Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C17H22FIN2O, both the amide and the iodo­phenyl substituents of the tropane ring lie in equatorial positions. The crystal packing is determined by N—H...O and C—H...F intermolecular hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027835/bm1554sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027835/bm1554Isup2.hkl
Contains datablock I

CCDC reference: 233127

Comment top

The dopamine transporter (DAT) is a widely accepted marker for the integrity of the presynaptic dopaminergic system (Innis et al., 1993). A markedly reduced DAT density has been demonstrated in brains from patients with degenerative brain disorders such as Parkinson's and Alzheimer's diseases. When combined with positron emission tomography (PET) or single photon emission tomography (SPECT), radioligands binding specifically to the DAT are potentially useful as non-invasive in vivo imaging tools for studying the various illnesses and evaluating the degrees of success of their treatments (Schenk, 2002; Torres et al., 2003). Therefore, development and evaluation of suitable radioligands is required. Cocaine analogues are known to result in the best effects (Singh, 2000). The structure of the title amide derivative, (I) (Krebs et al., 2003), of the established radioligand β-CIT (Carroll et al., 1991) is described here. \sch

The molecular structure of (I) shows the usual piperidine chair conformation (Fig. 1). The absolute configuration was determined from anomalous dispersion effects by refining the Flack parameter (Flack, 1983). Both the amide and the iodophenyl group are equatorially attached to the central tropane ring, adopting 2α- and 3β-positions, respectively. The relevant torsion angles are C1—C2—C15—N2 86.3 (4)° and C2—C3—C9—C10 60.2 (5)°. The related molecular structures of cocaine (Hrynchuk et al., 1982) and cocaine salts (Shen et al., 1975; Zhu et al., 1999) show corresponding torsion angles for their methoxycarbonyl groups of −61, −46 and −17°. In (I), the phenyl ring and the best plane through the amide group (atoms C15, O1, N2 and C16) are perpendicular, with a dihedral angle of 89.2 (1)°. The N8—C1 and N8—C5 bond lengths of 1.472 (5) and 1.486 (7) Å, respectively, compare well with the values of 1.460 (7) and 1.467 (6) Å from cocaine. The same is valid for C2—C15, with values of 1.518 (5) and 1.509 (6) Å in (I) and in cocaine, respectively, but the C15O1 bond of 1.229 (5) Å in (I) is longer than the corresponding distance of 1.188 (5) Å in cocaine.

The crystal packing of (I) shows two intermolecular hydrogen bonds (details in Table 2) between molecules related by a twofold screw axis, thus generating a chain in the b direction (Fig. 2).

Table 2. Selected hydrogen bonding geometry (Å, °) (Note that F11 and F12 are the disorder components of the same F atom).

Experimental top

Triethylamine (28 mg, 0.28 mmole) was added at 273 K over 10 min to a stirred mixture of the carboxylic acid of β-CIT (98 mg, 0.264 mmole), fluoroethylamine (29 mg, 0.29 mmole) and diethylcyanophosphonate (47 mg, 0.29 mmole) in dimethylformamide (1 ml). The mixture was stirred at 273 K for 30 min and then at room temperature for 1 h. It was then diluted with AcOEt and washed with H2O, saturated aqueous NaHCO3 and saturated aqueous NaCl, and dried over K2CO3. Column chromatography of the resulting residue (EE:MeOH:Et3N = 8.5:1:0.5; Rf = 0.62; EE is ?) gave colourless crystals of the amide (99 mg, 90%, m.p. 418 K 145). Recrystallization from CH2Cl2/Et2O (Ratio?) yielded crystals of (I) suitable for X-ray analysis. Spectroscopic analysis: 1H NMR (250 MHz, CDCl3, δ, p.p.m.): 1.69–2.31 [m, 6H, 2CH2 (H6, H7), H4A, H5], 2.41 (s, 3H, CH3), 3.17–3.42 (m, 4H, H2, H3, H1, H4B), 4.08–4.48 [m, 4H, F(CH2)2], 6.18 (d, 1H, NH), 7.04 (d, 2H, C6H4), 7.56 (d, 2H, C6H4); 13C NMR (250 MHz, CDCl3, δ, p.p.m.): 22.98 (CH2), 26.38 (CH2), 36.72 (CH3), 39.81 (CH2), 40.75 (CH), 53.77 (CH), 62.37 (CH), 65.36 (CH), 81.37 (CH2), 84.68 (CH2), 92.23 (CI), 130.30, 137.98, 143.27 (C6H4), 172.30 (CO).

Refinement top

The largest residual electron-density peak lies close to a heavy atom, 0.98 Å from atom I1. The F atom is disordered and was refined with a split model over two positions, with occupancies of 0.638 (9) for F11 and 0.362 (9) for F12. H atoms were placed at calculated positions, riding on their attached C or N atoms, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(CH3). CH3 groups were allowed to rotate but not to tip or distort.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Only one position is shown for the disordered F atom. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in (I), viewed along [100], with hydrogen bonds indicated by dashed lines (O atoms are shaded and F atoms cross-hatched). Only one position (F11) of the disordered F atom is shown, and H atoms not involved in hydrogen bonding have been omitted.
N-(2-Fluoroethyl)-3β-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2α- carboxamide top
Crystal data top
C17H22FIN2OF(000) = 416
Mr = 416.27Dx = 1.607 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.9837 (8) ÅCell parameters from 3506 reflections
b = 9.5600 (8) Åθ = 2.3–28.3°
c = 10.1222 (9) ŵ = 1.87 mm1
β = 98.225 (2)°T = 120 K
V = 860.39 (13) Å3Block, colourless
Z = 20.40 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4021 independent reflections
Radiation source: sealed tube3602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1112
Tmin = 0.574, Tmax = 0.799k = 1211
7235 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
4021 reflectionsΔρmax = 1.29 e Å3
211 parametersΔρmin = 0.63 e Å3
3 restraintsAbsolute structure: Flack (1983), with x Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
C17H22FIN2OV = 860.39 (13) Å3
Mr = 416.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9837 (8) ŵ = 1.87 mm1
b = 9.5600 (8) ÅT = 120 K
c = 10.1222 (9) Å0.40 × 0.20 × 0.12 mm
β = 98.225 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3602 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.799Rint = 0.031
7235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071Δρmax = 1.29 e Å3
S = 1.00Δρmin = 0.63 e Å3
4021 reflectionsAbsolute structure: Flack (1983), with x Friedel pairs
211 parametersAbsolute structure parameter: 0.02 (2)
3 restraints
Special details top

Experimental. 1H and 13C NMR spectra were obtained at 250 MHz using a Bruker DPX-200 spectrometer (Avance 200) in 5% solution at 298 K

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I11.08693 (2)0.24881 (4)1.17178 (2)0.03047 (8)
O10.5589 (3)0.0690 (3)0.5609 (3)0.0261 (6)
N20.5914 (4)0.2812 (3)0.4709 (3)0.0221 (8)
H2B0.58050.37020.47770.026*
N80.1984 (4)0.3609 (4)0.6762 (4)0.0233 (8)
C10.2806 (4)0.2803 (4)0.5859 (4)0.0195 (9)
H1A0.27470.32750.49930.023*
C20.4464 (4)0.2699 (4)0.6530 (3)0.0168 (9)
H2A0.48600.36480.66910.020*
C30.4580 (4)0.1932 (4)0.7878 (4)0.0190 (7)
H3A0.44070.09340.76970.023*
C40.3341 (3)0.2461 (9)0.8679 (3)0.0248 (7)
H4A0.32720.18340.94200.030*
H4B0.36120.33810.90400.030*
C50.1818 (3)0.2539 (9)0.7796 (3)0.0260 (7)
H5A0.10310.28140.83230.031*
C60.1376 (5)0.1186 (5)0.7015 (5)0.0280 (10)
H6A0.18150.03760.74990.034*
H6B0.02920.10770.68550.034*
C70.2011 (4)0.1371 (4)0.5695 (4)0.0253 (8)
H7A0.12120.13750.49410.030*
H7B0.27180.06310.55720.030*
C80.0528 (5)0.4082 (5)0.6092 (5)0.0345 (10)
H8A0.00990.32870.58330.052*
H8B0.06670.46120.53130.052*
H8C0.00570.46600.66880.052*
C90.6120 (4)0.2091 (4)0.8709 (4)0.0187 (10)
C100.6691 (5)0.3383 (5)0.9113 (4)0.0247 (10)
H10A0.61500.41830.88260.030*
C110.8067 (6)0.3518 (6)0.9944 (5)0.0273 (12)
H11A0.84540.43991.01870.033*
C120.8839 (4)0.2335 (7)1.0396 (3)0.0232 (9)
C130.8295 (6)0.1019 (5)0.9994 (5)0.0242 (11)
H13A0.88240.02171.02950.029*
C140.6946 (5)0.0920 (5)0.9134 (4)0.0245 (10)
H14A0.65930.00430.88390.029*
C150.5382 (4)0.1961 (4)0.5592 (4)0.0191 (8)
C160.6671 (4)0.2258 (5)0.3644 (3)0.0232 (11)
H16A0.71740.13920.39410.028*
H16B0.74310.29190.34530.028*
C170.5613 (5)0.1990 (6)0.2404 (5)0.0433 (14)
H17A0.61870.16220.17390.017 (10)*0.50
H17B0.49180.12640.25920.017 (10)*0.50
H17C0.61320.13980.18540.017 (10)*0.50
H17D0.54600.28710.19500.017 (10)*0.50
F110.4840 (7)0.3034 (5)0.1889 (5)0.0555 (19)0.639 (10)
F120.4368 (8)0.1468 (10)0.2443 (8)0.045 (3)0.361 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02715 (11)0.03791 (14)0.02424 (12)0.00150 (19)0.00359 (7)0.00588 (19)
O10.0366 (16)0.0185 (15)0.0241 (15)0.0035 (11)0.0081 (12)0.0008 (11)
N20.0332 (16)0.011 (2)0.0230 (16)0.0010 (12)0.0068 (13)0.0003 (11)
N80.0223 (19)0.023 (2)0.024 (2)0.0050 (14)0.0007 (15)0.0023 (14)
C10.0236 (16)0.021 (3)0.0132 (15)0.0002 (14)0.0005 (12)0.0003 (13)
C20.0244 (15)0.009 (3)0.0163 (15)0.0021 (14)0.0001 (11)0.0001 (14)
C30.0227 (17)0.0184 (18)0.0149 (17)0.0022 (13)0.0007 (14)0.0009 (14)
C40.0281 (15)0.0320 (19)0.0140 (14)0.007 (3)0.0022 (11)0.005 (3)
C50.0250 (15)0.034 (2)0.0198 (15)0.004 (3)0.0046 (12)0.004 (3)
C60.027 (2)0.034 (3)0.023 (2)0.006 (2)0.0041 (18)0.0024 (19)
C70.031 (2)0.024 (2)0.019 (2)0.0010 (17)0.0008 (16)0.0021 (16)
C80.031 (2)0.040 (3)0.032 (3)0.012 (2)0.0003 (19)0.002 (2)
C90.0227 (18)0.022 (3)0.0106 (17)0.0036 (14)0.0010 (14)0.0001 (13)
C100.031 (3)0.021 (3)0.020 (2)0.007 (2)0.0031 (18)0.002 (2)
C110.038 (3)0.019 (3)0.023 (2)0.004 (2)0.002 (2)0.0061 (19)
C120.0217 (14)0.031 (3)0.0156 (15)0.005 (2)0.0002 (11)0.001 (2)
C130.025 (2)0.021 (3)0.024 (2)0.0044 (19)0.0019 (17)0.0037 (19)
C140.028 (2)0.022 (3)0.023 (2)0.0009 (19)0.0026 (16)0.0007 (19)
C150.0215 (17)0.0215 (19)0.0129 (17)0.0000 (13)0.0021 (14)0.0040 (13)
C160.0265 (16)0.022 (3)0.0221 (17)0.0023 (16)0.0081 (13)0.0018 (16)
C170.045 (3)0.065 (4)0.022 (2)0.006 (2)0.010 (2)0.011 (2)
F110.069 (4)0.067 (4)0.027 (3)0.035 (3)0.006 (2)0.001 (2)
F120.026 (4)0.067 (7)0.040 (5)0.006 (4)0.005 (3)0.021 (4)
Geometric parameters (Å, º) top
I1—C122.107 (3)C7—H7A0.9700
C15—O11.229 (5)C7—H7B0.9700
N2—C151.346 (5)C8—H8A0.9600
N2—C161.454 (5)C8—H8B0.9600
N2—H2B0.8600C8—H8C0.9600
N8—C81.457 (5)C9—C101.377 (6)
N8—C11.472 (5)C9—C141.377 (6)
N8—C51.486 (7)C10—C111.399 (7)
C1—C71.542 (5)C10—H10A0.9300
C1—C21.549 (5)C11—C121.371 (8)
C1—H1A0.9800C11—H11A0.9300
C2—C151.518 (5)C12—C131.390 (8)
C2—C31.539 (5)C13—C141.390 (7)
C2—H2A0.9800C13—H13A0.9300
C3—C91.520 (5)C14—H14A0.9300
C3—C41.552 (5)C16—C171.484 (6)
C3—H3A0.9800C16—H16A0.9700
C4—C51.525 (4)C16—H16B0.9700
C4—H4A0.9700C17—F111.284 (6)
C4—H4B0.9700C17—F121.230 (9)
C5—C61.538 (9)C17—H17A0.9700
C5—H5A0.9800C17—H17B0.9700
C6—C71.536 (6)C17—H17C0.9599
C6—H6A0.9700C17—H17D0.9600
C6—H6B0.9700
C15—N2—C16121.3 (3)C1—C7—H7B111.1
C15—N2—H2B119.3H7A—C7—H7B109.0
C16—N2—H2B119.3N8—C8—H8A109.5
C8—N8—C1111.7 (3)N8—C8—H8B109.5
C8—N8—C5111.6 (3)H8A—C8—H8B109.5
C1—N8—C5100.8 (4)N8—C8—H8C109.5
N8—C1—C7105.4 (3)H8A—C8—H8C109.5
N8—C1—C2107.3 (3)H8B—C8—H8C109.5
C7—C1—C2113.0 (3)C10—C9—C14118.4 (4)
N8—C1—H1A110.3C10—C9—C3121.7 (3)
C7—C1—H1A110.3C14—C9—C3119.9 (3)
C2—C1—H1A110.3C9—C10—C11121.4 (5)
C15—C2—C3111.1 (3)C9—C10—H10A119.3
C15—C2—C1109.3 (3)C11—C10—H10A119.3
C3—C2—C1111.0 (3)C12—C11—C10119.0 (5)
C15—C2—H2A108.5C12—C11—H11A120.5
C3—C2—H2A108.5C10—C11—H11A120.5
C1—C2—H2A108.5C11—C12—C13120.7 (4)
C9—C3—C2112.6 (3)C11—C12—I1120.3 (4)
C9—C3—C4110.0 (3)C13—C12—I1119.0 (4)
C2—C3—C4110.2 (3)C12—C13—C14118.9 (4)
C9—C3—H3A108.0C12—C13—H13A120.5
C2—C3—H3A108.0C14—C13—H13A120.5
C4—C3—H3A108.0C9—C14—C13121.5 (4)
C5—C4—C3111.1 (3)C9—C14—H14A119.2
C5—C4—H4A109.4C13—C14—H14A119.2
C3—C4—H4A109.4O1—C15—N2122.6 (3)
C5—C4—H4B109.4O1—C15—C2123.1 (3)
C3—C4—H4B109.4N2—C15—C2114.3 (3)
H4A—C4—H4B108.0N2—C16—C17112.3 (3)
N8—C5—C4105.9 (4)N2—C16—H16A109.1
N8—C5—C6105.1 (3)C17—C16—H16A109.1
C4—C5—C6113.8 (6)N2—C16—H16B109.1
N8—C5—H5A110.6C17—C16—H16B109.1
C4—C5—H5A110.6H16A—C16—H16B107.9
C6—C5—H5A110.6F11—C17—C16116.9 (4)
C7—C6—C5104.5 (4)F12—C17—C16121.2 (6)
C7—C6—H6A110.9F11—C17—H17A108.1
C5—C6—H6A110.9C16—C17—H17A108.1
C7—C6—H6B110.9F11—C17—H17B108.1
C5—C6—H6B110.9C16—C17—H17B108.1
H6A—C6—H6B108.9H17A—C17—H17B107.3
C6—C7—C1103.4 (3)C16—C17—H17C106.7
C6—C7—H7A111.1C16—C17—H17D106.5
C1—C7—H7A111.1H17C—C17—H17D106.7
C6—C7—H7B111.1
C8—N8—C1—C774.3 (4)C2—C1—C7—C688.3 (4)
C5—N8—C1—C744.4 (4)C2—C3—C9—C1060.2 (5)
C8—N8—C1—C2165.0 (3)C4—C3—C9—C1063.1 (6)
C5—N8—C1—C276.3 (3)C2—C3—C9—C14123.1 (4)
N8—C1—C2—C15176.2 (3)C4—C3—C9—C14113.6 (5)
C7—C1—C2—C1568.1 (4)C14—C9—C10—C110.6 (7)
N8—C1—C2—C361.0 (4)C3—C9—C10—C11176.1 (4)
C7—C1—C2—C354.7 (4)C9—C10—C11—C121.9 (8)
C15—C2—C3—C971.2 (4)C10—C11—C12—C132.5 (6)
C1—C2—C3—C9167.0 (3)C10—C11—C12—I1177.3 (3)
C15—C2—C3—C4165.7 (4)C11—C12—C13—C140.6 (6)
C1—C2—C3—C443.9 (5)I1—C12—C13—C14179.2 (3)
C9—C3—C4—C5170.7 (5)C10—C9—C14—C132.6 (7)
C2—C3—C4—C546.0 (7)C3—C9—C14—C13174.1 (4)
C8—N8—C5—C4163.6 (5)C12—C13—C14—C92.0 (7)
C1—N8—C5—C477.7 (5)C16—N2—C15—O15.0 (6)
C8—N8—C5—C675.6 (5)C16—N2—C15—C2173.0 (3)
C1—N8—C5—C643.1 (4)C3—C2—C15—O131.1 (5)
C3—C4—C5—N864.0 (7)C1—C2—C15—O191.7 (4)
C3—C4—C5—C651.0 (6)C3—C2—C15—N2150.9 (3)
N8—C5—C6—C725.5 (4)C1—C2—C15—N286.3 (4)
C4—C5—C6—C790.0 (4)C15—N2—C16—C1791.0 (5)
C5—C6—C7—C11.6 (4)N2—C16—C17—F1158.0 (6)
N8—C1—C7—C628.6 (4)N2—C16—C17—F1241.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.283.061 (4)151
C14—H14A···F11ii0.932.373.284 (7)167
C10—H10A···F12i0.932.543.41 (1)156
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H22FIN2O
Mr416.27
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.9837 (8), 9.5600 (8), 10.1222 (9)
β (°) 98.225 (2)
V3)860.39 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.574, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
7235, 4021, 3602
Rint0.031
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.00
No. of reflections4021
No. of parameters211
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.63
Absolute structureFlack (1983), with x Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
I1—C122.107 (3)C2—C151.518 (5)
C15—O11.229 (5)C2—C31.539 (5)
N2—C151.346 (5)C3—C91.520 (5)
N2—C161.454 (5)C16—C171.484 (6)
N8—C81.457 (5)C17—F111.284 (6)
N8—C11.472 (5)C17—F121.230 (9)
N8—C51.486 (7)
C15—N2—C16121.3 (3)N2—C15—C2114.3 (3)
C15—C2—C3111.1 (3)N2—C16—C17112.3 (3)
C9—C3—C2112.6 (3)F11—C17—C16116.9 (4)
O1—C15—N2122.6 (3)F12—C17—C16121.2 (6)
O1—C15—C2123.1 (3)
C15—C2—C3—C971.2 (4)C1—C2—C15—O191.7 (4)
C2—C3—C9—C1060.2 (5)C1—C2—C15—N286.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.283.061 (4)151
C14—H14A···F11ii0.932.373.284 (7)167
C10—H10A···F12i0.932.543.41 (1)156
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds