Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The solid-state structure of the title compound, C19H15NS2, is unusual among substituted thiophene/pyrrole derivatives in that the molecular packing is dominated by π–π interactions between the benzyl substituents. This may be due to the large torsion angles observed between adjacent heterocycles. Torsion angles between adjacent rings in poly­pyrrole and poly­thio­phene conducting polymers are related to conjugation length and the conductivity properties of the polymer materials. The title compound crystallizes in space group P21/c with two mol­ecules in the asymmetric unit, both of which exhibit disorder in one of their thio­phene rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103029639/bm1552sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029639/bm1552Isup2.hkl
Contains datablock I

CCDC reference: 235330

Comment top

We are interested in substituted mixed thiophene and pyrrole oligomers as precursors to substituted conducting polymer materials. These materials are of interest as conducting coatings in a range of emergent technologies, including electronic components, electromagnetic screening, sensors and displays.

Although not in itself new, the title compound, (I), exemplifies the Paal-Knorr condensation reaction of a parent dione with a substituted amine. In common with several other research groups (Meeker et al., 1998; von Kieseritzky et al., 2002; Raimundo et al., 2000; Ferraris et al., 1989), we have found this route convenient for the preparation of `trimeric' thiophene-pyrrole-thiophene derivatives substituted at the N atom of the pyrrole ring. This strategy yields centrosymmetric polymer precursors and seeks to minimize the steric influence of the central substituent through addition of the thiophene spacers. \sch

The asymmetric unit of the crystal structure contains two molecules of (I), shown in Figs. 1 and 2, with different orientations of the substituent thiophene rings. In both molecules, the pendant benzene ring of the benzyl group lies in a plane that is almost perpendicular to the plane of the central pyrrole ring. Although the individual heterocyclic rings are essentially planar, the two outer thiophene rings are twisted with respect to the plane of the pyrrole ring. The magnitude of this twisting is not the same for the two independent molecules, such that the S112—C111—C12—N11 and N11—C15—C121—S122 torsion angles are 130.50 (15) and 128.1 (3)°, respectively, and S222—C221—C25—N21 and N21—C22—C211—S212 are −132.44 (18) and −142.31 (15)°, respectively (Table 1). These torsion angles are considerably larger than those in N-methyl-2,5-di(2-thienyl)pyrrole, a similar species with a methyl substituent on the N atom of the pyrrole ring (Ferraris et al., 1989), which has values of −148.9° for S—C—C—N and 151.8° for N—C—C—S. This is consistent with other observations on substituted oligomers of thiophene (Barbarella et al., 1999; Destri et al., 1998; Liao et al., 1994) and phenyl-substituted derivatives of thiophene-pyrrole-thiophene trimers, similar to (I) (Ogura et al., 1999), where increasing the size and proximity of the substituents results in more pronounced torsional twisting. On the other hand, the crystal structure of unsubstituted oligomers of thiophene, for example hexathiophene (Horowitz et al., 1995), shows the rings to be coplanar.

AUTHOR: Some rearrangement at the end of the next paragraph - OK?

The molecules of (I) are arranged in layers such that, along both axes of each layer, the benzyl substituent is orientated alternately above and below the plane of the layer (Fig. 3). The phenyl rings in each row of molecules are all coplanar and the equivalent planes in adjacent rows are parallel. Each layer is populated solely by one of the two molecular configurations observed in the asymmetric unit, such that one layer consists of molecules containing atoms S112 and S122, while the adjacent layer is made up of molecules containing atoms S212 and S222. There is a ππ facial interaction between the phenyl rings of the benzyl substituents in adjacent layers. The corresponding C···C distance between cofacial phenyl rings is 3.80 Å. This packing arrangement is also shown schematically in Fig. 4. There is also twofold rotational disorder of one of the thiophene rings in each molecule. Atoms C121 and C221 are common to each of the two disorder components, the occupancies of which refine to 0.553 (3):0.447 (3) and 0.690 (3):0.310 (3), respectively.

This packing arrangement is quite different from those commonly seen in other derivatives and oligomers of thiophene and pyrrole, where an alternating herring-bone motif is often observed (Horowitz et al., 1995; Liao et al., 1994; Destri et al., 1998; Chen et al., 2002). Indeed, when the phenyl ring interaction is absent, for example in N-methyl-2,5-di(2-thienyl)pyrrole, this type of packing arrangement is adopted (Ferraris et al., 1989). In phenyl derivatives of the dithienylpyrrole moiety (see, for example, Ogura et al., 1999), a packing arrangement is observed that is quite similar to that reported here. However, in that case the phenyl rings are much further apart. In both the phenyl derivatives and the benzyl derivative reported here, the torsion angles between the adjacent heterocycles of the molecule are quite large. Presumably this will render the packing interactions between neighbouring dithienylpyrrole units less favourable compared with molecular geometries in which this backbone moiety is planar.

Experimental top

The title compound was prepared by Paal-Knorr ring-closure reaction of 1,4-di(2-thienyl)-1,4-butanedione with benzyl amine (see Scheme). The synthesis of both species has been described previously (e.g. Just et al., 2002), but for completeness we include here improved experimental details of the ring-closure reaction. The procedure detailed below gives a much higher yield, together with better purity, than that described by Just et al. (2002). A 100 ml round-bottomed flask was charged with 1,4-di(2-thienyl)-1,4-butanedione (1.1 g, 4.4 mmol), toluene (50 ml) and glacial acetic acid (5 ml). Benzylamine (1.85 g, 17 mmol) was added dropwise to this solution. The flask was equipped with a Dean-Stark apparatus and the reaction was stirred at reflux overnight with the constant removal of water by azeotropic distillation. The reaction mixture was concentrated in vacuo and the residue dissolved in dichloromethane. This solution was washed with aqueous sodium bicarbonate and saturated aqueous sodium chloride. The organic solution was dried over MgSO4 and the solvent removed in vacuo. The brown solid was purified using silica gel chromatography with hexane:dichloromethane (3:1) as eluent, to afford (I) in 88% yield as a white solid, which was crystallized from hot hexane to yield colourless crystals.

AUTHOR: Specify temperature for spectra acquisition, if available:

Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, ??? K, δ, p.p.m.): 5.29 (2H, S, CH2), 6.39 (2H, S), 6.70 (2H, dd, J = 1.2 Hz and 3.6 Hz), 6.83 (2H, dd, J = 3.6 Hz and 5.0 Hz), 6.88 (2H, m, ArH), 7.10 (2H, dd, J = 1.2 Hz and 5.0 Hz), 7.20 (3H, m, ArH).

Refinement top

H atoms were placed in geometrically calculated positions (with aryl C—H distances of 0.95 Å and aliphatic C—H distances of 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). Positional disorder (twofold ring rotation about common atoms C121 and C221) was modelled with restraints to geometric and anisotropic displacement parameters, to give refined occupancies of 0.553 (3) for S122/C123—C125, 0.447 (3) for S127/C128—C130, 0.690 (3) for S222/C223—C225 and 0.310 (3) for S227/C228—C230.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of one independent molecule of (I) (that containing atoms N11, S112 and S122), with 50% probability displacement ellipsoids. The minor disorder component has been omitted.
[Figure 2] Fig. 2. A view of the second independent molecule of (I) (that containing atoms N21, S212 and S222), with 50% probability displacement ellipsoids. The minor disorder component has been omitted.
[Figure 3] Fig. 3. A packing diagram of (I).
[Figure 4] Fig. 4. A schematic representation of the packing of (I), showing the phenyl ring of the substituent as a pendant ellipse. Two adjacent layers are shown, shaded differently for clarity.
(I) top
Crystal data top
C19H15NS2F(000) = 1344
Mr = 321.44Dx = 1.37 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9139 reflections
a = 16.8050 (8) Åθ = 2.2–29.0°
b = 10.0004 (5) ŵ = 0.34 mm1
c = 18.6253 (9) ÅT = 150 K
β = 95.241 (2)°Block, colourless
V = 3117.0 (3) Å30.68 × 0.35 × 0.16 mm
Z = 8
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
5517 reflections with I > 2σ(I)
ω rotation with narrow frames scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 29.0°, θmin = 2.2°
Tmin = 0.803, Tmax = 0.948h = 2222
26998 measured reflectionsk = 1313
7546 independent reflectionsl = 2424
Refinement top
Refinement on F2382 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.066P)2 + 1.513P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.73 e Å3
7546 reflectionsΔρmin = 0.40 e Å3
471 parameters
Crystal data top
C19H15NS2V = 3117.0 (3) Å3
Mr = 321.44Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.8050 (8) ŵ = 0.34 mm1
b = 10.0004 (5) ÅT = 150 K
c = 18.6253 (9) Å0.68 × 0.35 × 0.16 mm
β = 95.241 (2)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
7546 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5517 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.948Rint = 0.030
26998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046382 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
7546 reflectionsΔρmin = 0.40 e Å3
471 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.02386 (8)0.09395 (14)0.24590 (8)0.0210 (3)
C120.09110 (10)0.13438 (17)0.28883 (9)0.0217 (3)
C130.14025 (10)0.20173 (17)0.24549 (10)0.0235 (4)
H130.19090.23980.26050.028*
C140.10178 (10)0.20372 (17)0.17524 (10)0.0229 (4)
H140.12170.24390.13430.027*
C150.03000 (10)0.13713 (17)0.17609 (9)0.0218 (3)
C1110.10612 (10)0.10082 (17)0.36509 (9)0.0235 (4)
S1120.19839 (3)0.03555 (6)0.39538 (3)0.03988 (15)
C1130.17449 (12)0.0288 (2)0.48280 (11)0.0389 (5)
H1130.20960.00210.52220.047*
C1140.09906 (12)0.07297 (19)0.48862 (10)0.0307 (4)
H1140.07510.0760.53290.037*
C1150.05970 (11)0.11428 (19)0.42155 (10)0.0281 (4)
H1150.00660.14780.41630.034*
C1210.03013 (10)0.11264 (18)0.11590 (9)0.0275 (4)
S1220.0669 (3)0.2349 (3)0.0639 (2)0.0385 (5)0.553 (3)
C1230.1212 (8)0.1289 (7)0.0061 (6)0.047 (2)0.553 (3)
H1230.15460.15710.0350.056*0.553 (3)
C1240.1103 (7)0.0020 (7)0.0268 (5)0.0461 (18)0.553 (3)
H1240.13380.07620.0010.055*0.553 (3)
C1250.0588 (9)0.0125 (7)0.0924 (7)0.039 (3)0.553 (3)
H1250.04590.09420.11680.046*0.553 (3)
S1270.0611 (3)0.0330 (3)0.0813 (2)0.0352 (6)0.447 (3)
C1280.1197 (7)0.0356 (7)0.0104 (5)0.0337 (19)0.447 (3)
H1280.15160.01390.02510.04*0.447 (3)
C1290.1139 (11)0.1721 (8)0.0125 (8)0.0339 (17)0.447 (3)
H1290.14160.22970.02180.041*0.447 (3)
C1300.0612 (12)0.2186 (8)0.0728 (8)0.031 (3)0.447 (3)
H1300.04890.310.08210.037*0.447 (3)
C1310.10840 (9)0.12647 (17)0.29444 (9)0.0202 (3)
C1320.17584 (10)0.07502 (18)0.32347 (9)0.0228 (3)
H1320.18110.01880.32930.027*
C1330.23508 (10)0.15971 (19)0.34376 (9)0.0250 (4)
H1330.28080.12370.36320.03*
C1340.22773 (10)0.29697 (19)0.33581 (9)0.0259 (4)
H1340.26820.35510.34990.031*
C1350.16104 (11)0.34889 (18)0.30721 (10)0.0280 (4)
H1350.15570.44280.30170.034*
C1360.10181 (10)0.26359 (18)0.28661 (10)0.0254 (4)
H1360.05630.29990.26690.03*
C1370.04616 (10)0.02959 (17)0.27145 (10)0.0230 (4)
H13A0.02850.02870.31290.028*
H13B0.07120.02820.23260.028*
N210.48059 (8)0.18857 (14)0.25315 (8)0.0221 (3)
C220.41229 (10)0.14526 (17)0.21273 (9)0.0229 (4)
C230.36516 (11)0.08058 (18)0.25881 (10)0.0260 (4)
H230.31420.04180.24590.031*
C240.40587 (10)0.08227 (17)0.32819 (10)0.0252 (4)
H240.38740.04460.37050.03*
C250.47732 (10)0.14834 (17)0.32396 (9)0.0223 (3)
C2110.39496 (10)0.17118 (18)0.13584 (10)0.0255 (4)
S2120.29760 (3)0.20458 (8)0.10383 (3)0.05036 (18)
C2130.32093 (14)0.2094 (3)0.01638 (12)0.0479 (6)
H2130.2830.22410.02380.058*
C2140.39938 (13)0.1898 (2)0.01132 (11)0.0366 (5)
H2140.42310.19040.03310.044*
C2150.44321 (12)0.1682 (2)0.07945 (10)0.0310 (4)
H2150.49930.15330.08550.037*
C2210.53882 (10)0.17807 (18)0.38233 (9)0.0254 (4)
S2220.57407 (14)0.05493 (15)0.43932 (10)0.0356 (4)0.690 (3)
C2230.6316 (6)0.1625 (6)0.4943 (5)0.0314 (16)0.690 (3)
H2230.66390.13680.53660.038*0.690 (3)
C2240.6241 (6)0.2918 (5)0.4682 (4)0.0342 (11)0.690 (3)
H2240.65220.3660.48990.041*0.690 (3)
C2250.5694 (7)0.3016 (7)0.4052 (5)0.043 (2)0.690 (3)
H2250.55540.38350.38150.052*0.690 (3)
S2270.5713 (4)0.3316 (5)0.4030 (3)0.0368 (8)0.310 (3)
C2280.6261 (16)0.2775 (14)0.4800 (10)0.053 (4)0.310 (3)
H2280.65890.33410.51130.063*0.310 (3)
C2290.6169 (14)0.1433 (15)0.4909 (10)0.032 (3)0.310 (3)
H2290.64210.0950.53060.038*0.310 (3)
C2300.5641 (12)0.0851 (10)0.4345 (8)0.043 (3)0.310 (3)
H2300.54840.00620.43310.052*0.310 (3)
C2310.61085 (10)0.15526 (17)0.20101 (9)0.0208 (3)
C2320.67780 (10)0.20711 (18)0.17174 (9)0.0238 (4)
H2320.68340.30120.16740.029*
C2330.73618 (11)0.1236 (2)0.14898 (9)0.0282 (4)
H2330.78150.16030.12920.034*
C2340.72820 (11)0.0142 (2)0.15512 (10)0.0296 (4)
H2340.76780.0720.13910.036*
C2350.66222 (11)0.06670 (19)0.18477 (11)0.0316 (4)
H2350.65690.16080.18950.038*
C2360.60383 (11)0.01780 (18)0.20753 (10)0.0271 (4)
H2360.55880.0190.22770.032*
C2370.54904 (10)0.25211 (17)0.22462 (10)0.0243 (4)
H13C0.57510.3120.26210.029*
H13D0.52970.30830.18290.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0193 (7)0.0212 (7)0.0231 (7)0.0014 (5)0.0048 (5)0.0007 (6)
C120.0198 (8)0.0186 (8)0.0268 (9)0.0005 (6)0.0025 (6)0.0025 (6)
C130.0197 (8)0.0210 (8)0.0300 (9)0.0012 (6)0.0033 (7)0.0005 (7)
C140.0219 (8)0.0202 (8)0.0272 (9)0.0003 (6)0.0058 (7)0.0012 (7)
C150.0213 (8)0.0209 (8)0.0238 (8)0.0006 (6)0.0049 (6)0.0006 (7)
C1110.0215 (8)0.0223 (8)0.0268 (9)0.0006 (6)0.0020 (7)0.0015 (7)
S1120.0234 (2)0.0683 (4)0.0277 (3)0.0086 (2)0.00081 (19)0.0034 (2)
C1130.0341 (11)0.0565 (14)0.0250 (10)0.0014 (10)0.0029 (8)0.0033 (9)
C1140.0369 (11)0.0320 (10)0.0235 (9)0.0043 (8)0.0048 (8)0.0029 (7)
C1150.0274 (9)0.0274 (9)0.0302 (10)0.0036 (7)0.0070 (7)0.0014 (7)
C1210.0218 (8)0.0371 (10)0.0241 (9)0.0028 (7)0.0048 (7)0.0043 (8)
S1220.0305 (11)0.0537 (9)0.0308 (9)0.0039 (7)0.0000 (6)0.0215 (7)
C1230.030 (3)0.089 (7)0.019 (2)0.008 (7)0.0049 (18)0.007 (5)
C1240.029 (3)0.072 (4)0.036 (4)0.007 (4)0.003 (2)0.012 (3)
C1250.033 (3)0.047 (4)0.035 (4)0.002 (3)0.005 (3)0.010 (3)
S1270.0381 (11)0.0295 (8)0.0381 (12)0.0078 (7)0.0035 (9)0.0109 (8)
C1280.026 (3)0.044 (4)0.030 (5)0.000 (4)0.004 (3)0.014 (4)
C1290.032 (5)0.045 (4)0.024 (4)0.004 (4)0.003 (2)0.004 (3)
C1300.026 (4)0.041 (4)0.023 (5)0.000 (4)0.010 (3)0.005 (3)
C1310.0180 (8)0.0227 (8)0.0199 (8)0.0023 (6)0.0020 (6)0.0002 (6)
C1320.0220 (8)0.0242 (8)0.0221 (8)0.0031 (7)0.0018 (6)0.0045 (7)
C1330.0199 (8)0.0342 (10)0.0211 (8)0.0028 (7)0.0031 (6)0.0036 (7)
C1340.0217 (8)0.0324 (10)0.0236 (9)0.0052 (7)0.0015 (7)0.0000 (7)
C1350.0283 (9)0.0223 (9)0.0336 (10)0.0004 (7)0.0035 (7)0.0009 (7)
C1360.0228 (9)0.0240 (9)0.0301 (9)0.0038 (7)0.0064 (7)0.0013 (7)
C1370.0219 (8)0.0203 (8)0.0274 (9)0.0036 (6)0.0057 (7)0.0005 (7)
N210.0207 (7)0.0205 (7)0.0257 (7)0.0009 (5)0.0044 (6)0.0000 (6)
C220.0204 (8)0.0207 (8)0.0278 (9)0.0002 (6)0.0030 (7)0.0029 (7)
C230.0220 (8)0.0225 (9)0.0342 (10)0.0020 (7)0.0066 (7)0.0018 (7)
C240.0257 (9)0.0215 (8)0.0296 (9)0.0014 (7)0.0087 (7)0.0003 (7)
C250.0248 (8)0.0193 (8)0.0234 (8)0.0015 (6)0.0058 (7)0.0007 (6)
C2110.0220 (8)0.0255 (9)0.0289 (9)0.0001 (7)0.0022 (7)0.0016 (7)
S2120.0252 (3)0.0905 (5)0.0347 (3)0.0078 (3)0.0006 (2)0.0032 (3)
C2130.0405 (12)0.0711 (17)0.0303 (11)0.0043 (11)0.0068 (9)0.0002 (11)
C2140.0404 (11)0.0432 (12)0.0266 (10)0.0010 (9)0.0045 (8)0.0025 (9)
C2150.0308 (10)0.0343 (10)0.0279 (10)0.0014 (8)0.0030 (8)0.0021 (8)
C2210.0219 (8)0.0297 (9)0.0253 (9)0.0020 (7)0.0063 (7)0.0004 (7)
S2220.0361 (7)0.0400 (6)0.0313 (5)0.0041 (5)0.0065 (4)0.0098 (4)
C2230.019 (4)0.051 (3)0.023 (2)0.001 (2)0.0015 (19)0.004 (2)
C2240.029 (3)0.043 (2)0.031 (3)0.0046 (19)0.0047 (18)0.0067 (17)
C2250.033 (3)0.050 (4)0.048 (3)0.005 (3)0.005 (2)0.001 (3)
S2270.0339 (15)0.0465 (17)0.0298 (14)0.0148 (13)0.0015 (10)0.0058 (11)
C2280.036 (7)0.094 (8)0.027 (6)0.017 (7)0.006 (5)0.001 (5)
C2290.018 (7)0.056 (6)0.022 (5)0.014 (4)0.005 (3)0.007 (4)
C2300.034 (6)0.059 (7)0.037 (6)0.008 (6)0.002 (4)0.017 (5)
C2310.0194 (8)0.0247 (9)0.0181 (8)0.0029 (6)0.0001 (6)0.0003 (6)
C2320.0213 (8)0.0289 (9)0.0213 (8)0.0038 (7)0.0017 (6)0.0035 (7)
C2330.0218 (9)0.0402 (11)0.0228 (9)0.0030 (7)0.0040 (7)0.0027 (8)
C2340.0242 (9)0.0364 (10)0.0282 (9)0.0051 (7)0.0023 (7)0.0035 (8)
C2350.0294 (10)0.0259 (9)0.0396 (11)0.0008 (7)0.0040 (8)0.0017 (8)
C2360.0228 (9)0.0237 (9)0.0354 (10)0.0041 (7)0.0063 (7)0.0012 (7)
C2370.0238 (9)0.0210 (8)0.0289 (9)0.0034 (7)0.0065 (7)0.0016 (7)
Geometric parameters (Å, º) top
N11—C121.384 (2)C134—H1340.95
N11—C151.383 (2)C135—H1350.95
N11—C1371.459 (2)C136—H1360.95
C12—C131.382 (2)C137—H13B0.99
C12—C1111.459 (2)C137—H13A0.99
C13—C141.406 (3)S212—C2111.7221 (18)
C14—C151.379 (2)S212—C2131.710 (2)
C15—C1211.460 (2)S222—C2231.720 (9)
C111—C1151.372 (3)S222—C2211.697 (2)
C13—H130.95S227—C2211.663 (6)
C113—C1141.356 (3)S227—C2281.72 (2)
C14—H140.95C211—C2151.385 (3)
S112—C1111.7288 (18)C213—C2141.345 (3)
S112—C1131.714 (2)C214—C2151.424 (3)
C114—C1151.421 (3)C213—H2130.95
C113—H1130.95C214—H2140.95
C114—H1140.95C215—H2150.95
C115—H1150.95C221—C2301.383 (13)
C121—C1301.401 (12)C221—C2251.390 (8)
C121—C1251.397 (9)C223—C2241.383 (8)
C123—C1241.372 (10)C224—C2251.426 (13)
C124—C1251.435 (17)C228—C2291.37 (2)
C128—C1291.369 (11)C229—C2301.44 (3)
C129—C1301.44 (2)C231—C2371.515 (2)
C131—C1321.398 (2)C231—C2321.394 (2)
C131—C1361.385 (2)C231—C2361.386 (2)
C131—C1371.516 (2)C232—C2331.384 (3)
C132—C1331.386 (2)C233—C2341.390 (3)
C133—C1341.387 (3)C234—C2351.386 (3)
C134—C1351.385 (3)C235—C2361.390 (3)
C135—C1361.391 (3)C223—H2230.95
S122—C1211.645 (4)C224—H2240.95
S122—C1231.713 (11)C225—H2250.95
S127—C1211.657 (4)C228—H2280.95
S127—C1281.717 (10)C229—H2290.95
C123—H1230.95C230—H2300.95
C124—H1240.95C232—H2320.95
C125—H1250.95C233—H2330.95
C128—H1280.95C234—H2340.95
C129—H1290.95C235—H2350.95
C130—H1300.95C236—H2360.95
C132—H1320.95C237—H13C0.99
C133—H1330.95C237—H13D0.99
C12—N11—C137125.52 (15)N11—C137—H13A108.70
C15—N11—C137125.19 (14)N11—C137—H13B108.72
C12—N11—C15108.96 (14)C131—C137—H13B108.76
C25—N21—C237125.15 (14)C23—C22—C211128.26 (16)
C22—N21—C25108.92 (14)N21—C22—C23107.63 (15)
C22—N21—C237125.57 (15)N21—C22—C211124.06 (15)
N11—C12—C13107.76 (15)C22—C23—C24107.88 (16)
C13—C12—C111128.42 (16)C24—C23—H23126.07
N11—C12—C111123.71 (15)C22—C23—H23126.05
C12—C13—C14107.58 (15)C23—C24—H24126.07
C13—C14—C15108.11 (16)C25—C24—H24126.09
N11—C15—C14107.58 (15)C23—C24—C25107.84 (16)
N11—C15—C121124.32 (15)N21—C25—C221124.25 (15)
C14—C15—C121128.10 (16)C24—C25—C221128.00 (16)
S112—C111—C115110.04 (13)N21—C25—C24107.71 (15)
S112—C111—C12118.35 (13)C211—S212—C21392.41 (10)
C12—C111—C115131.59 (16)C221—S222—C22393.7 (3)
C111—S112—C11392.51 (9)C221—S227—C22892.4 (6)
C114—C113—H113124.28S212—C211—C215110.20 (14)
S112—C113—H113124.31C22—C211—C215131.52 (16)
C113—C114—H114123.56S212—C211—C22118.21 (13)
C115—C114—H114123.61S212—C213—C214111.97 (17)
C111—C115—H115123.39C213—C214—C215112.97 (19)
C114—C115—H115123.42C211—C215—C214112.43 (18)
C14—C13—H13126.25S227—C221—C230112.6 (6)
C12—C13—H13126.17C25—C221—C225128.7 (4)
S112—C113—C114111.41 (15)C25—C221—C230122.5 (6)
C15—C14—H14125.90S222—C221—C225110.8 (4)
C113—C114—C115112.83 (17)S222—C221—C25120.05 (15)
C13—C14—H14125.99S227—C221—C25123.7 (2)
C111—C115—C114113.19 (17)S222—C223—C224110.3 (7)
C15—C121—C130120.6 (6)C223—C224—C225112.6 (7)
S127—C121—C130110.8 (6)C221—C225—C224112.6 (6)
S122—C121—C125112.4 (5)S227—C228—C229111.9 (15)
S127—C121—C15128.09 (19)C228—C229—C230111.1 (16)
C15—C121—C125125.9 (5)C221—C230—C229111.8 (10)
S122—C121—C15121.60 (19)C232—C231—C236118.77 (16)
S122—C123—C124111.3 (8)C236—C231—C237122.87 (15)
S122—C123—H123124.35C232—C231—C237118.36 (15)
C124—C123—H123124.31C231—C232—C233121.01 (17)
C123—C124—C125111.3 (8)C232—C233—C234119.77 (17)
C123—C124—H124124.35C233—C234—C235119.66 (17)
C125—C124—H124124.32C234—C235—C236120.25 (18)
C121—C125—C124111.4 (7)C231—C236—C235120.54 (17)
S127—C128—C129110.0 (9)N21—C237—C231114.36 (14)
C121—S127—C12894.9 (3)S212—C213—H213124.01
C128—C129—C130112.4 (11)C214—C213—H213124.02
C121—C130—C129111.9 (7)C213—C214—H214123.49
C136—C131—C137122.64 (15)C215—C214—H214123.54
C132—C131—C136118.74 (15)C211—C215—H215123.81
C132—C131—C137118.61 (15)C214—C215—H215123.76
C131—C132—C133120.58 (16)S222—C223—H223124.87
C132—C133—C134120.16 (16)C224—C223—H223124.82
C133—C134—C135119.67 (16)C223—C224—H224123.71
C134—C135—C136120.04 (17)C225—C224—H224123.67
C131—C136—C135120.81 (16)C221—C225—H225123.72
N11—C137—C131114.09 (14)C224—C225—H225123.73
C121—S122—C12393.4 (3)S227—C228—H228124.06
C124—C125—H125124.30C229—C228—H228124.03
C121—C125—H125124.29C228—C229—H229124.47
C129—C128—H128124.96C230—C229—H229124.44
S127—C128—H128125.03C221—C230—H230124.05
C130—C129—H129123.82C229—C230—H230124.16
C128—C129—H129123.80C233—C232—H232119.55
C129—C130—H130124.08C231—C232—H232119.44
C121—C130—H130124.05C232—C233—H233120.11
C133—C132—H132119.74C234—C233—H233120.12
C131—C132—H132119.68C235—C234—H234120.23
C132—C133—H133119.91C233—C234—H234120.11
C134—C133—H133119.93C236—C235—H235119.92
C135—C134—H134120.12C234—C235—H235119.83
C133—C134—H134120.21C231—C236—H236119.77
C136—C135—H135119.96C235—C236—H236119.70
C134—C135—H135120.00H13C—C237—H13D107.60
C131—C136—H136119.61N21—C237—H13C108.64
C135—C136—H136119.58N21—C237—H13D108.70
H13A—C137—H13B107.65C231—C237—H13C108.68
C131—C137—H13A108.73C231—C237—H13D108.66
C15—N11—C137—C13185.7 (2)H133—C133—C134—C135179.79
C137—N11—C12—C13174.48 (15)C133—C134—C135—H135179.94
C12—N11—C15—C121180.00 (16)H134—C134—C135—C136179.98
C12—N11—C15—C140.58 (19)H134—C134—C135—H1350.06
C15—N11—C12—C111177.22 (16)C134—C135—C136—H136179.82
C137—N11—C12—C1119.1 (3)H135—C135—C136—H1360.25
C137—N11—C15—C1216.3 (3)H135—C135—C136—C131179.79
C15—N11—C12—C130.83 (19)C25—N21—C237—C23185.5 (2)
C137—N11—C15—C14174.26 (15)C22—N21—C25—C241.36 (19)
C12—N11—C137—C13187.0 (2)C25—N21—C22—C211179.21 (16)
N11—C12—C111—C11551.4 (3)C25—N21—C22—C231.49 (19)
C111—C12—C13—C14176.91 (17)C22—N21—C25—C221179.08 (16)
N11—C12—C111—S112130.50 (15)C22—N21—C237—C23186.8 (2)
C13—C12—C111—S11245.1 (2)C237—N21—C25—C24174.73 (15)
C13—C12—C111—C115133.0 (2)C237—N21—C22—C2117.5 (3)
N11—C12—C13—C140.74 (19)C237—N21—C22—C23174.83 (15)
C12—C13—C14—C150.4 (2)C237—N21—C25—C2217.5 (3)
C13—C14—C15—C121179.50 (17)N21—C22—C211—S212142.31 (15)
C13—C14—C15—N110.12 (19)C211—C22—C23—C24178.64 (17)
N11—C15—C121—C12556.6 (8)C23—C22—C211—C215141.5 (2)
C14—C15—C121—C125122.7 (7)C23—C22—C211—S21234.9 (3)
C14—C15—C121—S12252.6 (3)N21—C22—C23—C241.1 (2)
N11—C15—C121—S122128.1 (2)N21—C22—C211—C21541.3 (3)
C12—C111—C115—H1152.28C22—C23—C24—C250.2 (2)
S112—C111—C115—H115179.50C23—C24—C25—N210.69 (19)
C111—S112—C113—H113179.42C23—C24—C25—C221178.31 (17)
H113—C113—C114—C115179.57N21—C25—C221—C22555.6 (6)
H113—C113—C114—H1140.39N21—C25—C221—S222132.44 (17)
S112—C113—C114—H114179.52C24—C25—C221—S22250.3 (3)
C113—C114—C115—H115179.98C24—C25—C221—C225121.7 (6)
H114—C114—C115—H1150.04S212—C211—C215—C2141.5 (2)
H114—C114—C115—C111180.00C22—C211—C215—C214175.10 (19)
C15—C121—C125—H1257.06C213—S212—C211—C22175.46 (17)
S122—C121—C125—H125177.26C211—S212—C213—C2141.4 (2)
C121—S122—C123—H123179.45C213—S212—C211—C2151.66 (17)
H123—C123—C124—C125177.88C223—S222—C221—C2250.9 (6)
H123—C123—C124—H1242.16C221—S222—C223—C2240.7 (7)
S122—C123—C124—H124177.87C223—S222—C221—C25174.2 (4)
H124—C124—C125—C121176.94S212—C213—C214—C2150.8 (3)
H124—C124—C125—H1253.15C213—C214—C215—C2110.5 (3)
C123—C124—C125—H125176.89S222—C221—C225—C2242.3 (9)
C136—C131—C137—H13B116.90C25—C221—C225—C224174.8 (5)
C132—C131—C137—H13B61.88S222—C223—C224—C2252.1 (11)
C137—C131—C136—H1361.15C223—C224—C225—C2212.8 (12)
C137—C131—C132—H1321.36C236—C231—C237—N211.4 (2)
C132—C131—C137—H13A55.08C232—C231—C236—C2350.5 (3)
C136—C131—C132—H132179.81C236—C231—C232—C2330.5 (3)
C136—C131—C137—H13A126.14C232—C231—C237—N21178.85 (15)
C132—C131—C136—H136179.93C237—C231—C236—C235179.79 (17)
H132—C132—C133—C134179.65C237—C231—C232—C233179.79 (16)
H132—C132—C133—H1330.28C231—C232—C233—C2340.1 (3)
C131—C132—C133—H133179.67C232—C233—C234—C2350.7 (3)
H133—C133—C134—H1340.21C233—C234—C235—C2360.7 (3)
C132—C133—C134—H134179.73C234—C235—C236—C2310.1 (3)

Experimental details

Crystal data
Chemical formulaC19H15NS2
Mr321.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.8050 (8), 10.0004 (5), 18.6253 (9)
β (°) 95.241 (2)
V3)3117.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.68 × 0.35 × 0.16
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.803, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
26998, 7546, 5517
Rint0.030
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.04
No. of reflections7546
No. of parameters471
No. of restraints382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL and local programs.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds