116.48 (14)O1—C5—H5B107.2 (10)
C1—N1—N2117.47 (14)C6—C5—H5B112.1 (11)
C1—N1—H1116.4 (16)O1—C5—H5A106.8 (12)
N2—N1—H1111.7 (16)C6—C5—H5A111.4 (13)
N3—C1—N1123.50 (15)H5B—C5—H5A112.0 (17)
N3—C1—C2108.24 (15)C3—N5—O4104.56 (14)
N1—C1—C2127.99 (15)C5—C6—C7113.77 (15)
C4—O2—C8115.19 (15)C5—C6—H6B105.5 (13)
C3—N2—N1117.45 (14)C7—C6—H6B110.6 (12)
C3—N2—H2112.3 (14)C5—C6—H6A111.8 (13)
N1—N2—H2111.7 (14)C7—C6—H6A108.8 (13)
N4—C2—O1126.46 (16)H6B—C6—H6A106.1 (17)
N4—C2—C1110.19 (15)C4—N6—O4105.08 (14)
O1—C2—C1123.35 (16)C8—C7—C6114.89 (16)
N4—O3—N3110.90 (12)C8—C7—H7B110.1 (12)
C1—N3—O3105.74 (13)C6—C7—H7B108.6 (12)
N5—C3—N2124.85 (16)C8—C7—H7A106.6 (13)
N5—C3—C4109.42 (16)C6—C7—H7A111.5 (13)
N2—C3—C4125.73 (16)H7B—C7—H7A104.6 (17)
N6—O4—N5111.10 (13)O2—C8—C7111.78 (15)
C2—N4—O3104.92 (14)O2—C8—H8B105.6 (13)
N6—C4—O2127.45 (16)C7—C8—H8B109.7 (14)
N6—C4—C3109.85 (16)O2—C8—H8A107.5 (13)
O2—C4—C3122.69 (15)C7—C8—H8A113.7 (13)
O1—C5—C6106.95 (14)H8B—C8—H8A108 (2)
N2—N1—C1—N3158.21 (17)C8—O2—C4—N628.3 (2)
N2—N1—C1—C228.6 (2)C8—O2—C4—C3150.06 (17)
C1—N1—N2—C354.6 (2)N5—C3—C4—N60.2 (2)
C5—O1—C2—N47.2 (3)N2—C3—C4—N6179.60 (16)
C5—O1—C2—C1172.84 (15)N5—C3—C4—O2178.41 (15)
N3—C1—C2—N40.8 (2)N2—C3—C4—O21.8 (3)
N1—C1—C2—N4173.18 (16)C2—O1—C5—C6172.00 (14)
N3—C1—C2—O1179.18 (15)N2—C3—N5—O4179.80 (15)
N1—C1—C2—O16.8 (3)C4—C3—N5—O40.04 (19)
N1—C1—N3—O3173.05 (15)N6—O4—N5—C30.16 (19)
C2—C1—N3—O31.27 (18)O1—C5—C6—C767.3 (2)
N4—O3—N3—C11.36 (17)O2—C4—N6—O4178.24 (16)
N1—N2—C3—N537.7 (2)C3—C4—N6—O40.32 (19)
N1—N2—C3—C4142.53 (17)N5—O4—N6—C40.31 (19)
O1—C2—N4—O3179.96 (15)C5—C6—C7—C8117.93 (18)
C1—C2—N4—O30.05 (18)C4—O2—C8—C772.4 (2)
N3—O3—N4—C20.85 (17)C6—C7—C8—O262.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.83 (2)2.18 (2)2.974 (2)159 (2)
N2—H2···N4ii0.87 (2)2.21 (2)3.066 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
(II) 1,8-bis(5-aminofurazan-4-yloxy)-3,6-dioxaoctane top
Crystal data top
C10H16N6O6F(000) = 1328
Mr = 316.29Dx = 1.422 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 24 reflections
a = 31.363 (6) Åθ = 11–13°
b = 6.0550 (12) ŵ = 0.12 mm1
c = 15.724 (3) ÅT = 293 K
β = 98.34 (3)°Plate, colourless
V = 2954.5 (10) Å30.4 × 0.3 × 0.1 mm
Z = 8
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.3°
Graphite monochromatorh = 036
θ/5/3θ scansk = 07
2742 measured reflectionsl = 1918
2689 independent reflections2 standard reflections every 98 reflections
1877 reflections with I > 2σ(I) intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.8023P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.003
263 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H16N6O6V = 2954.5 (10) Å3
Mr = 316.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.363 (6) ŵ = 0.12 mm1
b = 6.0550 (12) ÅT = 293 K
c = 15.724 (3) Å0.4 × 0.3 × 0.1 mm
β = 98.34 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.032
2742 measured reflections2 standard reflections every 98 reflections
2689 independent reflections intensity decay: 2.5%
1877 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.00Δρmax = 0.13 e Å3
2689 reflectionsΔρmin = 0.15 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19740 (4)1.1127 (2)0.97158 (7)0.0507 (3)
C10.22406 (5)1.0840 (3)1.12314 (11)0.0458 (4)
N10.24128 (6)0.8782 (3)1.12226 (14)0.0619 (5)
H1B0.2303 (7)0.795 (4)1.0797 (15)0.076 (7)*
H1A0.2478 (7)0.817 (4)1.1754 (15)0.076 (7)*
O20.07060 (4)0.1731 (2)0.97335 (8)0.0556 (4)
C20.20301 (5)1.1998 (3)1.04963 (11)0.0430 (4)
N20.12744 (6)0.1970 (3)1.03077 (13)0.0633 (5)
H2B0.1250 (8)0.161 (4)0.9746 (17)0.084 (8)*
H2A0.1359 (8)0.322 (5)1.0472 (17)0.089 (9)*
O30.20592 (5)1.4085 (2)1.15965 (9)0.0671 (4)
C30.09335 (7)0.1334 (3)1.06773 (11)0.0527 (5)
N30.22613 (5)1.2113 (2)1.18994 (10)0.0581 (4)
O40.04648 (6)0.0890 (3)1.15384 (10)0.0854 (5)
C40.06630 (6)0.0508 (3)1.04223 (11)0.0516 (5)
N40.19181 (5)1.3947 (2)1.07096 (10)0.0565 (4)
O50.13116 (4)0.9305 (2)0.84603 (8)0.0577 (4)
C50.17042 (6)1.2388 (3)0.90513 (12)0.0494 (4)
N50.08103 (7)0.2211 (3)1.13531 (11)0.0750 (6)
H5B0.1440 (6)1.281 (3)0.9285 (12)0.054 (5)*
H5A0.1870 (7)1.363 (4)0.8911 (13)0.068 (6)*
O60.08103 (4)0.5458 (2)0.86325 (8)0.0567 (4)
C60.16108 (7)1.0920 (4)0.82892 (12)0.0539 (5)
N60.03811 (6)0.0802 (3)1.09374 (12)0.0700 (5)
H6B0.1497 (6)1.183 (3)0.7807 (13)0.056 (5)*
H6A0.1876 (7)1.030 (3)0.8164 (12)0.063 (6)*
C70.12208 (7)0.7688 (3)0.78049 (12)0.0567 (5)
H7B0.1212 (6)0.835 (3)0.7243 (13)0.058 (5)*
H7A0.1448 (7)0.657 (4)0.7857 (13)0.067 (6)*
C80.07933 (7)0.6664 (4)0.78572 (13)0.0602 (5)
H8B0.0724 (8)0.573 (4)0.7351 (15)0.084 (7)*
H8A0.0550 (7)0.779 (4)0.7816 (13)0.072 (6)*
C90.04152 (6)0.4345 (4)0.86763 (15)0.0620 (5)
H9B0.0373 (7)0.312 (4)0.8233 (14)0.067 (6)*
H9A0.0176 (8)0.541 (4)0.8526 (15)0.080 (7)*
C100.04009 (7)0.3519 (3)0.95580 (14)0.0583 (5)
H10B0.0102 (7)0.287 (4)0.9614 (13)0.072 (6)*
H10A0.0486 (6)0.468 (4)1.0001 (14)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (7)0.0442 (7)0.0498 (7)0.0069 (6)0.0035 (5)0.0013 (6)
C10.0465 (9)0.0360 (9)0.0526 (10)0.0066 (7)0.0003 (7)0.0053 (8)
N10.0789 (12)0.0383 (9)0.0626 (11)0.0067 (8)0.0096 (9)0.0061 (9)
O20.0570 (7)0.0526 (8)0.0592 (8)0.0085 (6)0.0150 (6)0.0066 (6)
C20.0413 (9)0.0352 (9)0.0510 (10)0.0044 (7)0.0014 (7)0.0016 (8)
N20.0801 (13)0.0500 (11)0.0567 (11)0.0049 (9)0.0001 (9)0.0105 (9)
O30.0940 (11)0.0436 (7)0.0596 (8)0.0083 (7)0.0027 (7)0.0053 (6)
C30.0709 (13)0.0455 (10)0.0392 (9)0.0176 (9)0.0004 (9)0.0033 (8)
N30.0744 (11)0.0423 (8)0.0541 (9)0.0035 (8)0.0024 (8)0.0027 (7)
O40.1104 (13)0.0976 (12)0.0531 (9)0.0378 (11)0.0280 (9)0.0045 (9)
C40.0575 (11)0.0542 (11)0.0434 (9)0.0177 (9)0.0079 (8)0.0090 (8)
N40.0684 (10)0.0385 (8)0.0591 (10)0.0048 (7)0.0022 (8)0.0003 (7)
O50.0711 (9)0.0558 (8)0.0467 (7)0.0156 (7)0.0104 (6)0.0050 (6)
C50.0465 (10)0.0463 (11)0.0528 (10)0.0006 (9)0.0021 (8)0.0088 (8)
N50.1068 (15)0.0697 (12)0.0474 (9)0.0275 (11)0.0079 (9)0.0026 (9)
O60.0551 (8)0.0481 (7)0.0619 (8)0.0019 (6)0.0085 (6)0.0098 (6)
C60.0581 (11)0.0555 (11)0.0473 (11)0.0034 (10)0.0053 (9)0.0097 (9)
N60.0773 (12)0.0757 (12)0.0606 (10)0.0200 (10)0.0226 (9)0.0158 (10)
C70.0784 (14)0.0471 (11)0.0431 (11)0.0055 (10)0.0040 (9)0.0015 (9)
C80.0738 (14)0.0483 (11)0.0523 (11)0.0020 (10)0.0118 (10)0.0003 (9)
C90.0498 (11)0.0513 (12)0.0792 (14)0.0014 (10)0.0103 (10)0.0010 (11)
C100.0486 (11)0.0484 (11)0.0781 (14)0.0018 (9)0.0098 (10)0.0065 (10)
Geometric parameters (Å, º) top
O1—C21.324 (2)O5—C61.408 (2)
O1—C51.461 (2)O5—C71.420 (2)
C1—N31.297 (2)C5—C61.487 (3)
C1—N11.360 (2)C5—H5B0.987 (19)
C1—C21.429 (2)C5—H5A0.96 (2)
N1—H1B0.87 (2)O6—C81.415 (2)
N1—H1A0.91 (2)O6—C91.421 (2)
O2—C41.335 (2)C6—H6B0.96 (2)
O2—C101.445 (2)C6—H6A0.96 (2)
C2—N41.290 (2)C7—C81.490 (3)
N2—C31.345 (3)C7—H7B0.97 (2)
N2—H2B0.90 (3)C7—H7A0.98 (2)
N2—H2A0.83 (3)C8—H8B0.97 (3)
O3—N31.402 (2)C8—H8A1.02 (2)
O3—N41.403 (2)C9—C101.481 (3)
C3—N51.296 (2)C9—H9B1.01 (2)
C3—C41.423 (3)C9—H9A0.99 (2)
O4—N61.393 (3)C10—H10B1.03 (2)
O4—N51.411 (3)C10—H10A1.00 (2)
C4—N61.295 (2)
C2—O1—C5116.12 (14)C8—O6—C9111.25 (15)
N3—C1—N1125.45 (17)O5—C6—C5108.65 (15)
N3—C1—C2109.07 (15)O5—C6—H6B111.4 (11)
N1—C1—C2125.39 (18)C5—C6—H6B107.5 (12)
C1—N1—H1B115.2 (16)O5—C6—H6A112.9 (12)
C1—N1—H1A113.7 (15)C5—C6—H6A108.9 (12)
H1B—N1—H1A119 (2)H6B—C6—H6A107.3 (16)
C4—O2—C10115.37 (15)C4—N6—O4104.18 (18)
N4—C2—O1126.94 (16)O5—C7—C8109.52 (17)
N4—C2—C1110.47 (16)O5—C7—H7B110.6 (12)
O1—C2—C1122.57 (15)C8—C7—H7B108.5 (11)
C3—N2—H2B113.2 (16)O5—C7—H7A110.4 (12)
C3—N2—H2A111.4 (17)C8—C7—H7A111.0 (12)
H2B—N2—H2A120 (2)H7B—C7—H7A106.7 (16)
N3—O3—N4110.40 (13)O6—C8—C7109.90 (16)
N5—C3—N2125.9 (2)O6—C8—H8B112.4 (14)
N5—C3—C4108.4 (2)C7—C8—H8B106.9 (14)
N2—C3—C4125.54 (18)O6—C8—H8A109.5 (12)
C1—N3—O3105.30 (14)C7—C8—H8A112.9 (12)
N6—O4—N5110.59 (14)H8B—C8—H8A105.1 (18)
N6—C4—O2126.14 (19)O6—C9—C10110.54 (17)
N6—C4—C3111.37 (18)O6—C9—H9B110.0 (12)
O2—C4—C3122.48 (17)C10—C9—H9B112.3 (12)
C2—N4—O3104.75 (14)O6—C9—H9A108.4 (13)
C6—O5—C7114.16 (14)C10—C9—H9A108.6 (13)
O1—C5—C6106.86 (16)H9B—C9—H9A106.9 (17)
O1—C5—H5B107.5 (11)O2—C10—C9108.83 (17)
C6—C5—H5B112.2 (11)O2—C10—H10B106.6 (12)
O1—C5—H5A107.3 (13)C9—C10—H10B111.0 (12)
C6—C5—H5A109.6 (12)O2—C10—H10A107.0 (12)
H5B—C5—H5A113.1 (17)C9—C10—H10A111.8 (12)
C3—N5—O4105.43 (18)H10B—C10—H10A111.3 (17)
C5—O1—C2—N49.3 (2)N3—O3—N4—C20.00 (19)
C5—O1—C2—C1172.18 (16)C2—O1—C5—C6168.47 (15)
N3—C1—C2—N40.7 (2)N2—C3—N5—O4175.28 (17)
N1—C1—C2—N4177.35 (17)C4—C3—N5—O41.2 (2)
N3—C1—C2—O1178.03 (15)N6—O4—N5—C30.9 (2)
N1—C1—C2—O11.4 (3)C7—O5—C6—C5175.31 (16)
N1—C1—N3—O3177.29 (17)O1—C5—C6—O573.4 (2)
C2—C1—N3—O30.68 (19)O2—C4—N6—O4179.39 (16)
N4—O3—N3—C10.45 (19)C3—C4—N6—O40.5 (2)
C10—O2—C4—N60.8 (3)N5—O4—N6—C40.2 (2)
C10—O2—C4—C3179.10 (16)C6—O5—C7—C8157.18 (17)
N5—C3—C4—N61.1 (2)C9—O6—C8—C7176.28 (17)
N2—C3—C4—N6175.30 (18)O5—C7—C8—O665.9 (2)
N5—C3—C4—O2178.79 (16)C8—O6—C9—C10167.23 (17)
N2—C3—C4—O24.8 (3)C4—O2—C10—C9165.85 (15)
O1—C2—N4—O3178.28 (16)O6—C9—C10—O269.8 (2)
C1—C2—N4—O30.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.91 (2)2.25 (2)3.148 (3)169 (2)
N2—H2B···O5ii0.90 (3)2.13 (3)3.024 (2)170 (2)
N2—H2A···N4iii0.83 (3)2.44 (3)3.196 (3)151 (2)
Symmetry codes: (i) x+1/2, y1/2, z+5/2; (ii) x, y1, z; (iii) x, y2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC8H10N6O4C10H16N6O6
Mr254.22316.29
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)110293
a, b, c (Å)8.3331 (12), 14.695 (2), 9.2384 (13)31.363 (6), 6.0550 (12), 15.724 (3)
β (°) 106.619 (3) 98.34 (3)
V3)1084.1 (3)2954.5 (10)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.130.12
Crystal size (mm)0.4 × 0.3 × 0.30.4 × 0.3 × 0.1
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.882, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4776, 2100, 1757 2742, 2689, 1877
Rint0.0250.032
(sin θ/λ)max1)0.6170.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.171, 1.06 0.036, 0.109, 1.00
No. of reflections21002689
No. of parameters203263
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.340.13, 0.15

Computer programs: SMART (Bruker, 1998), CAD-4 Software (Enraf-Nonius, 1989), SAINT-Plus (Bruker, 1998), CAD-4 Software, SAINT-Plus, XCAD4 (Harms, 1996), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected bond lengths (Å) for (I) top
O1—C21.330 (2)O3—N41.3951 (18)
N1—C11.378 (2)O3—N31.3991 (19)
N1—N21.417 (2)C3—N51.301 (2)
C1—N31.307 (2)C3—C41.437 (2)
C1—C21.443 (2)O4—N61.391 (2)
O2—C41.336 (2)O4—N51.410 (2)
N2—C31.381 (2)C4—N61.296 (2)
C2—N41.301 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.83 (2)2.18 (2)2.974 (2)159 (2)
N2—H2···N4ii0.87 (2)2.21 (2)3.066 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
Selected bond lengths (Å) for (II) top
O1—C21.324 (2)O3—N31.402 (2)
C1—N31.297 (2)O3—N41.403 (2)
C1—N11.360 (2)C3—N51.296 (2)
C1—C21.429 (2)C3—C41.423 (3)
O2—C41.335 (2)O4—N61.393 (3)
C2—N41.290 (2)O4—N51.411 (3)
N2—C31.345 (3)C4—N61.295 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.91 (2)2.25 (2)3.148 (3)169 (2)
N2—H2B···O5ii0.90 (3)2.13 (3)3.024 (2)170 (2)
N2—H2A···N4iii0.83 (3)2.44 (3)3.196 (3)151 (2)
Symmetry codes: (i) x+1/2, y1/2, z+5/2; (ii) x, y1, z; (iii) x, y2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds