Download citation
Download citation
link to html
The structures of two diastereoisomers of norbormide {systematic name: 5-[hydroxy­(phenyl)(2-pyridyl)­methyl]-8-[phenyl(2-pyridyl)­methyl­ene]-3a,4,7,7a-tetra­hydro-4,7-methano-1H-iso­indole-1,3(2H)-dione}, viz. the unsolvated mol­ecule, C33H25N3O3, and the ethyl acetate hemisolvate, C33H25N3O3·0.5C4H8O2, have been determined unambiguously. They differ in the relative stereochemistry about the exocyclic double bond and the relative conformations of the aryl rings. Each compound exhibits both intra- and intermolecular hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006845/bm1563sup1.cif
Contains datablocks global, Ia, Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006845/bm1563Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006845/bm1563Ibsup3.hkl
Contains datablock Ib

CCDC references: 241246; 241247

Comment top

Norbormide is a compound discovered in the early 1960 s that is selectively toxic to rats and relatively harmless to other rodents and mammals (Roszkowski, 1965). It exerts its lethality in the rat through mechanisms involving the control of blood pressure. Evidence suggests that norbormide acts by stimulating a number of signal transduction pathways that lead to modulation of calcium influx, presumably mediated by cell membrane receptor(s) (Bova et al., 2001a). Physiological studies indicate that norbormide elicits divergent tissue responses, causing selective vasoconstriction of small arteries and vasodilation of large blood vessels in the rat, whilst dilating both small and large blood vessels of other species (Bova et al., 2001b). AUTHOR: Please check that the Bova references (2001a, 2001b) are correctly identified.

We recently synthesized and purified six of the eight racemic diastereoisomers of norbormide and undertook a structure–activity relationship study of these isomers with respect to vasorelaxant and vasoconstrictor properties (Brimble et al., 2003). These isomers differ according to the stereochemistry (cis/trans) of the exocyclic double bond, the orientation (endo/exo) of the maleimide ring and the stereochemistry (erythro/threo) of the tertiary alcohol. The contrasting responses of the different isomers to this toxin may be the key to understanding the secret of species specificity of drug action and provides opportunities for developing more species-selective pesticides.

Our initial work in this area (Brimble et al., 2003) established that the cis-endo-threo isomer, (Ia), of norbormide exhibited the most potent vasoconstrictor properties and is a lead compound for analogue development. We report here the crystal structures of the cis-endo-threo isomer, (Ia), and the trans-endo-threo isomer, (Ib), of norbormide in order to unambiguously confirm their structures and to facilitate molecular-modelling studies for the construction of analogues. At the outset of this work, only the crystal structure of the N-bromobenzyl derivative of (Ia) was available (Abrahamsson & Nilsson, 1966) and we were keen to obtain the three-dimensional coordinates for the parent compounds.

Fig. 1 shows a perspective view of the structure of isomer (Ia), which crystallizes in the monoclinic space group P21/n. This? unambiguously confirms that the most potent isomer is indeed that in which the exocyclic double bond has the 2-pyridyl substituent cis to the diarylmethanol substituent, which has threo stereochemistry, and the maleimide ring has an endo configuration. In the molecule, the hydroxy group is involved in an intramolecular hydrogen bond to the adjacent pyridine ring (Table 1). Intermolecular interactions form centrosymmetric pairs of linear hydorgen bonds [graph set notation R22(8)] between the NH group and atom O3 of the maleimide groups (Table 1). AUTHOR: Please check additon to last sentence.

Fig. 2 shows the structure of isomer (Ib), which crystallizes in the monoclinic space group P2/c along with half a solvate molecule of ethyl acetate, which is disordered about a twofold rotation axis. This isomer differs from (Ia) in having the opposite stereochemistry to the exocyclic double bond, that is, the pyridine ring, involving atom N31, has a trans relationship relative to the diarylmethanol substituent. Another difference between the two structures is that the four aryl (phenyl and 2-pyridyl) substituents have very different torsional orientations. Once again, the OH group is involved in an intramolecular hydrogen bond to atom N11. However, in this case, the hydrogen bonding is bifurcated with an additional, albeit weaker, interaction with atom O3 of the maleimide ring (Table 2). Adjacent molecules are again connected by linear intermolecular hydrogen bonds involving the maleimide groups, [graph set notation R22(8)], although, in this case, the molecules are related by a glide plane (Table 2). AUTHOR: Please check the assertion about the glide plane in the last sentence. I think the molecules are related by a twofold axis (-x, y, 0.5 − z). Also approve the addition.

During the course of this work, we also indirectly confirmed the structure of a third isomer. Several data sets were collected using crystals of isomer (Ia) contaminated with varying amounts of another isomer. In each case, the isomer ratio was determined independently by 1H NMR and was found to vary between 2:1 and 4:1. These crystals were all isomorphous with those of pure (Ia) (see above) and refined with disorder of the two aryl rings attached to the tertiary alcohol centre. Specifically the rings attached to that centre had different conformations, presumably as a consequence of a different hydrogen-bonding pattern. The minor component was therefore identified as the cis-endo-erythro isomer.

Experimental top

The title compounds were prepared, and recrystallized from ethyl acetate, as described previously (Brimble et al., 2003).

Refinement top

Crystal decay was monitored by the measurement of duplicate reflections and was found to be negligible. O– and N-bound H atoms were located from difference Fourier syntheses and their positions were refined with an N—H bond length restraint of 0.95 (2) Å in isomer (Ib) and with Uiso(H) values of 1.5Ueq(O,N)?. C-bound H atoms were placed in calculated positions, with C—H distances set at 0.95 Å (aryl and alkene H atoms) or 1.00 Å (methine H atoms), and refined as riding, with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for solvate methyl H atoms].

AUTHOR: fine-focus or normal-focus sealed tube? AUTHOR: Please confirm the re-wording is correct

Computing details top

Data collection: SMART (Bruker, 1997) for (Ia); Bruker SMART (Bruker, 1997) for (Ib). Cell refinement: SAINT (Bruker, 1997) for (Ia); Bruker SAINT (Bruker, 1997) for (Ib). Data reduction: SAINT for (Ia); Bruker SAINT for (Ib). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL ((Bruker, 1997)) for (Ia); Bruker SHELXTL ((Bruker, 1997)) for (Ib). Software used to prepare material for publication: SHELXTL for (Ia); Bruker SHELXTL for (Ib).

Figures top
[Figure 1] Fig. 1. A perspective view and the atom-numbering scheme for (Ia). The wholly obscured atom C45 is not labelled. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view and the atom-numbering scheme of (Ib). Displacement ellipsoids are drawn at the 30% probability level. The disordered ethyl acetate solvate molecule is not shown.
(Ia) 5-[hydroxy(phenyl)(2-pyridyl)methyl]-8-[phenyl(2-pyridyl)methylene]- 3a,4,7,7a-tetrahydro-4,7-methano-1H-isoindole-1,3(2H)-dione top
Crystal data top
C33H25N3O3F(000) = 1072
Mr = 511.56Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.433 (4) ÅCell parameters from 4828 reflections
b = 11.437 (3) Åθ = 2.4–25.2°
c = 17.048 (5) ŵ = 0.08 mm1
β = 115.427 (3)°T = 163 K
V = 2717.6 (13) Å3Plate, colourless
Z = 40.59 × 0.48 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4795 independent reflections
Radiation source: fine-focus sealed tube3147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.744, Tmax = 1.000k = 1113
28763 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.036P)2 + 0.833P]
where P = (Fo2 + 2Fc2)/3
4795 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C33H25N3O3V = 2717.6 (13) Å3
Mr = 511.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.433 (4) ŵ = 0.08 mm1
b = 11.437 (3) ÅT = 163 K
c = 17.048 (5) Å0.59 × 0.48 × 0.04 mm
β = 115.427 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4795 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3147 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 1.000Rint = 0.049
28763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.15 e Å3
4795 reflectionsΔρmin = 0.19 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15030 (13)0.08044 (17)1.00886 (11)0.0327 (4)
H1A0.16680.00671.04380.039*
C20.16733 (13)0.19920 (17)1.06143 (12)0.0365 (5)
H2A0.22750.19581.11670.044*
C30.17546 (13)0.29269 (17)0.99779 (12)0.0356 (5)
H3A0.24180.32591.02150.043*
C40.15304 (12)0.21932 (16)0.91173 (12)0.0319 (4)
H4A0.17120.25670.86790.038*
C50.04975 (12)0.16937 (16)0.87695 (11)0.0296 (4)
C60.04842 (13)0.08785 (16)0.93384 (11)0.0323 (4)
H6A0.00560.04300.92860.039*
C70.20668 (13)0.10513 (17)0.95393 (12)0.0333 (4)
C80.26886 (12)0.03462 (17)0.93888 (12)0.0345 (5)
C90.08178 (14)0.23983 (18)1.07805 (12)0.0376 (5)
O20.04485 (10)0.18937 (13)1.11970 (9)0.0490 (4)
N10.05095 (12)0.34756 (15)1.03628 (11)0.0387 (4)
H1C0.0042 (16)0.397 (2)1.0405 (13)0.058*
C100.10295 (13)0.38728 (18)0.99176 (13)0.0371 (5)
O30.09162 (10)0.48418 (12)0.95654 (9)0.0464 (4)
C110.03079 (13)0.20914 (16)0.79085 (12)0.0320 (4)
O10.04084 (10)0.33481 (12)0.79381 (10)0.0427 (4)
H1B0.0796 (18)0.343 (2)0.8119 (16)0.064*
N110.18153 (12)0.21414 (16)0.80464 (11)0.0467 (5)
C120.12722 (12)0.15035 (16)0.77675 (11)0.0308 (4)
C130.15571 (15)0.0413 (2)0.73925 (16)0.0556 (6)
H13A0.11540.00280.72110.067*
C140.24485 (17)0.0032 (2)0.72846 (18)0.0642 (7)
H14A0.26600.07740.70210.077*
C150.30180 (15)0.0621 (2)0.75653 (14)0.0472 (6)
H15A0.36240.03400.75010.057*
C160.26766 (15)0.1683 (2)0.79383 (15)0.0525 (6)
H16A0.30630.21310.81350.063*
C210.00638 (13)0.18096 (17)0.71371 (12)0.0347 (5)
C220.04828 (15)0.2475 (2)0.63708 (13)0.0463 (5)
H22A0.08830.31210.63410.056*
C230.03113 (18)0.2187 (2)0.56499 (14)0.0611 (7)
H23A0.06000.26360.51320.073*
C240.02784 (19)0.1249 (3)0.56890 (15)0.0620 (7)
H24A0.03920.10590.51990.074*
C250.07036 (17)0.0583 (2)0.64469 (14)0.0575 (6)
H25A0.11100.00540.64740.069*
C260.05275 (15)0.0860 (2)0.71689 (13)0.0449 (5)
H26A0.08100.04020.76820.054*
N310.30032 (12)0.17276 (15)0.84285 (11)0.0451 (4)
C320.30634 (13)0.06049 (18)0.87189 (12)0.0357 (5)
C330.34284 (14)0.0300 (2)0.83825 (13)0.0421 (5)
H33A0.34830.10720.86050.051*
C340.37085 (15)0.0055 (2)0.77205 (14)0.0520 (6)
H34A0.39580.06560.74920.062*
C350.36181 (16)0.1077 (2)0.74013 (14)0.0556 (6)
H35A0.37880.12640.69420.067*
C360.32678 (15)0.1937 (2)0.77787 (15)0.0531 (6)
H36A0.32130.27140.75650.064*
C410.29342 (13)0.08423 (17)0.98251 (12)0.0356 (5)
C420.38742 (14)0.1114 (2)1.04453 (13)0.0454 (5)
H42A0.43610.05331.06160.054*
C430.40925 (17)0.2237 (2)1.08103 (14)0.0546 (6)
H43A0.47250.24081.12300.066*
C440.33935 (18)0.3101 (2)1.05638 (15)0.0555 (6)
H44A0.35500.38641.08040.067*
C450.24611 (18)0.2844 (2)0.99633 (15)0.0538 (6)
H45A0.19790.34300.97990.065*
C460.22335 (15)0.17213 (18)0.96006 (13)0.0447 (5)
H46A0.15940.15530.91960.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (10)0.0323 (11)0.0302 (10)0.0028 (8)0.0101 (8)0.0013 (9)
C20.0289 (10)0.0428 (12)0.0329 (10)0.0003 (9)0.0086 (8)0.0050 (9)
C30.0274 (10)0.0368 (12)0.0392 (11)0.0041 (9)0.0111 (9)0.0068 (9)
C40.0293 (10)0.0313 (11)0.0348 (10)0.0011 (8)0.0133 (8)0.0017 (9)
C50.0291 (10)0.0289 (11)0.0310 (10)0.0018 (8)0.0129 (8)0.0048 (9)
C60.0292 (10)0.0328 (11)0.0327 (10)0.0011 (8)0.0113 (8)0.0042 (9)
C70.0269 (10)0.0355 (11)0.0316 (10)0.0019 (8)0.0068 (8)0.0032 (9)
C80.0254 (10)0.0367 (12)0.0351 (10)0.0005 (9)0.0071 (8)0.0044 (9)
C90.0355 (11)0.0393 (13)0.0328 (11)0.0024 (9)0.0096 (9)0.0077 (10)
O20.0528 (9)0.0524 (10)0.0484 (9)0.0008 (7)0.0281 (8)0.0034 (8)
N10.0395 (10)0.0351 (10)0.0444 (10)0.0021 (8)0.0206 (8)0.0055 (8)
C100.0350 (11)0.0350 (12)0.0396 (11)0.0074 (9)0.0145 (9)0.0106 (10)
O30.0520 (9)0.0326 (9)0.0616 (9)0.0018 (7)0.0309 (8)0.0046 (8)
C110.0309 (10)0.0282 (11)0.0344 (10)0.0032 (8)0.0116 (8)0.0013 (9)
O10.0383 (8)0.0315 (8)0.0554 (9)0.0038 (7)0.0174 (7)0.0041 (7)
N110.0401 (10)0.0497 (11)0.0549 (11)0.0068 (9)0.0248 (9)0.0150 (9)
C120.0303 (10)0.0318 (11)0.0262 (9)0.0030 (8)0.0082 (8)0.0034 (8)
C130.0430 (13)0.0442 (14)0.0831 (17)0.0058 (11)0.0304 (12)0.0181 (13)
C140.0476 (14)0.0456 (15)0.097 (2)0.0151 (11)0.0285 (13)0.0211 (14)
C150.0349 (11)0.0528 (15)0.0495 (13)0.0093 (11)0.0141 (10)0.0020 (11)
C160.0422 (13)0.0631 (16)0.0598 (14)0.0055 (12)0.0291 (11)0.0131 (13)
C210.0288 (10)0.0405 (12)0.0305 (10)0.0049 (9)0.0087 (8)0.0006 (9)
C220.0414 (12)0.0524 (14)0.0396 (12)0.0049 (10)0.0121 (10)0.0083 (10)
C230.0695 (17)0.0747 (19)0.0364 (13)0.0151 (15)0.0202 (12)0.0091 (12)
C240.0723 (17)0.0798 (19)0.0441 (14)0.0202 (15)0.0346 (13)0.0118 (13)
C250.0548 (14)0.0710 (17)0.0500 (14)0.0002 (13)0.0257 (12)0.0122 (13)
C260.0445 (12)0.0553 (15)0.0338 (11)0.0047 (11)0.0156 (10)0.0012 (10)
N310.0429 (10)0.0466 (12)0.0503 (11)0.0026 (8)0.0243 (9)0.0014 (9)
C320.0258 (10)0.0393 (13)0.0367 (11)0.0001 (9)0.0083 (8)0.0036 (9)
C330.0379 (11)0.0450 (13)0.0415 (12)0.0053 (10)0.0151 (9)0.0044 (10)
C340.0499 (13)0.0611 (17)0.0456 (13)0.0115 (12)0.0212 (11)0.0071 (12)
C350.0530 (14)0.0729 (18)0.0461 (13)0.0111 (13)0.0262 (11)0.0069 (13)
C360.0496 (13)0.0550 (15)0.0595 (14)0.0088 (11)0.0280 (12)0.0094 (12)
C410.0325 (11)0.0375 (12)0.0352 (10)0.0045 (9)0.0130 (9)0.0044 (9)
C420.0345 (11)0.0538 (14)0.0439 (12)0.0057 (10)0.0131 (10)0.0007 (11)
C430.0476 (13)0.0683 (18)0.0467 (13)0.0230 (13)0.0190 (11)0.0136 (13)
C440.0737 (17)0.0481 (15)0.0524 (14)0.0196 (13)0.0345 (13)0.0126 (12)
C450.0679 (16)0.0432 (14)0.0535 (14)0.0072 (12)0.0290 (12)0.0023 (12)
C460.0412 (12)0.0443 (13)0.0412 (12)0.0003 (10)0.0107 (10)0.0011 (10)
Geometric parameters (Å, º) top
C1—C21.586 (3)C15—C161.367 (3)
C1—C61.545 (2)C15—H15A0.9500
C1—C71.553 (3)C16—H16A0.9500
C1—H1A1.0000C21—C261.405 (3)
C2—C91.536 (3)C21—C221.407 (3)
C2—C31.566 (3)C22—C231.403 (3)
C2—H2A1.0000C22—H22A0.9500
C3—C101.528 (3)C23—C241.390 (4)
C3—C41.594 (3)C23—H23A0.9500
C3—H3A1.0000C24—C251.397 (3)
C4—C71.548 (3)C24—H24A0.9500
C4—C51.551 (2)C25—C261.406 (3)
C4—H4A1.0000C25—H25A0.9500
C5—C61.352 (3)C26—H26A0.9500
C5—C111.530 (2)N31—C361.356 (3)
C6—H6A0.9500N31—C321.365 (3)
C7—C81.360 (3)C32—C331.413 (3)
C8—C321.515 (3)C33—C341.400 (3)
C8—C411.517 (3)C33—H33A0.9500
C9—O21.229 (2)C34—C351.387 (3)
C9—N11.400 (3)C34—H34A0.9500
N1—C101.396 (3)C35—C361.404 (3)
N1—H1C0.95 (2)C35—H35A0.9500
C10—O31.237 (2)C36—H36A0.9500
C11—O11.449 (2)C41—C461.404 (3)
C11—C211.549 (3)C41—C421.415 (3)
C11—C121.555 (3)C42—C431.403 (3)
O1—H1B0.79 (2)C42—H42A0.9500
N11—C121.343 (2)C43—C441.388 (3)
N11—C161.366 (3)C43—H43A0.9500
C12—C131.384 (3)C44—C451.393 (3)
C13—C141.403 (3)C44—H44A0.9500
C13—H13A0.9500C45—C461.403 (3)
C14—C151.385 (3)C45—H45A0.9500
C14—H14A0.9500C46—H46A0.9500
C6—C1—C797.20 (14)C15—C14—H14A120.3
C6—C1—C2106.47 (15)C13—C14—H14A120.3
C7—C1—C2100.67 (15)C16—C15—C14117.7 (2)
C6—C1—H1A116.6C16—C15—H15A121.2
C7—C1—H1A116.6C14—C15—H15A121.2
C2—C1—H1A116.6N11—C16—C15124.2 (2)
C9—C2—C3104.60 (15)N11—C16—H16A117.9
C9—C2—C1114.60 (15)C15—C16—H16A117.9
C3—C2—C1103.67 (14)C26—C21—C22119.10 (19)
C9—C2—H2A111.2C26—C21—C11121.25 (16)
C3—C2—H2A111.2C22—C21—C11119.56 (18)
C1—C2—H2A111.2C23—C22—C21120.1 (2)
C10—C3—C2104.81 (15)C23—C22—H22A119.9
C10—C3—C4116.59 (15)C21—C22—H22A119.9
C2—C3—C4103.18 (15)C24—C23—C22120.3 (2)
C10—C3—H3A110.6C24—C23—H23A119.8
C2—C3—H3A110.6C22—C23—H23A119.8
C4—C3—H3A110.6C23—C24—C25120.2 (2)
C7—C4—C597.10 (14)C23—C24—H24A119.9
C7—C4—C398.91 (14)C25—C24—H24A119.9
C5—C4—C3109.09 (14)C24—C25—C26119.8 (2)
C7—C4—H4A116.3C24—C25—H25A120.1
C5—C4—H4A116.3C26—C25—H25A120.1
C3—C4—H4A116.3C21—C26—C25120.5 (2)
C6—C5—C11129.58 (16)C21—C26—H26A119.8
C6—C5—C4108.02 (15)C25—C26—H26A119.8
C11—C5—C4122.37 (15)C36—N31—C32117.68 (18)
C5—C6—C1107.95 (16)N31—C32—C33121.28 (18)
C5—C6—H6A126.0N31—C32—C8117.95 (17)
C1—C6—H6A126.0C33—C32—C8120.72 (18)
C8—C7—C4133.83 (18)C34—C33—C32119.7 (2)
C8—C7—C1129.00 (18)C34—C33—H33A120.2
C4—C7—C196.16 (14)C32—C33—H33A120.2
C7—C8—C32123.74 (18)C35—C34—C33119.3 (2)
C7—C8—C41119.13 (17)C35—C34—H34A120.3
C32—C8—C41116.66 (16)C33—C34—H34A120.3
O2—C9—N1124.51 (18)C34—C35—C36117.8 (2)
O2—C9—C2127.82 (19)C34—C35—H35A121.1
N1—C9—C2107.68 (17)C36—C35—H35A121.1
C10—N1—C9114.43 (17)N31—C36—C35124.1 (2)
C10—N1—H1C118.7 (14)N31—C36—H36A117.9
C9—N1—H1C126.6 (13)C35—C36—H36A117.9
O3—C10—N1124.13 (18)C46—C41—C42117.95 (19)
O3—C10—C3127.87 (18)C46—C41—C8120.45 (17)
N1—C10—C3107.96 (17)C42—C41—C8121.57 (18)
O1—C11—C5108.46 (15)C43—C42—C41120.4 (2)
O1—C11—C21107.73 (15)C43—C42—H42A119.8
C5—C11—C21111.05 (15)C41—C42—H42A119.8
O1—C11—C12108.95 (14)C44—C43—C42120.6 (2)
C5—C11—C12110.44 (15)C44—C43—H43A119.7
C21—C11—C12110.14 (15)C42—C43—H43A119.7
C11—O1—H1B103.7 (19)C43—C44—C45119.8 (2)
C12—N11—C16117.57 (18)C43—C44—H44A120.1
N11—C12—C13122.03 (18)C45—C44—H44A120.1
N11—C12—C11114.32 (16)C44—C45—C46120.0 (2)
C13—C12—C11123.65 (17)C44—C45—H45A120.0
C12—C13—C14119.1 (2)C46—C45—H45A120.0
C12—C13—H13A120.4C45—C46—C41121.2 (2)
C14—C13—H13A120.4C45—C46—H46A119.4
C15—C14—C13119.4 (2)C41—C46—H46A119.4
C6—C1—C2—C943.6 (2)C16—N11—C12—C11179.57 (17)
C7—C1—C2—C9144.47 (16)O1—C11—C12—N1125.6 (2)
C6—C1—C2—C369.78 (17)C5—C11—C12—N1193.45 (19)
C7—C1—C2—C331.10 (16)C21—C11—C12—N11143.53 (17)
C9—C2—C3—C106.89 (18)O1—C11—C12—C13154.80 (19)
C1—C2—C3—C10127.29 (15)C5—C11—C12—C1386.2 (2)
C9—C2—C3—C4115.61 (15)C21—C11—C12—C1336.8 (2)
C1—C2—C3—C44.79 (17)N11—C12—C13—C141.2 (3)
C10—C3—C4—C7153.30 (16)C11—C12—C13—C14179.2 (2)
C2—C3—C4—C739.04 (16)C12—C13—C14—C150.8 (4)
C10—C3—C4—C552.5 (2)C13—C14—C15—C160.1 (4)
C2—C3—C4—C561.71 (17)C12—N11—C16—C150.0 (3)
C7—C4—C5—C633.87 (17)C14—C15—C16—N110.4 (3)
C3—C4—C5—C668.16 (19)O1—C11—C21—C26147.30 (17)
C7—C4—C5—C11144.54 (16)C5—C11—C21—C2628.7 (2)
C3—C4—C5—C11113.44 (18)C12—C11—C21—C2694.0 (2)
C11—C5—C6—C1178.48 (17)O1—C11—C21—C2236.2 (2)
C4—C5—C6—C10.23 (19)C5—C11—C21—C22154.88 (17)
C7—C1—C6—C534.11 (18)C12—C11—C21—C2282.5 (2)
C2—C1—C6—C569.30 (18)C26—C21—C22—C230.2 (3)
C5—C4—C7—C8116.2 (2)C11—C21—C22—C23176.35 (18)
C3—C4—C7—C8133.1 (2)C21—C22—C23—C240.5 (3)
C5—C4—C7—C152.60 (14)C22—C23—C24—C250.1 (4)
C3—C4—C7—C158.08 (15)C23—C24—C25—C260.5 (4)
C6—C1—C7—C8116.8 (2)C22—C21—C26—C250.4 (3)
C2—C1—C7—C8134.90 (19)C11—C21—C26—C25176.90 (19)
C6—C1—C7—C452.88 (15)C24—C25—C26—C210.8 (3)
C2—C1—C7—C455.46 (15)C36—N31—C32—C332.7 (3)
C4—C7—C8—C323.5 (3)C36—N31—C32—C8174.79 (17)
C1—C7—C8—C32169.11 (17)C7—C8—C32—N3119.2 (3)
C4—C7—C8—C41168.49 (18)C41—C8—C32—N31168.65 (16)
C1—C7—C8—C412.8 (3)C7—C8—C32—C33158.34 (19)
C3—C2—C9—O2174.91 (19)C41—C8—C32—C3313.8 (2)
C1—C2—C9—O262.1 (3)N31—C32—C33—C341.9 (3)
C3—C2—C9—N14.84 (19)C8—C32—C33—C34175.56 (17)
C1—C2—C9—N1117.66 (17)C32—C33—C34—C350.3 (3)
O2—C9—N1—C10179.10 (18)C33—C34—C35—C361.6 (3)
C2—C9—N1—C100.7 (2)C32—N31—C36—C351.4 (3)
C9—N1—C10—O3174.22 (18)C34—C35—C36—N310.7 (3)
C9—N1—C10—C34.0 (2)C7—C8—C41—C4667.0 (2)
C2—C3—C10—O3171.40 (18)C32—C8—C41—C46105.5 (2)
C4—C3—C10—O375.3 (3)C7—C8—C41—C42115.0 (2)
C2—C3—C10—N16.75 (19)C32—C8—C41—C4272.5 (2)
C4—C3—C10—N1106.58 (18)C46—C41—C42—C430.9 (3)
C6—C5—C11—O1125.3 (2)C8—C41—C42—C43177.12 (18)
C4—C5—C11—O156.7 (2)C41—C42—C43—C440.6 (3)
C6—C5—C11—C21116.5 (2)C42—C43—C44—C451.5 (3)
C4—C5—C11—C2161.5 (2)C43—C44—C45—C460.9 (3)
C6—C5—C11—C126.0 (3)C44—C45—C46—C410.6 (3)
C4—C5—C11—C12175.98 (15)C42—C41—C46—C451.5 (3)
C16—N11—C12—C130.8 (3)C8—C41—C46—C45176.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N110.79 (2)2.12 (3)2.645 (2)125 (2)
N1—H1C···O3i0.95 (2)2.02 (2)2.965 (2)174 (2)
Symmetry code: (i) x, y+1, z+2.
(Ib) 5-[hydroxy(phenyl)(2-pyridyl)methyl]-8-[phenyl(2-pyridyl)methylene]- 3a,4,7,7a-tetrahydro-4,7-methano-1H-isoindole-1,3(2H)-dione ethyl acetate hemisolvate top
Crystal data top
C33H25N3O3·0.5C4H8O2F(000) = 1168
Mr = 555.61Dx = 1.331 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 17.999 (3) ÅCell parameters from 3124 reflections
b = 12.614 (2) Åθ = 2.3–26.0°
c = 13.063 (2) ŵ = 0.09 mm1
β = 110.834 (2)°T = 173 K
V = 2771.9 (8) Å3Needle, colourless
Z = 40.48 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
4870 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.159
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2121
Tmin = 0.738, Tmax = 1.000k = 1515
31232 measured reflectionsl = 1511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
4870 reflectionsΔρmax = 0.21 e Å3
396 parametersΔρmin = 0.23 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (6)
Crystal data top
C33H25N3O3·0.5C4H8O2V = 2771.9 (8) Å3
Mr = 555.61Z = 4
Monoclinic, P2/cMo Kα radiation
a = 17.999 (3) ŵ = 0.09 mm1
b = 12.614 (2) ÅT = 173 K
c = 13.063 (2) Å0.48 × 0.12 × 0.08 mm
β = 110.834 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4870 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1989 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.159
31232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.21 e Å3
4870 reflectionsΔρmin = 0.23 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.37122 (18)0.2113 (3)0.4608 (3)0.0270 (9)
H1A0.41230.22270.53510.032*
C20.37433 (18)0.1028 (3)0.4048 (3)0.0281 (9)
H2A0.38220.04230.45710.034*
C30.29164 (19)0.0976 (3)0.3114 (3)0.0295 (9)
H3A0.26210.03240.31810.035*
C40.24798 (19)0.2007 (3)0.3293 (3)0.0316 (9)
H4A0.18860.20080.29600.038*
C50.29116 (19)0.2944 (3)0.3005 (3)0.0262 (9)
C60.36368 (19)0.2981 (3)0.3765 (3)0.0280 (9)
H6A0.40420.34690.37800.034*
C70.28429 (19)0.2064 (3)0.4547 (3)0.0259 (9)
C80.25028 (19)0.2029 (3)0.5292 (3)0.0278 (9)
C90.4327 (2)0.0994 (3)0.3473 (3)0.0299 (9)
O20.50616 (14)0.10026 (18)0.38965 (19)0.0372 (7)
N10.39228 (17)0.0969 (2)0.2364 (3)0.0313 (8)
H1C0.4223 (18)0.097 (3)0.192 (2)0.047*
C100.3105 (2)0.0950 (3)0.2084 (3)0.0342 (10)
O30.26438 (14)0.09143 (19)0.1136 (2)0.0455 (8)
C110.2535 (2)0.3670 (3)0.2016 (3)0.0296 (9)
O10.20107 (13)0.30448 (19)0.1124 (2)0.0348 (7)
H1B0.231 (2)0.270 (3)0.078 (3)0.052*
N110.35182 (18)0.3513 (3)0.1149 (3)0.0441 (9)
C120.31824 (19)0.4158 (3)0.1668 (3)0.0283 (9)
C130.3427 (2)0.5207 (3)0.1888 (3)0.0430 (11)
H13A0.31920.56590.22700.052*
C140.4019 (2)0.5577 (3)0.1541 (3)0.0489 (12)
H14A0.41850.62950.16680.059*
C150.4367 (2)0.4921 (3)0.1017 (3)0.0427 (11)
H15A0.47810.51630.07840.051*
C160.4096 (2)0.3894 (4)0.0839 (3)0.0524 (12)
H16A0.43340.34280.04740.063*
C210.2011 (2)0.4501 (3)0.2274 (3)0.0303 (9)
C220.1333 (2)0.4875 (3)0.1453 (3)0.0372 (10)
H22A0.11880.45950.07330.045*
C230.0867 (2)0.5647 (3)0.1671 (4)0.0441 (11)
H23A0.04070.58960.10980.053*
C240.1060 (2)0.6061 (3)0.2712 (4)0.0428 (11)
H24A0.07320.65860.28580.051*
C250.1740 (2)0.5703 (3)0.3546 (3)0.0362 (10)
H25A0.18810.59840.42650.043*
C260.2205 (2)0.4942 (3)0.3321 (3)0.0352 (10)
H26A0.26720.47080.38920.042*
N310.37194 (17)0.1592 (2)0.6819 (2)0.0329 (8)
C310.2970 (2)0.1977 (3)0.6503 (3)0.0286 (9)
C330.2644 (2)0.2311 (3)0.7252 (3)0.0363 (10)
H33A0.21190.25860.70100.044*
C340.3086 (2)0.2243 (3)0.8363 (3)0.0455 (11)
H34A0.28670.24730.88890.055*
C350.3840 (2)0.1842 (3)0.8691 (3)0.0398 (11)
H35A0.41530.17710.94460.048*
C360.4130 (2)0.1545 (3)0.7901 (3)0.0371 (10)
H36A0.46600.12870.81330.045*
C410.1615 (2)0.2070 (3)0.4961 (3)0.0317 (9)
C420.1185 (2)0.2875 (3)0.4307 (3)0.0389 (10)
H42A0.14530.34020.40500.047*
C430.0359 (2)0.2932 (4)0.4014 (3)0.0503 (11)
H43A0.00730.34840.35440.060*
C440.0038 (2)0.2206 (4)0.4395 (4)0.0565 (13)
H44A0.05980.22480.41990.068*
C450.0393 (2)0.1402 (3)0.5076 (4)0.0550 (13)
H45A0.01250.08920.53540.066*
C460.1209 (2)0.1338 (3)0.5353 (3)0.0475 (11)
H46A0.14950.07840.58190.057*
O40.0949 (4)0.0357 (5)0.2518 (5)0.0618 (18)0.50
O50.0042 (6)0.0639 (4)0.2129 (4)0.062 (3)0.50
C510.0695 (4)0.0206 (6)0.2068 (5)0.091 (2)
H51A0.08700.00490.26620.110*0.50
H51B0.06440.04190.16390.110*0.50
C520.1311 (3)0.0926 (5)0.1339 (4)0.0948 (19)
H52A0.17590.05050.08660.142*
H52B0.10830.13370.08860.142*
H52C0.14960.14090.17850.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.030 (2)0.024 (2)0.0010 (18)0.0002 (17)0.0018 (19)
C20.024 (2)0.027 (2)0.028 (2)0.0013 (18)0.0022 (18)0.0021 (19)
C30.025 (2)0.024 (2)0.033 (3)0.0042 (18)0.0034 (19)0.0023 (19)
C40.017 (2)0.033 (2)0.039 (3)0.0006 (19)0.0024 (18)0.001 (2)
C50.017 (2)0.030 (2)0.027 (2)0.0037 (18)0.0021 (18)0.0026 (19)
C60.027 (2)0.021 (2)0.034 (2)0.0035 (17)0.0088 (19)0.0028 (19)
C70.020 (2)0.024 (2)0.029 (2)0.0000 (17)0.0026 (18)0.0019 (19)
C80.021 (2)0.027 (2)0.029 (2)0.0034 (18)0.0012 (18)0.0013 (19)
C90.034 (3)0.020 (2)0.026 (3)0.0010 (19)0.001 (2)0.0001 (18)
O20.0236 (15)0.0449 (17)0.0336 (16)0.0011 (13)0.0016 (12)0.0030 (13)
N10.027 (2)0.0277 (18)0.035 (2)0.0001 (15)0.0069 (16)0.0025 (17)
C100.028 (2)0.023 (2)0.044 (3)0.0011 (19)0.005 (2)0.006 (2)
O30.0341 (17)0.0482 (18)0.0365 (19)0.0016 (14)0.0091 (14)0.0104 (15)
C110.026 (2)0.033 (2)0.024 (2)0.0013 (19)0.0019 (19)0.0009 (19)
O10.0248 (15)0.0404 (16)0.0298 (17)0.0000 (13)0.0020 (12)0.0039 (13)
N110.036 (2)0.055 (2)0.042 (2)0.0059 (18)0.0160 (18)0.0158 (18)
C120.024 (2)0.033 (2)0.022 (2)0.0032 (19)0.0008 (18)0.0039 (19)
C130.043 (3)0.034 (2)0.060 (3)0.003 (2)0.028 (2)0.002 (2)
C140.041 (3)0.041 (3)0.070 (3)0.002 (2)0.026 (3)0.011 (2)
C150.027 (2)0.057 (3)0.045 (3)0.001 (2)0.014 (2)0.009 (2)
C160.044 (3)0.074 (4)0.049 (3)0.010 (3)0.027 (2)0.020 (3)
C210.024 (2)0.031 (2)0.033 (3)0.0003 (18)0.006 (2)0.002 (2)
C220.022 (2)0.044 (3)0.037 (3)0.003 (2)0.000 (2)0.006 (2)
C230.025 (2)0.047 (3)0.053 (3)0.005 (2)0.005 (2)0.001 (2)
C240.032 (2)0.041 (3)0.056 (3)0.004 (2)0.016 (2)0.006 (2)
C250.035 (3)0.034 (2)0.039 (3)0.005 (2)0.011 (2)0.004 (2)
C260.026 (2)0.037 (2)0.034 (3)0.006 (2)0.0014 (19)0.003 (2)
N310.0255 (19)0.0304 (19)0.033 (2)0.0030 (15)0.0011 (16)0.0045 (15)
C310.029 (2)0.024 (2)0.032 (2)0.0008 (19)0.0092 (19)0.0031 (19)
C330.032 (2)0.045 (3)0.027 (3)0.009 (2)0.005 (2)0.006 (2)
C340.055 (3)0.041 (3)0.043 (3)0.010 (2)0.022 (2)0.004 (2)
C350.040 (3)0.036 (2)0.036 (3)0.006 (2)0.003 (2)0.007 (2)
C360.028 (2)0.031 (2)0.041 (3)0.0018 (19)0.001 (2)0.010 (2)
C410.024 (2)0.035 (2)0.034 (2)0.000 (2)0.0075 (19)0.002 (2)
C420.027 (2)0.046 (3)0.042 (3)0.007 (2)0.0099 (19)0.005 (2)
C430.034 (3)0.066 (3)0.044 (3)0.014 (2)0.006 (2)0.003 (3)
C440.023 (3)0.072 (3)0.068 (3)0.004 (3)0.008 (2)0.012 (3)
C450.033 (3)0.051 (3)0.082 (4)0.010 (2)0.022 (3)0.010 (3)
C460.032 (3)0.051 (3)0.061 (3)0.001 (2)0.017 (2)0.005 (2)
O40.067 (5)0.061 (4)0.059 (5)0.016 (3)0.024 (4)0.001 (3)
O50.027 (4)0.069 (4)0.076 (8)0.003 (4)0.001 (7)0.018 (3)
C510.082 (5)0.142 (6)0.046 (4)0.061 (4)0.018 (4)0.029 (4)
C520.068 (4)0.141 (5)0.078 (4)0.024 (4)0.029 (3)0.044 (4)
Geometric parameters (Å, º) top
C1—C21.563 (4)C22—C231.380 (5)
C1—C61.524 (4)C22—H22A0.9500
C1—C71.539 (4)C23—C241.381 (5)
C1—H1A1.0000C23—H23A0.9500
C2—C91.494 (4)C24—C251.393 (5)
C2—C31.554 (4)C24—H24A0.9500
C2—H2A1.0000C25—C261.373 (4)
C3—C101.501 (5)C25—H25A0.9500
C3—C41.579 (4)C26—H26A0.9500
C3—H3A1.0000N31—C361.343 (4)
C4—C71.534 (4)N31—C311.353 (4)
C4—C51.534 (4)C31—C331.373 (5)
C4—H4A1.0000C33—C341.388 (5)
C5—C61.331 (4)C33—H33A0.9500
C5—C111.530 (4)C34—C351.367 (5)
C6—H6A0.9500C34—H34A0.9500
C7—C81.323 (4)C35—C361.363 (5)
C8—C411.500 (4)C35—H35A0.9500
C8—C311.505 (5)C36—H36A0.9500
C9—O21.238 (4)C41—C421.374 (4)
C9—N11.371 (4)C41—C461.384 (4)
N1—C101.385 (4)C42—C431.398 (5)
N1—H1C0.92 (3)C42—H42A0.9500
C10—O31.222 (4)C43—C441.360 (5)
C11—O11.445 (4)C43—H43A0.9500
C11—C121.523 (4)C44—C451.389 (5)
C11—C211.525 (4)C44—H44A0.9500
O1—H1B0.93 (3)C45—C461.385 (5)
N11—C161.332 (4)C45—H45A0.9500
N11—C121.334 (4)C46—H46A0.9500
C12—C131.392 (5)O4—C511.119 (6)
C13—C141.379 (5)O5—C511.272 (10)
C13—H13A0.9500O5—C51i1.473 (10)
C14—C151.360 (5)C51—C521.485 (7)
C14—H14A0.9500C51—H51A0.9900
C15—C161.376 (5)C51—H51B0.9900
C15—H15A0.9500C52—H52A0.9800
C16—H16A0.9500C52—H52B0.9800
C21—C221.390 (4)C52—H52C0.9800
C21—C261.401 (5)
C6—C1—C799.4 (3)C22—C21—C26117.6 (3)
C6—C1—C2107.5 (3)C22—C21—C11120.3 (3)
C7—C1—C298.4 (3)C26—C21—C11122.0 (3)
C6—C1—H1A116.3C23—C22—C21120.8 (4)
C7—C1—H1A116.3C23—C22—H22A119.6
C2—C1—H1A116.3C21—C22—H22A119.6
C9—C2—C3104.7 (3)C22—C23—C24120.8 (4)
C9—C2—C1114.1 (3)C22—C23—H23A119.6
C3—C2—C1102.7 (3)C24—C23—H23A119.6
C9—C2—H2A111.6C23—C24—C25119.4 (4)
C3—C2—H2A111.6C23—C24—H24A120.3
C1—C2—H2A111.6C25—C24—H24A120.3
C10—C3—C2104.2 (3)C26—C25—C24119.5 (4)
C10—C3—C4115.7 (3)C26—C25—H25A120.3
C2—C3—C4103.7 (3)C24—C25—H25A120.3
C10—C3—H3A110.9C25—C26—C21121.9 (3)
C2—C3—H3A110.9C25—C26—H26A119.1
C4—C3—H3A110.9C21—C26—H26A119.1
C7—C4—C599.5 (3)C36—N31—C31116.9 (3)
C7—C4—C398.7 (3)N31—C31—C33121.6 (3)
C5—C4—C3106.0 (3)N31—C31—C8117.4 (3)
C7—C4—H4A116.6C33—C31—C8121.0 (3)
C5—C4—H4A116.6C31—C33—C34119.7 (3)
C3—C4—H4A116.6C31—C33—H33A120.1
C6—C5—C11129.2 (3)C34—C33—H33A120.1
C6—C5—C4106.9 (3)C35—C34—C33119.1 (4)
C11—C5—C4123.9 (3)C35—C34—H34A120.5
C5—C6—C1109.0 (3)C33—C34—H34A120.5
C5—C6—H6A125.5C36—C35—C34117.9 (4)
C1—C6—H6A125.5C36—C35—H35A121.0
C8—C7—C4130.7 (3)C34—C35—H35A121.0
C8—C7—C1133.7 (3)N31—C36—C35124.7 (4)
C4—C7—C195.5 (3)N31—C36—H36A117.7
C7—C8—C41120.7 (3)C35—C36—H36A117.7
C7—C8—C31122.9 (3)C42—C41—C46117.8 (3)
C41—C8—C31116.4 (3)C42—C41—C8120.8 (3)
O2—C9—N1123.6 (3)C46—C41—C8121.2 (3)
O2—C9—C2127.3 (3)C41—C42—C43121.2 (4)
N1—C9—C2109.1 (3)C41—C42—H42A119.4
C9—N1—C10113.3 (3)C43—C42—H42A119.4
C9—N1—H1C117 (2)C44—C43—C42120.7 (4)
C10—N1—H1C130 (2)C44—C43—H43A119.6
O3—C10—N1122.9 (4)C42—C43—H43A119.6
O3—C10—C3128.4 (3)C43—C44—C45118.6 (4)
N1—C10—C3108.7 (3)C43—C44—H44A120.7
O1—C11—C12109.2 (3)C45—C44—H44A120.7
O1—C11—C21106.0 (3)C46—C45—C44120.5 (4)
C12—C11—C21112.7 (3)C46—C45—H45A119.7
O1—C11—C5108.7 (3)C44—C45—H45A119.7
C12—C11—C5109.7 (3)C41—C46—C45121.0 (4)
C21—C11—C5110.3 (3)C41—C46—H46A119.5
C11—O1—H1B109 (2)C45—C46—H46A119.5
C16—N11—C12118.6 (3)H51A—O4—H51B103.7
N11—C12—C13121.2 (3)C51—O5—C51i117.7 (7)
N11—C12—C11116.0 (3)O4—C51—O5i107.0 (7)
C13—C12—C11122.9 (3)O4—C51—C52112.0 (7)
C14—C13—C12118.6 (4)O5—C51—C52103.9 (6)
C14—C13—H13A120.7O5i—C51—C52120.5 (6)
C12—C13—H13A120.7C52—C51—H51A109.1
C15—C14—C13120.6 (4)O5i—C51—H51B117.2
C15—C14—H14A119.7C52—C51—H51B108.8
C13—C14—H14A119.7H51A—C51—H51B107.7
C14—C15—C16117.3 (4)C51—C52—H52A109.5
C14—C15—H15A121.4C51—C52—H52B109.5
C16—C15—H15A121.4H52A—C52—H52B109.5
N11—C16—C15123.9 (4)C51—C52—H52C109.5
N11—C16—H16A118.1H52A—C52—H52C109.5
C15—C16—H16A118.1H52B—C52—H52C109.5
C6—C1—C2—C949.3 (4)C16—N11—C12—C11179.1 (3)
C7—C1—C2—C9152.0 (3)O1—C11—C12—N1144.7 (4)
C6—C1—C2—C363.4 (3)C21—C11—C12—N11162.3 (3)
C7—C1—C2—C339.3 (3)C5—C11—C12—N1174.4 (4)
C9—C2—C3—C101.6 (3)O1—C11—C12—C13136.4 (3)
C1—C2—C3—C10117.9 (3)C21—C11—C12—C1318.8 (5)
C9—C2—C3—C4123.1 (3)C5—C11—C12—C13104.5 (4)
C1—C2—C3—C43.6 (3)N11—C12—C13—C141.1 (6)
C10—C3—C4—C7147.0 (3)C11—C12—C13—C14180.0 (3)
C2—C3—C4—C733.5 (3)C12—C13—C14—C151.5 (6)
C10—C3—C4—C544.4 (4)C13—C14—C15—C161.0 (6)
C2—C3—C4—C569.1 (3)C12—N11—C16—C150.4 (6)
C7—C4—C5—C634.3 (3)C14—C15—C16—N110.0 (6)
C3—C4—C5—C667.7 (3)O1—C11—C21—C2229.9 (4)
C7—C4—C5—C11145.3 (3)C12—C11—C21—C2289.5 (4)
C3—C4—C5—C11112.7 (3)C5—C11—C21—C22147.5 (3)
C11—C5—C6—C1177.4 (3)O1—C11—C21—C26152.4 (3)
C4—C5—C6—C12.2 (4)C12—C11—C21—C2688.1 (4)
C7—C1—C6—C530.6 (3)C5—C11—C21—C2634.9 (4)
C2—C1—C6—C571.3 (3)C26—C21—C22—C230.5 (5)
C5—C4—C7—C8132.6 (4)C11—C21—C22—C23178.3 (3)
C3—C4—C7—C8119.4 (4)C21—C22—C23—C240.5 (5)
C5—C4—C7—C150.2 (3)C22—C23—C24—C250.9 (5)
C3—C4—C7—C157.8 (3)C23—C24—C25—C260.2 (5)
C6—C1—C7—C8134.2 (4)C24—C25—C26—C210.8 (5)
C2—C1—C7—C8116.4 (4)C22—C21—C26—C251.2 (5)
C6—C1—C7—C448.7 (3)C11—C21—C26—C25178.9 (3)
C2—C1—C7—C460.7 (3)C36—N31—C31—C330.4 (5)
C4—C7—C8—C418.7 (6)C36—N31—C31—C8179.7 (3)
C1—C7—C8—C41175.2 (3)C7—C8—C31—N3123.2 (5)
C4—C7—C8—C31173.1 (3)C41—C8—C31—N31158.5 (3)
C1—C7—C8—C313.1 (6)C7—C8—C31—C33156.8 (4)
C3—C2—C9—O2178.9 (3)C41—C8—C31—C3321.5 (5)
C1—C2—C9—O269.6 (5)N31—C31—C33—C340.8 (5)
C3—C2—C9—N12.1 (4)C8—C31—C33—C34179.3 (3)
C1—C2—C9—N1109.4 (3)C31—C33—C34—C350.1 (5)
O2—C9—N1—C10179.1 (3)C33—C34—C35—C361.4 (5)
C2—C9—N1—C101.8 (4)C31—N31—C36—C351.0 (5)
C9—N1—C10—O3179.2 (3)C34—C35—C36—N311.9 (5)
C9—N1—C10—C30.7 (4)C7—C8—C41—C4253.7 (5)
C2—C3—C10—O3179.5 (4)C31—C8—C41—C42124.7 (4)
C4—C3—C10—O366.3 (5)C7—C8—C41—C46130.1 (4)
C2—C3—C10—N10.6 (4)C31—C8—C41—C4651.5 (5)
C4—C3—C10—N1113.8 (3)C46—C41—C42—C432.3 (6)
C6—C5—C11—O1145.4 (3)C8—C41—C42—C43178.6 (3)
C4—C5—C11—O135.1 (4)C41—C42—C43—C441.9 (6)
C6—C5—C11—C1226.0 (5)C42—C43—C44—C450.4 (6)
C4—C5—C11—C12154.5 (3)C43—C44—C45—C460.5 (6)
C6—C5—C11—C2198.7 (4)C42—C41—C46—C451.4 (6)
C4—C5—C11—C2180.8 (4)C8—C41—C46—C45177.6 (4)
C16—N11—C12—C130.2 (5)C44—C45—C46—C410.0 (6)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N110.93 (3)2.30 (3)2.765 (4)111 (3)
O1—H1B···O30.93 (3)2.33 (3)2.917 (3)121 (3)
N1—H1C···O2ii0.92 (3)1.94 (3)2.863 (4)175 (3)
Symmetry code: (ii) x+1, y, z+1/2.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC33H25N3O3C33H25N3O3·0.5C4H8O2
Mr511.56555.61
Crystal system, space groupMonoclinic, P21/nMonoclinic, P2/c
Temperature (K)163173
a, b, c (Å)15.433 (4), 11.437 (3), 17.048 (5)17.999 (3), 12.614 (2), 13.063 (2)
β (°) 115.427 (3) 110.834 (2)
V3)2717.6 (13)2771.9 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.59 × 0.48 × 0.040.48 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.744, 1.0000.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28763, 4795, 3147 31232, 4870, 1989
Rint0.0490.159
(sin θ/λ)max1)0.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.08 0.062, 0.125, 0.89
No. of reflections47954870
No. of parameters358396
No. of restraints01
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.190.21, 0.23

Computer programs: , Bruker SMART (Bruker, 1997), Bruker SAINT (Bruker, 1997), Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL ((Bruker, 1997)), Bruker SHELXTL.

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N110.79 (2)2.12 (3)2.645 (2)125 (2)
N1—H1C···O3i0.95 (2)2.02 (2)2.965 (2)174 (2)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N110.93 (3)2.30 (3)2.765 (4)111 (3)
O1—H1B···O30.93 (3)2.33 (3)2.917 (3)121 (3)
N1—H1C···O2i0.92 (3)1.94 (3)2.863 (4)175 (3)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds